首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil moisture and temperature, sowing depth and penetration resistance affect the time and percentage of seedling emergence, which are crucial for the simulation of drought‐limited crop production. The aim of this research was to measure the effect of soil water potential on germination and emergence, shoot and root elongation rates (SER and RER) of two different seed/crop types. Sugar beet and durum wheat seeds were sown into two soils (clay and loam), submitted to five matric potentials (?0.01, ?0.1, ?0.2, ?0.4 and ?0.8 MPa) and incubated at constant temperature (25°C) and humidity. Cumulative count analysis was used to estimate parameters of the distribution of germination or emergence times for each box of beet or wheat seeds and to derive estimates for base potentials (ψb), hydrothermal times (H) and numbers of viable units. In a second experiment, NaCl solution was used to mimic the soil matric potentials to estimate potential RER and SER. Germination of sugar beet was slightly more sensitive to matric potential than durum wheat (ψb of ?1.13 and ?1.23 MPa, respectively). H(g) was longer for sugar beet than for durum wheat (67 vs 47 MPa °Cd). For emergence ψb was similar for both seed types and soils but hydrothermal times (H(e)) were 40 MPa °Cd higher for sugar beet than for wheat. Emergence was about 20 MPa °Cd earlier in loam than in clay. SER measured in soils were similar for both crops and for durum wheat it agreed with those determined in NaCl solution. RER and SER fell with decreasing osmotic potential to approximately 20% of their maximum values (1.03 mm h?1 and 0.57 mm h?1, respectively). Seedling viability decreased with decreasing matric potential and more in clay than in loam soil and more for sugar beet than durum wheat. Seed and soil aggregate size are discussed with respect to the effects of water diffusion and soil–seed contact on germination and emergence modelling.  相似文献   

2.
3.
4.

Background and Aims

Aluminium is toxic in acid soils because the soluble Al3+ inhibits root growth. A mechanism of Al3+ tolerance discovered in many plant species involves the release of organic anions from root apices. The Al3+-activated release of citrate from the root apices of Al3+-tolerant genotypes of barley is controlled by a MATE gene named HvAACT1 that encodes a citrate transport protein located on the plasma membrane. The aim of this study was to investigate whether expressing HvAACT1 with a constitutive promoter in barley and wheat can increase citrate efflux and Al3+ tolerance of these important cereal species.

Methods HvAACT1

was over-expressed in wheat (Triticum aestivum) and barley (Hordeum vulgare) using the maize ubiquitin promoter. Root apices of transgenic and control lines were analysed for HvAACT1 expression and organic acid efflux. The Al3+ tolerance of transgenic and control lines was assessed in both hydroponic solution and acid soil.

Key Results and Conclusions

Increased HvAACT1 expression in both cereal species was associated with increased citrate efflux from root apices and enhanced Al3+ tolerance, thus demonstrating that biotechnology can complement traditional breeding practices to increase the Al3+ tolerance of important crop plants.  相似文献   

5.
The aluminum (Al3+) tolerance of barley cultivars predominately from Brazil was compared to that of cultivars from other countries, wild barley accessions, and a transgenic line (L5) over-expressing TaALMT1, the major Al3+ tolerance gene from wheat. After screening conventional germplasm for Al3+ tolerance in hydroponics, 18 genotypes were further characterized in a short-term soil experiment. Among the Brazilian cultivars, Antarctica 01 and BRS Mariana showed the greatest relative root length (RRL) in acid soil. However, these cultivars were significantly less tolerant than the foreign cultivars Dayton (USA) and Murasakimochi (Japan) and the transgenic line L5 which out-performed all conventional genotypes. In long-term growth trials, the transgenic line produced the greatest relative root and relative shoot dry weight. Relative grain yield was greatest in the transgenic line and Dayton. All genotypes were also scored for two genetic markers linked to HvAACT1, the major Al3+ tolerance gene in barley. One marker detects a 1-kb insertion in the promoter that increases gene expression and leads to increased Al3+-activated citrate efflux from root apices. The other marker detects a 21-bp indel downstream of the coding region. The 1-kb insertion was only detected in Dayton and Murasakimochi that were the best performing cultivars among the non-transgenic germplasm. Interestingly, the Brazilian cultivars with an intermediate level of tolerance, Antarctica 01 and BRS Mariana, lacked the 1-kb insertion but had enhanced HvAACT1 expression compared to an Al3+-sensitive cultivar. No clear correlation was observed between Al3+ tolerance and the 21-bp indel marker in the short-term soil trials. We conclude that improved Al3+ tolerance in barley could be achieved by combining the best allele of HvAACT1 along with TaALMT1 as a transgene.  相似文献   

6.
A growth chamber study was conducted to evaluate the effect of application of phosphate fertilizer on soil solution dynamics of cadmium (Cd) and Cd accumulation in durum wheat (Triticum turgidum L. var. durum). Treatments consisted of three phosphate fertilizer sources containing 3.4, 75.2, and 232 mg Cd kg?1 applied at three rates (20, 40 and 80 mg P kg?1) plus a no fertilization control. An unplanted treatment at 40 mg P kg?1 was included to separate the effects on soil solution Cd dynamics of the crop from that of the fertilizer. Soil solution samples were obtained using soil moisture samplers every 10 days after germination. The experimental results indicated that plant biomass significantly increased with P application rates and decreased with increased Cd concentration in the phosphate fertilizers. Total cadmium concentration in soil solution was not consistently affected by phosphate fertilization rate and fertilizer sources, and therefore Cd concentration in the fertilizer. Application of phosphate fertilizer, however, increased the concentration and accumulation of Cd and shoot Cd/Zn ratio, and decreased shoot Zn concentration in durum wheat. Phosphate sources had a marginally significant effect (P?=?0.05) on shoot Cd concentration and did not affect Cd accumulation in durum wheat. Concentration of Cd in soil solution was unrelated to Cd concentration in durum wheat. These results suggest that the immediate increase in Cd concentration and Cd accumulation in durum wheat with phosphate application is due more to competition between Zn and Cd for absorption into plants, enhanced root to shoot translocation and enhanced root development, than to a direct addition effect from Cd contained in phosphate fertilizer. In the short term, application of phosphate fertilizers can increase Cd concentration in the crops, regardless of the Cd concentration of the fertilizer. An optimal P fertilization, possibly in combination with Zn application, may offer an important strategy for decreasing Cd concentration and accumulation in crops.  相似文献   

7.
The effect of 3 different species of vesicular-arbuscular mycorrhizal fungi on the growth of Stylosanthes guianensis (Aubl.) Sw. cultivated in a sterilized acid and dystrophic soil (Quartzipsament), with 4 levels of lime (0; 0.27; 0.63 and 1.10 meq Ca2+/100 g air-dried soil, as Ca(OH)2) and 2 P levels (0 and 20 mg P/kg soil, as KH2PO4) was evaluated under greenhouse conditions. Plants were harvested 40, 60, and 80 days after planting. Stylosanthes guianensis was highly mycotrophic, especially in soil without P fertilization. Mycotrophism was highest in plants inoculated with Acaulospora scrobiculata in soil receiving no P fertilizer and with 0.63 meq Ca2+/100 g air-dried soil. Shoot growth increment was as high as 5129% at the third harvest. Inoculation with Glomus macrocarpum presented intermediate results, whereas inoculation with Gigaspora margarita had no significant effect on plant growth. Root per cent colonization and shoot dry weight, as well as root percent colonization and shoot to root ratio were significantly correlated. The occurrence of S. guianensis in very acid and dystropic soils, containing toxic levels of Al3+, requires the association with VAM fungi for the plant tolerate such conditions.  相似文献   

8.
MethodsParticle bombardment was used to transform wheat with TaALMT1, the Al3+ resistance gene from wheat, using the maize ubiquitin promoter to drive expression. TaALMT1 expression, malate efflux and Al3+ resistance were measured in the T1 and T2 lines and compared with the parental line and an Al3+-resistant reference genotype, ET8.ConclusionsThe Al3+ resistance of wheat was increased by enhancing TaALMT1 expression with biotechnology. This is the first report of a major food crop being stably transformed for greater Al3+ resistance. Transgenic strategies provide options for increasing food supply on acid soils.  相似文献   

9.
Abstract

Plant growth stimulating bacteria are very effective in immobilization of metals and reducing their translocation in plants through precipitation, and adsorption. A pot experiment was conducted to investigate the effectiveness of chitosan- and hematite-modified biochar and bacterial inoculations on the immobilization of nickel (Ni) in polluted soil under wheat cultivation. Application of modified biochars and inoculation with Pseudomonas putida significantly increased both wheat root and shoot dry matter yields but decreased Ni phytoextraction efficiency. The Ni concentration, translocation factor and uptake in wheat shoot and root significantly decreased the application of either modified or unmodified biochars. Bacterial inoculation significantly decreased mean translocation factor and also root and shoot concentration and the uptake Ni in the shoot. Chitosan-modified biochar was the most influential treatment in decreasing Ni uptake by wheat followed by P. putida inoculation treatment. The results demonstrated positive effects of chitosan modified biochar and inoculation with P. putida in increasing dry matter yield and decreasing Ni uptake in wheat grown on Ni-contaminated soil. According to the results of present study, modified biochars application and bacterial inoculation are influential treatments which prevent Ni toxicity probably.  相似文献   

10.
A field study tested the hypothesis that modern wheat varieties invest a lesser proportion of the total dry matter (root plus shoot) in the root system compared to old varieties. The study was carried out on a duplex soil (sand over clay) at Merredin, Western Australia in a Mediterranean type environment. We also compared the root:shoot dry matter ratios of near-isogenic lines for Rht dwarfing genes.Root:shoot ratios decreased with crop growth stage and were closely related to the developmental pattern of a variety. All varieties appeared to accumulate more dry matter into shoots after the terminal spikelet stage. For the modern variety Kulin this occurred as early as 55 days after sowing (DAS), but did not occur until 90 DAS in the old variety Purple Straw. For all varieties, root dry matter reached its maximum at anthesis, while shoot dry matter continued to increase till maturity. At anthesis there were no significant differences in shoot dry matter between varieties, but from Purple Straw to Kulin root dry matter and thus root:shoot ratio decreased.The tall and dwarf isogenic lines had similar developmental and root:shoot dry matter accumulation patterns.At anthesis, the old variety Purple Straw had significantly higher root dry matter and root length density in the top 40-cm of the profile than modern variety Kulin. There were no varietal differences in rooting depth, water extraction or water use. At maturity about 30% of the total dry matter was invested in the roots among wheat varieties. Grain yield, harvest index (HI) and water use efficiency of grain (WUEgr) increased from old to modern varieties.The reduced investment of dry matter in the root system and thus the lower root:shoot ratio from early in the growing season may partly explain the increased HI and WUEgr of modern compared to old varieties.  相似文献   

11.
Tannic acids and tannins are produced by plants and are important components of soil and water organic matter. These polyphenolic compounds form complexes with proteins, metals and soil particulate matter and perform several physiological and ecological functions. The tannic acid (TA) used in our study was a mixture of gallic acid and galloyl glucoses ranging up to nonagalloyl glucose. TA inhibited root elongation in wheat seedlings (Triticum aestivum L. cv. Scout 66) at concentrations >4 mg l?1; but TA alleviated the toxicity of Al3+, Cu2+ and SeO42?; and Al3+ and SeO42? alleviated the toxicity of TA. The interactions of Al3+ and TA (each toxic but each alleviating the toxicity of the other) were stoichiometric. Growth was affected as though 1 kg TA bound 2.76 mol Al so strongly that if (mol Al)/(kg TA) <2.76, then free Al ≈ 0, and if (mol Al)/(kg TA) >2.76, then free TA ≈ 0. This stoichiometry is consistent with one mole of galloyl groups binding approximately 0.5 mol Al. Using this binding scheme, growth was modeled successfully on the basis of free TA and free Al. TA enhanced the negativity of root surfaces and enhanced the binding of Al and Cu there without enhancing their toxicity. These and other interactions among TA, Al3+, Cu2+, SeO42?, Ca2+, Na+ and H+ were quantified with a comprehensive non‐linear equation with statistically significant coefficients.  相似文献   

12.
There is continuing controversy over whether a degree of C4 photosynthetic metabolism exists in ears of C3 cereals. In this context, CO2 exchange and the initial products of photosynthesis were examined in flag leaf blades and various ear parts of two durum wheat (Triticum durum Desf.) and two six-rowed barley (Hordeum vulgare L.) cultivars. Three weeks after anthesis, the CO2 compensation concentration at 210 mmol mol?1 O2 in durum wheat and barley ear parts was similar to or greater than that in flag leaves. The O2 dependence of the CO2 compensation concentration in durum wheat ear parts, as well as in the flag leaf blade, was linear, as expected for C3 photosynthesis. In a complementary experiment, intact and attached ears and flag leaf blades of barley and durum wheat were radio-labelled with 14CO2 during a 10s pulse, and the initial products of fixation were studied in various parts of the ears (awns, glumes, inner bracts and grains) and in the flag leaf blade. All tissues assimilated CO2 mainly by the Calvin (C3) cycle, with little fixation of 14CO2 into the C4 acids malate and aspartate (about 10% or less). These collective data support the conclusion that in the ear parts of these C3 cereals C4 photosynthetic metabolism is nil.  相似文献   

13.
Polymorphism of omega-gliadins was studied in 243 durum wheats from 27 countries using the two-step one-dimensional APAGE/SDS-PAGE technique. A total of 12 bands of different mobility were observed, and four of them were found to be different from those previously detected by Khelifi et al. (1992) in bread wheat. Fifteen alleles, six coded by the Gli-A1 locus and nine coded by the Gli-B1 locus, were identified, accounting for 19 different electrophoretic patterns. Seven new alleles were detected: two at the Gli-A1 locus and five at the Gli-B1 locus. The polymorphism found at the Gli-A1 and Gli-B1 loci was slightly greater than that found in bread wheat. Allelic differences between both species were higher at the Gli-B1 locus. A comparison of the frequencies of alleles in both species was carried out. The null allele, Gli-A1e, was more common in durum wheat than in bread wheat. The Gli-B1b allele, present in 60% of the bread wheats, was found in only 2% of the durum wheats and Gli-B1e, very common in durum wheat (45%), was rare in bread wheat (4%). The Gli-B1IV allele, common in durum wheat (28%), was not detected in bread wheat.  相似文献   

14.
In Mediterranean regions drought is the major factor limiting spring barley and durum wheat grain yields. This study aimed to compare spring barley and durum wheat root and shoot responses to drought and quantify relationships between root traits and water uptake under terminal drought.One spring barley(Hordeum vulgare L. cv. Rum) and two durum wheat Mediterranean cultivars(Triticum turgidum L. var durum cvs Hourani and Karim) were examined in soil‐column experiments under well watered and drought conditions. Root system architecture traits, water uptake, and plant growth were measured. Barley aerial biomass and grain yields were higher than for durum wheat cultivars in well watered conditions. Drought decreased grain yield more for barley(47%) than durum wheat(30%, Hourani). Root‐to‐shoot dry matter ratio increased for durum wheat under drought but not for barley, and root weight increased for wheat in response todrought but decreased for barley. The critical root length density(RLD) and root volume density(RVD) for 90% available water capture for wheat were similar to(cv. Hourani) or lower than(cv. Karim) for barley depending on wheat cultivar. For both species, RVD accounted for a slightly higher proportion of phenotypic variation in water uptake under drought than RLD.  相似文献   

15.
Glasshouse studies showed that the incidence of black point caused by Alternaria alternata in durum wheat was positively correlated with both the density of the inoculum and the growth stage of the wheat plants at the time of inoculation. A curvilinear relationship of the form Y=a + log X was found between inoculum density and disease incidence. The incidence of black point was linearly related to the stage of plant growth, between anthesis and the late milk stages of development, at the time of inoculation. A better relationship between growth stage and disease incidence was found when plant growth was expressed as days after anthesis than when the Romig scale was used (R2= 0.30 and 0.24 respectively). A threshold dew period of 3–6 h was required for black point symptoms to develop. The incidence of black point increased with increasing duration of the dew period until maximum disease incidence occurred after exposure to a dew period of 48 h.  相似文献   

16.
The objective of the investigation was to evaluate the effect of immobilizing substances and NaCl salinity on the availability of heavy metals: Zn, Cd, Cu, Ni, and Pb to wheat (Triticum aestivum L.). In greenhouse pot experiment, a sewage sludge amended soil was treated with the following immobilizing substances: three clay minerals (Na-bentonite, Ca-bentonite and zeolite), iron oxides (goethite and hematite), and phosphate fertilizers (superphosphate and Novaphos). The pots were planted with wheat and were irrigated either with deionized or saline water containing 1600 mg L?1 NaCl. Wheat was harvested two times for shoot metal concentrations and biomass measurements. Metal species in soil solution were estimated using the software MINEQL+.

The addition of metal immobilizing substances to the soil significantly decreased metal availability to wheat. The largest reduction in metal bioavailability was found for bentonites. The irrigation with saline water (1600 mg L?1 NaCl) resulted in a significant increase in metal chloride species (MCl+ and MCl2 0). The highest metal complexation with Cl occurred for Cd, which was about 53% of its total soil solution concentration. The total concentration of Cd (CdT) in soil solution increased by 1.6–2.8-fold due to saline water. The NaCl salinity caused a significant increase in uptake and shoot concentration of Cd for two harvests and small but significant increase in shoot Pb concentration for the second harvest. It was concluded that the use of bentonites is the most promising for the reduction of heavy metal availability to plants. Saline water containing 1600 mg L? 1 NaCl increased the availability of Cd and Pb to wheat and decreased the efficiency of bentonites to immobilize soluble Cd.  相似文献   


17.
Six bread wheat (Triticum aestivum cvs. Kiraç-66, Gerek-79, Aroona, ES 91-12, ES-14 and Kirkpinar) and four durum wheat (Triticum durum cvs. BDMM-19, Kunduru-1149, Kiziltan-91 and Durati) genotypes were grown under controlled environmental conditions in nutrient solution for 20 days to study the effect of varied supply of Zn (0 to 1 µM) on Zn deficiency symptoms in shoots, root and shoot dry matter production, and distribution of Zn in roots and shoots.Visual Zn deficiency symptoms, such as whitish-brown lesions on leaves, appeared rapidly and severly in durum wheats, particularly in Kiziltan-91 and Durati. Among the durum wheats, BDMM-19 was less affected by Zn deficiency, and among the bread wheats Kiraç-66, ES 91-12, Aroona and Gerek-79 were less affected than ES-14 and Kirkpinar.Under Zn deficiency, shoot dry matter production was decreased in all genotypes, but more distinctly in durum wheat genotypes. Despite severe decreases in shoot growth, root growth of all genotypes was either not affected or even increased by Zn deficiency. Correspondingly, shoot/root dry weight ratios were lower in Zn-deficient than in Zn-sufficient plants, especially in durum wheat genotypes.The distinct differences among the genotypes in sensitivity to Zn deficiency were closely related with the Zn content (Zn accumulation) per shoot but not with the Zn concentration in the shoot dry matter. On average, genotypes with lesser deficiency symptoms contained about 42% more Zn per shoot than genotypes with severe deficiency symptoms. In contrast to shoots, the Zn content in roots did not differ between genotypes. Shoot/root ratios of total Zn content were therefore greater for genotypes with lesser deficiency symptoms than for genotypes with severe deficiency symptoms (i.e. all durum wheat genotypes).The results suggest that the enhanced capacity of genotypes for Zn uptake and translocation from roots to shoot meristems under deficient Zn supply might be the most important factor contributing to Zn efficiency in wheat genotypes. The results also demonstrate that under severe Zn deficiency, Zn concentration in the shoot dry matter is not a suitable parameter for distinguishing wheat genotypes in their sensitivity to Zn deficiency.  相似文献   

18.
采用5种激素4个浓度的两因素完全随机区组设计,研究各因素及其组合对鹿角杜鹃扦插繁殖的7个插穗生根性状和5个扦插苗地上生长性状的影响,并运用主成分分析法对各处理组合的育苗效果进行了综合评价。结果表明:2个主因素对鹿角杜鹃扦插繁殖的大部分性状有显著影响,且表现为激素种类的影响大于浓度水平;5种激素中,GA3处理在愈伤率、腐烂率、生根率、老叶留存率与留存数、新梢率等性状上表现最佳,而 IBA 处理则在不定根数、最长不定根长、总根数、根系直径及新梢数、新梢长等性状上表现最优,两者为其扦插育苗的理想生根剂,其次为 IAA 处理,NAA 和6-BA 处理效果较差、不宜用于其扦插育苗;4个浓度中,愈伤率、腐烂率及老叶留存率以低浓度(B1)最佳,随着浓度升高效果下降;其它9个性状则以中浓度(B3)最优,高浓度(B4)处理各育苗性状下降;激素种类×浓度交互效应对总根数有极显著影响,对愈伤率、根系直径有显著影响,最佳浓度因激素种类而异。主成分综合评价表明,50 mg??L-1 GA3处理为最佳组合,其次为200、100 mg??L-1 IBA 处理,可用于鹿角杜鹃产业化育苗。  相似文献   

19.
Although root architecture has been shown to play an important role in crop performance, particularly under drought conditions, no information is available on the genetic control of root traits in durum wheat, a crop largely grown in rainfed areas with low rainfall. In our study, a panel of 57 elite durum wheat accessions were evaluated under controlled conditions for root and shoot traits at the seedling stage. Significant genetic variability was detected for all the root and shoot traits that were investigated. Correlation analysis suggested that root and shoot features were only partially controlled by common sets of genes. The high linkage disequilibrium (up to 5 cM) present in the germplasm collection herein considered allowed us to use simple sequence repeat‐based association mapping to identify chromosome regions with significant effects on the investigated traits. In total, 15 chromosome regions showed significant effects on one or more root architectural features. A number of these regions also influenced shoot traits and, in some cases, plant height measured in field conditions. Major effects were detected on chromosome arms 2AL (at Xgwm294), 7AL (at Xcfa2257 and Xgwm332) and 7BL (at Xgwm577 and Xcfa2040). The accessions with the most remarkable differences in root features will provide a valuable opportunity to assemble durum wheat mapping populations well suited for ascertaining the effects of root architecture on water use efficiency and grain yield.  相似文献   

20.
Spring wheat [ Triticum aestivum (L). cv. Yecora Rojo] was grown from December 1992 to May 1993 under two atmospheric CO2 concentrations, 550 μmol mol–1 for high-CO2 plots, and 370 μmol mol–1 for control plots, using a Free-Air CO2 Enrichment (FACE) apparatus. In addition to the two levels of atmospheric CO2, there were ample and limiting levels of water supply through a subsurface trip irrigation system in a strip, split-plot design. In order to examine the temporal and spatial root distribution, root cores were extracted at six growth stages during the season at in-row and inter-row positions using a soil core device (86 mm ID, 1.0 m length). Such information would help determine whether and to what extent root morphology is changed by alteration of two important factors, atmospheric CO2 and soil water, in this agricultural ecosystem. Wheat root growth increased under elevated CO2 conditions during all observed developmental stages. A maximum of 37% increase in total root dry mass in the FACE vs. Control plots was observed during the period of stem elongation. Greater root growth rates were calculated due to CO2 enhancement until anthesis. During the early vegetative growth, root dry mass of the inter-row space was significantly higher for FACE than for Control treatments suggesting that elevated CO2 promoted the production of first-order lateral roots per main axis. Then, during the reproductive period of growth, more branching of lateral roots in the FACE treatment occurred due to water stress. Significant higher root dry mass was measured in the inter-row space of the FACE plots where soil water supply was limiting. These sequential responses in root growth and morphology to elevated CO2 and reduced soil water supports the hypothesis that plants grown in a high-CO2 environment may better compensate soil-water-stress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号