首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
随着城市化进程的加快,城市中存留森林的演替过程也发生明显变化。选取高度城市化的珠江三角洲为研究区域,以地带性群落常绿阔叶林为研究对象,选择城区(帽峰山、西樵山和大岭山)和郊区(鼎湖山、象头山和南昆山) 6个样地,分析城郊梯度上的植物群落结构和植物多样性指数。结果表明:城区森林包括31科42属46种,郊区森林包括44科75属96种,郊区样地的物种数高于城区样地的物种数;城区优势种明显,多为耐旱耐贫瘠种类,郊区无明显优势种,多为喜湿耐荫种类;城市森林中的Margalef指数、Shannon指数和Pielou指数显著低于郊区森林,城郊森林植物多样性的差异主要反映在乔木层。城市化降低了常绿阔叶林的植物多样性,促进了物种的均质化。  相似文献   

2.
城市化对植物多样性影响的研究进展   总被引:16,自引:0,他引:16  
彭羽  刘雪华 《生物多样性》2007,15(5):558-562
本文综述了城市化对植物多样性影响的研究进展。随着全球特别是发展中国家城市化水平的提高, 城市化对生物多样性的影响逐渐引起了人们的重视。城市化造成了本土植物物种的丢失和外来物种的增加。在空间分布上, 城市化还常使城区本土植物多样性沿着远郊农区-城郊-城区梯度性下降; 但是由于引进大量外来物种, 总体植物多样性反而升高, 沿着远郊农区-城郊-城区梯度性升高。城市化对植物种类组成也有很大影响,优势种在远郊农区、城郊和城区呈现不同。城市化对植物多样性影响的机制主要有人为引入外来物种、小生境改变以及景观格局的变化三个方面。以下四个研究方向将越来越重要: (1) 不同区域、不同方法、不同学科的系统整合研究;(2) 城市化扩张与植物多样性变化过程的定位监测研究; (3) 本土植物多样性丢失以及性状改变的内在机制研究, 特别是外来物种与本地物种的相互作用过程和机制的研究; (4) 城市植物多样性保护研究。  相似文献   

3.
王杰青  关崇  祝宁 《植物研究》2006,26(4):508-512
对城市绿地土壤种子库的组成、种群数量、空间分布和物种多样性进行了初步研究,结果表明:城市绿地土壤种子库存中共出现植物42种,其中在第一层中共出现植物1 477株,多样性指数为2.05,均匀度是0.58,最大的物种多样性指数是3.56,第二层的物种多样性指数,均匀度和最大物种多样性指数均比第一层要低,分别为1.94、0.56和3.47,植物种类也要少一些。城市绿地土壤种子库中种的丰富度、种子苗量、多样性指数均不如远郊区山地天然次生林。城市绿地土壤种子库中蕴藏着一些潜在种群,有些植物种可以用于城市绿化建设。  相似文献   

4.
城市化是生物多样性快速丧失的主要原因之一。鸟类作为城市生态系统的重要组成部分, 其生物多样性格局和物种保护已成为城市生态学研究的热点。为揭示城市化过程中城区和郊区破碎化林地中鸟类群落的多样性差异和嵌套格局, 本研究于2021年春、夏季鸟类繁殖期采用样线法对海口和三亚市的城区、郊区共13个林地斑块中的鸟类群落进行调查。使用NODF (nestedness metric based on overlap and decreasing fill)和WNODF (weighted nestedness metric based on overlap and decreasing fill)方法进行嵌套格局分析。研究发现: (1)共记录到林鸟100种, 隶属于11目39科, 其中三亚郊区的鸟类丰富度最高, 共8目29科68种。记录到国家重点保护鸟类共18种, 其中两城市郊区的国家重点保护鸟类物种数均多于城区, 海口郊区还记录到国家I级重点保护鸟类黄胸鹀(Emberiza aureola)。(2)鸟类群落多度、物种丰富度、Pielou均匀度指数和Shannon-Wiener多样性指数在不同区域中均存在差异。海口城区的鸟类群落多度显著高于海口郊区(P < 0.05), 三亚郊区的鸟类群落物种丰富度、Pielou均匀度指数和Shannon-Wiener多样性指数均显著高于三亚城区和海口郊区(P < 0.05)。(3)嵌套分析结果表明, 海口和三亚市的城区、郊区林地鸟类群落均呈现反嵌套分布格局。线性回归分析显示, 三亚市城区和郊区的斑块面积与鸟类物种丰富度呈显著正相关, 而物种丰富度与斑块距最近大面积林地的距离之间无显著相关性。研究表明, 两城市鸟类群落多样性都表现出郊区高于城区的特点, 少数优势种(如白头鹎 Pycnonotus sinensis)占据了城市中的主要生态位。受城市化的影响, 海口郊区与城区鸟类群落有同质化的趋势。鸟类在城区和郊区斑块间的高流动性、种间竞争和斑块中资源的可利用性等因素可能导致斑块间鸟类群落的反嵌套分布格局。我们建议应加强城区和郊区鸟类的保护, 减少对林地的破坏, 提高城市鸟类多样性。  相似文献   

5.
林下草本植物是城市森林生物多样性重要的保育层,敏感度高,可塑性强,能有效反映城市植被对城市化的响应策略。本研究在上海市范围内沿中心城区—近郊—远郊的城乡梯度,共选取16块林地共398个样方,分析了上海市森林草本群落区系特征和多样性格局沿城乡梯度的变化规律。结果表明:上海城市森林生态系统中共有草本植物144种,隶属47科118属;多年生草本74种,占半数以上(51.39%);属和种分别涵盖18和12个分布区类型和亚型,以热带和温带成分为主;外来植物28种,占比接近20%;物种丰富度和群落多样性指数均沿中心城区—近郊—远郊梯度先下降后上升,近郊最低,远郊最高;中心城区物种构成与远郊相似,与近郊差异最大。本研究揭示了城市森林生态系统中草本植物的分布格局以及多样性沿城乡梯度的变化规律,为深入开展城市化与城市植被的互作研究提供了理论支撑,为管理部门制定相关政策提供了科学依据。  相似文献   

6.
山脉是生物多样性研究的热点地区,以往关于山脉的研究多集中于地上植物和脊椎动物,无脊椎动物相关的研究明显滞后。跳虫(Collembola)是土壤无脊椎动物的主要类群之一,在分解有机质、疏松和活化土壤过程中发挥着重要的作用。以跳虫为研究对象,采用梯度格局法,在长白山北坡自海拔800 m至1700 m,每隔150 m进行凋落物层和土壤层样品的采集,对比分析了土壤层和凋落物层的群落组成与群落结构,采用4个物种多样性指数(丰富度指数、Pielou均匀度指数、Shannon-Weiner多样性指数和Simpson多样性指数)和4个功能多样性指数(功能丰富度FRic指数、功能均匀度FEve指数、二次熵Rao''s Q指数和功能离散FEiv指数),探讨了多样性沿海拔梯度的分布格局。共获得跳虫5542头,隶属于12科42属83种,其中等节跳科为绝对优势类群(相对密度>50%)。非度量多维尺度分析结果表明,凋落物层和土壤层的跳虫群落结构差异显著,长角跳科、鳞跳科和疣跳科物种多分布于凋落物层,而棘跳科物种多分布于土壤层。线性或二次回归模型结果表明,在凋落物层跳虫的丰富度指数,Shannon-Weiner多样性指数和Simpson多样性指数沿海拔梯度的变化呈增加格局;但在土壤层跳虫物种多样性指数沿海拔梯度的变化无明显趋势。在凋落物层,跳虫的功能丰富度指数和功能离散度Rao''s Q指数随海拔梯度的变化呈现单峰分布格局;在土壤层,跳虫的功能丰富度指数随海拔梯度的变化也呈现单峰分布格局,但其他功能多样性指数沿海拔梯度的变化无明显趋势。研究表明凋落物层和土壤层跳虫的群落组成,群落结构及多样性存在显著差异,跳虫的物种多样性指数和功能多样性指数对海拔梯度变化的响应不同,未来在探讨土壤动物沿海拔梯度的分布格局及其物种共存机制时,应综合考量垂直分层(凋落物层和土壤层)和多个度量维度(物种多样性和功能多样性)。  相似文献   

7.
王应刚  张婷  段毅豪  梁炜  曹霄霄 《生态学报》2016,36(20):6556-6564
在城市化的发展过程中,生物多样性受到的影响日趋严重,因此开展这一方面的研究显得非常重要。以晋中盆地为研究对象,用随机抽样法选取86个村庄驻地、48个乡镇驻地及9个县市驻地,然后在各个驻地建成区内分别设置调查样方,运用Gleason丰富度指数、Whittaker Beta多样性指数、Jaccard相似性指数和t-检验对建成区内野生植物、栽培植物及总植物物种进行分析,同时探索总结植物多样性分异规律。结果表明:沿村庄-乡镇-县市梯度,野生植物平均丰富度降低,栽培植物平均丰富度增加,总植物物种平均丰富度先降低后增加;野生植物、栽培植物和总植物物种的β多样性指数均降低;植物相似度方面,村庄与乡镇的相似性最高,乡镇与县市次之,村庄与县市的相似性最低。同时,调查过程中发现,沿"村庄-乡镇-县市"梯度,城市化水平的差异与人为干扰强度的不同是引起盆地内植物多样性变化的重要原因。  相似文献   

8.
蝴蝶是城市化对生物多样性影响评价的重要指示生物。台州市的城市化水平不断提高,但对生物多样性的影响一直没有得到评估。2017年4—9月,按城市化水平梯度,选取市区、郊区、农村3个样区,采用样线调查法对蝴蝶的种类和数量进行逐月调查并进行统计分析。结果显示,3个样区共调查到蝴蝶5科85属142种,优势种为菜粉蝶Pieris rapae; Margalef物种丰富度指数、Shannon-Wiener多样性指数、Pielou均匀度指数、Simpson优势度指数均为:农村郊区市区,且差异有统计学意义; 3个样区在科数、属数和物种数之间的差异均有统计学意义,同一样区的样线之间的差异均无统计学意义;在个体数水平上,农村样线1(V1)与城市样线1(U1),V1与城市样线2(U2),农村样线2(V2)与U1之间的差异有统计学意义(P 0. 05),其他样线之间的差异无统计学意义(P 0. 05)。由此可见,城市化对台州市蝴蝶多样性产生了显著的影响,城市化水平与蝴蝶种类和数量存在显著负相关;蝴蝶种及以上水平适合作为台州市城市化水平的评估指标。  相似文献   

9.
巴丹吉林沙漠南缘植被物种多样性及其与土壤特性的关系   总被引:2,自引:0,他引:2  
通过对巴丹吉林沙漠南缘地区植被的野外调查,探讨了植被物种组成与物种多样性对样地沿距沙漠中心的距离变化的响应,以及物种多样性与土壤因子间的关系。结果表明:(1)研究区主要物种共计10科18属20种,植物种类以沙漠旱生植物为主,样地的植被群落类型都是灌木与草本植物群落。(2)随着样地向沙漠外缘的延伸,植物种类和数量逐渐增多,群落结构更加复杂化和多样化;样地Shannon-Wiener指数和Simpson指数呈上升趋势,优势度指数逐渐下降;灌木层与样地的α多样性指数变化趋势一致,草本层变化幅度较小;β多样性指数中BrayCurtis指数呈下降趋势,说明植物群落之间的物种替换速率降低。(3)物种多样性指数与土壤因子的相关关系及逐步回归分析表明土壤有机质和土壤全氮含量对植被的影响显著,土壤表层20~40cm中的土壤速效磷与样地物种多样性和草本层物种多样性之间具有显著相关关系。  相似文献   

10.
城市化是导致生物多样性下降及生境破碎的重要因素,土壤动物群落作为城市生态系统的重要组成部分,在改善土壤结构及肥力、促进生态系统物质循环等方面起着关键作用。为探究城市化进程中绿地中小型土壤动物群落分布特征及其对环境因子的响应机制,本研究沿南昌市城区-郊区-乡村梯度27个绿地样方为对象,调查样方内植物信息、土壤理化性质和中小型土壤动物群落分布特征。结果表明:共捕获土壤动物1755头,隶属于2门11纲16目,其中,优势类群为弹尾纲、寄螨目和真螨目,个体数占比达81.9%;土壤动物密度、Shannon多样性指数和Simpson优势度指数均表现为郊区显著高于乡村。城乡梯度中绿地中小型土壤动物的不同营养级结构差异较大,植食者和大型捕食者在乡村占比最多,而在其他地区占比较小。冗余分析表明,冠幅、林分密度、土壤全磷是影响研究区绿地中小型土壤动物群落分布的主要环境因子,解释率分别为55.9%、14.0%、9.7%。非度量多维尺度分析说明,城乡梯度绿地中小型土壤动物群落特征呈现一定差异,地上植被因子是土壤动物群落特征差异的主导因素。本研究补充了南昌城市生态系统的研究体系,为维持土壤动物多样性和城市绿地建设...  相似文献   

11.
Urbanization is one of the most extreme forms of environmental alteration, posing a major threat to biodiversity. We studied the effects of urbanization on avian communities via a systematic review using hierarchical and categorical meta‐analyses. Altogether, we found 42 observations from 37 case studies for species richness and 23 observations from 20 case studies for abundance. Urbanization had an overall strong negative effect on bird species richness, whereas abundance increased marginally with urbanization. There was no evidence that city size played a role in influencing the relationship between urbanization and either species richness or abundance. Studies that examined long gradients (i.e. from urban to rural) were more likely to detect negative urbanization effects on species richness than studies that considered short gradients (i.e. urban vs. suburban or urban vs. rural areas). In contrast, we found little evidence that the effect of urbanization on abundance was influenced by gradient length. Effects of urbanization on species richness were more negative for studies including public green spaces (parks and other amenity areas) in the sampled landscapes. In contrast, studies performed solely in the urban matrix (i.e. no green spaces) revealed a strong positive effect on bird abundance. When performing subset analyses on urban–suburban, suburban–rural and suburban–natural comparisons, species richness decreased from natural to urban areas, but with a stronger decrease at the urban–suburban interface, whereas bird abundance showed a clear intermediate peak along the urban–rural gradient although abundance in natural areas was comparable to that in suburban areas. This suggests that species loss happens especially at the urban–suburban interface, and that the highest abundances occur in suburban areas compared to urban or rural areas. Thus, our study shows the importance of suburban areas, where the majority of birds occur with fairly high species richness.  相似文献   

12.
Urbanization has been rapid across the world but the responses of phosphorus (P) cycling to urbanization have not been well-investigated. This study was to understand the influences of rapid urbanization on forest P cycling in a developing country. Soil P fractions and P resportion were determined for nine slash pine (Pinus elliottii Engelm.) forests along a 30-km long urban-suburban-rural gradient in Nanchang City, southern China. The total P stocks in the surface soils in urban and suburban forests were 317% and 182% higher, respectively, than levels found in rural forests. The concentrations of soil available P, labile P, slow P, occluded P and total extractable P were also much higher in urban and suburban forests than in rural forests (P?<?0.05). Soil weathered P concentrations were highest in urban forests. Annual mean foliar P concentrations were enhanced in urban and suburban forests compared to rural forests. The P resorption efficiency (PRE) was higher in rural forests than in suburban and urban forests, while the P resorption proficiency (PRP) was lower in rural forests than in suburban and urban forests. Urbanization associated with high extraneous P inputs has altered soil P status and plant P uptake. Foliar P concentration, PRE and PRP were largely dependent on soil P availability in our study forests.  相似文献   

13.
Urban landscapes are characterized by an urban matrix often unfavorable for biodiversity, interspersed with remnant corridors such as riparian areas. Those are increasingly threatened by urban expansion and land use change worldwide. We investigated the effect of the two components, matrix versus corridor, by comparing the riparian plant diversity and the community-level ecological traits along an urbanization gradient. Species distribution was surveyed at a local-scale along an urban riparian corridor in Strasbourg, eastern France. Ninety plots were sampled along an urbanization gradient. Several plant metrics were measured using both plant richness (R) and mean ecological trait values of species weighted by their abundance (CWM). The surroundings of each plot were first described by selecting representative variables of matrix and corridor. Secondly, the distribution of plant species according to a given i ecological trait was analyzed in relation with different levels of urbanization. Using mixed effects models, we verified whether matrix or corridor variables best explain the distribution of traits. Three levels of urbanization were detected, termed urban, suburban and peri-urban, based on landscape composition. Neither the peri-urban nor the suburban level affected plant metrics. At the urban level, and whatever indicator value was considered, the CWMi metrics clearly decreased, whereas species richness Ri increased. The upstream distance to the nearest natural area and tree cover were the most influential variables on CWMi metrics, whereas Ri metrics were mainly driven by built component and landscape heterogeneity. Matrix variables were more important in explaining Ri metrics while corridor features affected CWMi metrics. These results highlight the preponderance of the corridor effect on plant ecological types and the importance of the matrix on the selection and/or the implantation of novel species. Thus, the urbanization gradient may operate simultaneously on the abundance of local species and impose the recruitment of new co-existing species. This study suggests that ecological type responds to the urbanization gradient and may be an alternative tool to understand plant distribution rather than plant diversity.  相似文献   

14.
Despite the widespread recognition that urban areas are frequently dominated by exotic and invasive plants, the consequences of these changes in community structure have not been explicitly considered as an explanation for the pattern of advanced leaf phenology, or early greenup, reported in many urban areas. As such, we evaluated two hypotheses that could account for advanced greenup in forests along an urban to rural gradient: advanced phenology within individual species or differences in woody plant community. We monitored the spring leafing phenology of Aesculus glabra (Ohio buckeye), Lonicera maackii (Amur honeysuckle), and Acer negundo (box elder) in 11 forests spanning an urban to rural gradient in central Ohio, USA. From February to April 2006, we monitored these species, recorded woody plant composition, and documented daily minimum and maximum temperatures at each site. We found a weak but general trend of advanced phenology within species in more urban landscapes. Monthly average minimum temperatures were higher with increasing urbanization while monthly average maximum temperatures were similar across the urban to rural gradient. We also found evidence for shifts in woody plant communities along the urbanization gradient, mainly driven by the abundance of L. maackii, an invasive exotic species, in the more urban forests. Because L. maackii leafs out weeks earlier than native woody species and is very abundant in urban forests, we suggest that the invasion of forests by this species can generate earlier greenup of urban forests.  相似文献   

15.
To investigate the effects of urbanization on carabid beetles (Carabidae) and ground dwelling spiders (Araneae) a study was completed along a 20km urban–rural forest gradient in the Helsinki–Espoo area of southern Finland. To study changes in assemblage structure, abundance and species richness, these taxa were collected in the year 2000 using pitfall traps, which had been placed in four forest sites within each of the urban, suburban and rural zones. We expected to find changes in the abundances and species richnesses in the two taxa across the urban–rural gradient, but did not find any. Our second and third hypotheses, stating that generalist species and small-bodied species should gain dominance along the gradient from rural to urban sites, were partly supported as carabid specialists were more characteristic of suburban and rural environments whereas generalists were more likely to be collected from rural areas compared to suburban or urban sites. Furthermore, medium to large-sized carabid individuals were more likely to be collected in the rural sites compared to urban forests. We found no evidence for significant changes in spider abundance or species richness across the urban–rural gradient in relation to body size or habitat specialization. We suggest that urbanization does not have significant effects on the total abundances and species richnesses in these two taxa. However, individual species responded differently to urbanization, and there were significant differences in the specialization and body sizes of carabids across the gradient.  相似文献   

16.

Background

The potential for reduced pollination ecosystem service due to global declines of bees and other pollinators is cause for considerable concern. Habitat degradation, destruction and fragmentation due to agricultural intensification have historically been the main causes of this pollinator decline. However, despite increasing and accelerating levels of global urbanization, very little research has investigated the effects of urbanization on pollinator assemblages. We assessed changes in the diversity, abundance and species composition of bee and hoverfly pollinator assemblages in urban, suburban, and rural sites across a UK city.

Methodology/Principal Findings

Bees and hoverflies were trapped and netted at 24 sites of similar habitat character (churchyards and cemeteries) that varied in position along a gradient of urbanization. Local habitat quality (altitude, shelter from wind, diversity and abundance of flowers), and the broader-scale degree of urbanization (e.g. percentage of built landscape and gardens within 100 m, 250 m, 500 m, 1 km, and 2.5 km of the site) were assessed for each study site. The diversity and abundance of pollinators were both significantly negatively associated with higher levels of urbanization. Assemblage composition changed along the urbanization gradient with some species positively associated with urban and suburban land-use, but more species negatively so. Pollinator assemblages were positively affected by good site habitat quality, in particular the availability of flowering plants.

Conclusions/Significance

Our results show that urban areas can support diverse pollinator assemblages, but that this capacity is strongly affected by local habitat quality. Nonetheless, in both urban and suburban areas of the city the assemblages had fewer individuals and lower diversity than similar rural habitats. The unique development histories of different urban areas, and the difficulty of assessing mobile pollinator assemblages in just part of their range, mean that complementary studies in different cities and urban habitats are required to discover if these findings are more widely applicable.  相似文献   

17.
Shanghai is the largest commercial and industrial city of China, but air quality issues have hindered its development in becoming a “global city.” This study used monitoring data on SO2, NO x , acid rain pH, dustfall, and total suspended particles (TSP) from the Shanghai Environmental Monitoring Center to evaluate and analyze the air quality in urban, suburban, and rural areas during the period 1983–2005. The results showed that the spatial pattern of air parameters was determined by the level of urbanization; thus, the higher the level of urbanization, the worse the air quality. On the whole, the atmospheric environment of the three spatial regions improved gradually because of economical growth and environmental protection since the 1990s. For the entire region of Shanghai, the relationship between the integrated air quality index and gross domestic product (GDP) per capita was an N-shaped environmental Kuznets curve (EKC) due to decreasing air quality in suburban and rural areas this century. Thus, environmental controls should be increased in Shanghai, especially in developing suburban and rural areas during rapid urbanization.  相似文献   

18.

Introduction

Aedes albopictus is a very invasive and aggressive insect vector that causes outbreaks of dengue fever, chikungunya disease, and yellow fever in many countries. Vector ecology and disease epidemiology are strongly affected by environmental changes. Urbanization is a worldwide trend and is one of the most ecologically modifying phenomena. The purpose of this study is to determine how environmental changes due to urbanization affect the ecology of Aedes albopictus.

Methods

Aquatic habitats and Aedes albopictus larval population surveys were conducted from May to November 2013 in three areas representing rural, suburban, and urban settings in Guangzhou, China. Ae. albopictus adults were collected monthly using BG-Sentinel traps. Ae. albopictus larva and adult life-table experiments were conducted with 20 replicates in each of the three study areas.

Results

The urban area had the highest and the rural area had the lowest number of aquatic habitats that tested positive for Ae. albopictus larvae. Densities in the larval stages varied among the areas, but the urban area had almost two-fold higher densities in pupae and three-fold higher in adult populations compared with the suburban and rural areas. Larvae developed faster and the adult emergence rate was higher in the urban area than in suburban and rural areas. The survival time of adult mosquitoes was also longer in the urban area than it was in suburban and rural areas. Study regions, surface area, water depth, water clearance, surface type, and canopy coverage were important factors associated with the presence of Ae. albopictus larvae.

Conclusions

Urbanization substantially increased the density, larval development rate, and adult survival time of Ae. albopictus, which in turn potentially increased the vector capacity, and therefore, disease transmissibility. Mosquito ecology and its correlation with dengue virus transmission should be compared in different environmental settings.  相似文献   

19.
Systematic comparisons of species interactions in urban versus rural environments can improve our understanding of shifts in ecological processes due to urbanization. However, such studies are relatively uncommon and the mechanisms driving urbanization effects on species interactions (e.g. between plants and insect herbivores) remain elusive. Here we investigated the effects of urbanization on leaf herbivory by insect chewers and miners associated with the English oak Quercus robur by sampling trees in rural and urban areas throughout most of the latitudinal distribution of this species. In performing these comparisons, we also controlled for the size of the urban areas (18 cities) and gathered data on CO2 emissions. In addition, we assessed whether urbanization affected leaf chemical defences (phenolic compounds) and nutritional traits (phosphorus and nitrogen), and whether such changes correlated with herbivory levels. Urbanization significantly reduced leaf chewer damage but did not affect leaf miners. In addition, we found that leaves from urban locations had lower levels of chemical defences (condensed and hydrolysable tannins) and higher levels of nutrients (nitrogen and phosphorus) compared to leaves in rural locations. The magnitude of urbanization effects on herbivory and leaf defences was not contingent upon city size. Importantly, while the effects of urbanization on chemical defences were associated with CO2 emissions, changes in leaf chewer damage were not associated with either leaf traits or CO2 levels. These results suggest that effects of urbanization on herbivory occur through mechanisms other than changes in the plant traits measured here. Overall, our simultaneous assessment of insect herbivory, plant traits and abiotic correlates advances our understanding of the main drivers of urbanization effects on plant–herbivore interactions.  相似文献   

20.
Urban environments expose species to contrasting selection pressures relative to rural areas due to altered microclimatic conditions, habitat fragmentation, and changes in species interactions. To improve our understanding on how urbanization impacts selection through biotic interactions, we assessed differences in plant defense and tolerance, dispersal, and flowering phenology of a common plant species (Taraxacum officinale) along an urbanization gradient and their reaction norms in response to a biotic stressor (i.e., herbivory). We raised plants from 45 lines collected along an urbanization gradient under common garden conditions and assessed the impact of herbivory on plant growth (i.e., aboveground biomass), dispersal capacity (i.e., seed morphology), and plant phenology (i.e., early seed production) by exposing half of our plants to two events of herbivory (i.e., grazing by locusts). Independent from their genetic background, all plants consistently increased their resistance to herbivores by which the second exposure to locusts resulted in lower levels of damage suffered. Herbivory had consistent effects on seed pappus length, with seeds showing a longer pappus (and, hence, increased dispersal capacities) regardless of urbanization level. Aboveground plant biomass was neither affected by urbanization nor herbivore presence. In contrast to consistent responses in plant defenses and pappus length, plant fitness did vary between lines. Urban lines had a reduced early seed production following herbivory while rural and suburban lines did not show any plastic response. Our results show that herbivory affects plant phenotypes but more importantly that differences in herbivory reaction norms exist between urban and rural populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号