首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
R J Froud  J M East  O T Jones  A G Lee 《Biochemistry》1986,25(23):7544-7552
The ATPase activity of the (Ca2+-Mg2+)-ATPase reconstituted into bilayers of phosphatidylcholines depends on the fatty acyl chain length of the phospholipids. It is shown that the fluorescence response to Ca2+ of the ATPase modified with fluorescein isothiocyanate is also dependent on phospholipid structure and is interpreted in terms of a change in the equilibrium between two forms of the ATPase, E1 and E2. A kinetic scheme for the ATPase is presented in which ATPase activity is markedly dependent on the rate of the transition between two phosphorylated forms of the ATPase, E1'PCa2 and E2'PCa2, and it is postulated that changing the phospholipid structure changes this rate. The rate of dephosphorylation of the ATPase and the ATP dependence of the E1'PCa2-E2'PCa2 transition are also lipid dependent. Binding of oleyl alcohol causes large, lipid-dependent changes in ATPase activity, and these are interpreted in terms of changes in the rates of these same steps. Oleylamine, which has been shown to bind more strongly at annular sites than at nonannular sites, inhibits ATPase activity irrespective of lipid structure, whereas fatty acids, which bind less strongly at annular sites, only inhibit at high concentrations. Methyl oleate, which binds more strongly at nonannular sites than at annular sites, causes marked stimulation for the ATPase reconstituted with short-chain lipids.  相似文献   

3.
Hexachlorocyclohexanes have been shown to inhibit the (Ca2+ + Mg2+)-ATPase of muscle sarcoplasmic reticulum reconstituted into bilayers of dioleoylphosphatidylcholine. However, for the ATPase reconstituted into bilayers of dimyristoleoylphosphatidylcholine, a pattern of activation at low concentration followed by inhibition at higher concentration is seen for hexachlorocyclohexanes and alkanes such as decane and hexadecane. The ATPase in sarcoplasmic reticulum vesicles is also inhibited by the hexachlorocyclohexanes. The effects of hexachlorocyclohexanes on activity are largely independent of concentrations of Ca2+ and ATP. Inhibition is more marked at lower temperatures. The hexachlorocyclohexanes quench the tryptophan fluorescence of the ATPase, and the quenching can be used to obtain partition coefficients into the membrane system. As for simple lipid bilayers, partition exhibits a negative temperature coefficient. Binding is related to effects on ATPase activity.  相似文献   

4.
The mechanism of inhibition of Ca2+-transport activity of rabbit sarcoplasmic reticulum Ca 2+-ATPase (SERCA) by anisodamine (a drug isolated from a medicinal herb Hyoscyamuns niger L) was investigated by using ANS (1-anilino-8-naphthalenesulfonate) fluorescence probe, intrinsic fluorescence quenching and Ca 2+-transport activity assays. The number of ANS binding sites for apo Ca2+-ATPase was determined as 8, using a multiple-identical binding site model. Both anisodamine and Ca2+ at millimolar level enhanced the ANS binding fluorescence intensities. Only anisodamine increased the number of ANS molecules bound by SERCA from 8 to 14. The dissociation constants of ANS to the enzyme without any ligand, with 30 mM anisodamine and with 15 mM Ca 2 were found to be 53.0 microM, 85.0 microM and 50.1 microM, respectively. Both anisodamine and Ca2+ enhanced the ANS binding fluorescenc with apparent dissociation constants of 7.6 mM and 2.3 mM, respectively, at a constant concentration of the enzyme. Binding of anisodamine significantly decreased the binding capacity of Ca2+ with the dissociation constant of 9.5 mM, but binding of Ca2+ had no obvious effect on binding of anisodamine. Intrinsic fluorescence quenching and Ca2+-transport activity assays gave the dissociation constants of anisodamine to SERCA as 9.7 and 5.4 mM, respectively, which were consistent with those obtained from ANS-binding fluorescence changes during titration of SERCA with anisodamine and anisodamine + 15 mM Ca2+, respectively. The results suggest that anisodamine regulates Ca2+-transport activity of the enzyme, by stabilizing the trans-membrane domain in an expanded, inactive conformation, at least at its annular ring region.  相似文献   

5.
O T Jones  A G Lee 《Biochemistry》1985,24(9):2195-2202
The intensities of fluorescence emission for pyrene and a number of its derivatives increase on binding to lipid bilayers and to the (Ca2+-Mg2+)-ATPase purified from rabbit muscle sarcoplasmic reticulum. The effect is particularly marked for the less water-soluble derivatives. Changes in intensity for monomer and excimer emission as a function of lipid concentration can be fitted to a simple model to obtain binding parameters. The number of binding sites per lipid is 0.2-0.4. For the ATPase system, at least two classes of sites are necessary to fit the data, one corresponding to the lipid component and one to sites on the ATPase. Excimer emission from the postulated sites on the ATPase is less marked than that from lipid. Pyrene-dodecanoic acid and pyreneundecyltrimethylammonium bromide, which bind to a large number of sites on the ATPase, cause marked inhibition of ATPase activity at high concentration. Pyrene and a number of water-soluble derivatives cause stimulation of the ATPase reconstituted with dimyristoleoylphosphatidylcholine and little inhibition and bind to a small number of sites on the ATPase. It is concluded that excimer emission from pyrene derivatives in systems containing proteins cannot be used to obtain reliable information about rates of diffusion in the lipid component of the membrane.  相似文献   

6.
Cholesterol hemisuccinate has been shown to equilibrate readily with liposomes and with the (Ca2+-Mg2+)-ATPase from sarcoplasmic reticulum and has been used to modify the sterol content of these membranes. Cholesterol hemisuccinate incorporates into dioleoylphosphatidylcholine (DOPC) up to a molar ratio of 3:1 sterol to DOPC. Effects on lipid order as detected by electron spin resonance and fluorescence polarization are comparable to those of cholesterol. Binding constants have been determined, and the uncharged form of the sterol binds more strongly than the anionic form. Binding to DOPC and to the lipid component of the ATPase system is comparable. From use of the fluorescence quenching properties of 1,2-bis(9,10- dibromooleoyl )phosphatidylcholine and dibromocholesterol hemisuccinate, two classes of binding sites on the ATPase have been deduced. At the lipid/protein interface, the binding constant for cholesterol hemisuccinate is considerably less than that for DOPC. At the second set of sites ( nonannular sites), binding occurs with Kd = 0.55 in molar ratio units. The effect of cholesterol hemisuccinate on the activity of the ATPase depends on the phospholipid present in the system: ATPase reconstituted with DOPC is inhibited whereas ATPase reconstituted with dimyristoleoylphosphatidylcholine is activated. We conclude that changes in membrane fluidity are not important in determining ATPase activity in these systems.  相似文献   

7.
N-Cyclohexyl-N'-(4-dimethylamino-1-naphthyl)carbodiimide (NCD-4) labels (Ca2+ + Mg2+)-ATPase at Ca2+-protectable sites, believed to be at or near the two Ca2+ binding sites on the ATPase, and at nonspecific sites. The labeled ATPase has been reconstituted into lipid bilayers containing phosphatidylethanolamine labeled with fluorescein isothiocyanate. The distance between NCD-4 and fluorescein groups was measured using Forster energy transfer and the NCD-4 labels were found to be approx. 20 A from the lipid/water interface suggesting that the Ca2+ binding sites on the ATPase are also 20 A from the lipid/water interface. Addition of vanadate causes no change in the efficiency of energy transfer, suggesting that the Ca2+ binding sites on the E1 conformation of the ATPase do not move significantly with respect to the lipid/water interface in the E1-E2 transition.  相似文献   

8.
The fluorescence quenching properties of a series of brominated and iodinated pyrethroids have been used to study the binding of pyrethroids to the (Ca2(+) + Mg2+)-ATPase purified from skeletal muscle sarcoplasmic reticulum. It is suggested that binding at the lipid/protein interface of the ATPase is weak but that binding can occur at other (non-annular sites) on the ATPase. Pyrethroids containing either a brominated fatty acyl or iodinated alcohol moiety quench the tryptophan fluorescence of the ATPase, suggesting that the pyrethroids bound to the ATPase adopt a folded conformation with both the acid and alcohol moieties in contact with hydrophobic regions of the ATPase. Whereas effects of the pyrethroids on the activity of the ATPase in bilayers of dioleoylphosphatidylcholine are small, large increases are observed in the activity of the ATPase reconstituted into bilayers of the short-chain phospholipid, dimyristoleoylphosphatidylcholine (DMPC). The rate of phosphorylation of DMPC-ATPase by ATP is slow, but is increased on addition of pyrethroid. The level of phosphorylation of the ATPase by Pi is reduced on reconstitution into bilayers of DMPC, and this is also increased by addition of pyrethroid.  相似文献   

9.
The (Ca2+ + Mg2+)-ATPase from skeletal muscle sarcoplasmic reticulum was reconstituted into phospholipid bilayers. The permeability of lipid bilayers to Co2+ and glucose was increased slightly by incorporation of the ATPase, and the permeability of mixed bilayers of phosphatidylethanolamine and phosphatidylcholine increased with increasing content of phosphatidylethanolamine both in the presence and absence of the ATPase. The presence of the ATPase, however, resulted in a marked increase in permeability to Ca2+, the permeability decreasing with increasing phosphatidylethanolamine content. Permeability to Ca2+ was found to be dependent on pH and the external concentrations of Mg2+ and Ca2+, was stimulated by adenine nucleotides but was unaffected by inositol trisphosphate. A kinetic model is presented for Ca2+ efflux mediated by the ATPase. It is shown that the kinetic parameters that describe Ca2+ efflux from vesicles of sarcoplasmic reticulum also describe efflux from the vesicles reconstituted from the purified ATPase and phosphatidylcholine. It is shown that the effects of phosphatidylethanolamine on efflux can be simulated in terms of changes in the rates of the transitions linking conformations of the ATPase with inward- and outward-facing Ca2+-binding sites, and that effects of phosphatidylethanolamine on the ATPase activity of the ATPase can also be simulated in terms of effects on the corresponding conformational transitions. We conclude that the ATPase can act as a specific pathway for Ca2+ efflux from sarcoplasmic reticulum.  相似文献   

10.
Interaction between Gd3+ and Tb3+ ions and Ca2+,Mg2+-ATPase of sarcoplasmic reticulum was studied. Three classes of lanthanide-ion binding sites with different affinities were distinguished. Binding of Gd3+ to the site with the highest affinity seemed to occur at less than 10(-6)M free Gd3+ and resulted in severe inhibition of ATPase activity. The reaction rates of both E-P formation and decomposition in the forward direction were inhibited in parallel with this binding, whereas ADP-dependent decay of E-P in the backward direction was not. At these Gd3+ concentrations, Ca2+-binding to the transport site was not inhibited. Binding of Gd3+ and Tb3+ to the Ca2+-transport site did occur, but more than 10(-5)M free Gd3+ or Tb3+ was required for effective competition with Ca2+ for that site. Gd3+ bound to the transport site in place of Ca2+ did not activate the E-P intermediate formation. Addition of 10(-1)M Tb3+ to a suspension of sarcoplasmic reticulum membranes resulted in marked enhancement of Tb3+ fluorescence, which is due to an energy transfer from aromatic amino acid residues of ATPase to Tb3+ ions bound to the low affinity site of the enzyme. Gd3+ and Mn2+ competed with Tb3+ for that site, but Ca2+, Zn2+, and Cd2+ did not.  相似文献   

11.
The interactions of Tb3+ and sarcoplasmic reticulum (SR) were investigated by inhibition of Ca2+-activated ATPase activity and enhancement of Tb3+ fluorescence. Ca2+ protected against Tb3+ inhibition of SR ATPase activity. The apparent association constant for Ca2+, determined from the protection, was about 6 x 10(6) M-1, suggesting that Tb3+ inhibits the ATPase activity by binding to the high affinity Ca2+ binding sites. Mg2+ did not protect in the 2-20 mM range. The association constant for Tb3+ binding to this Ca2+ site was estimated to be about 1 x 10(9) M-1. No cooperativity was observed for Tb3+ binding. No enhancement of Tb3+ fluorescence was detected. A second group of binding sites, with weaker affinity for Tb3+, was observed by monitoring the enhancement of Tb3+ fluorescence (lambda ex 285 nm, lambda em 545 nm). The fluorescence intensity increased 950-fold due to binding. Ca2+ did not complete for binding at these sites, but Mg2+ did. The association constant for Mg2+ binding was 94 M-1, suggesting that this may be the site that catalyzes phosphorylation of the ATPase by inorganic phosphate. For vesicles, Tb3+ binding to these Mg2+ sites was best described as binding to two classes of binding sites with negative cooperativity. If the SR ATPase was solubilized in the nonionic detergent C12E9 (dodecyl nonaoxyethylene ether alcohol), in the absence of Ca2+, only one class of Tb3+ binding sites was observed. The total number of sites appeared to remain constant. If Ca2+ was included in the solubilization step, Tb3+ binding to these Mg2+ binding sites displayed positive cooperativity (Hill coefficient, 2.1). In all cases, the apparent association constant for Tb3+, in the presence of 5 mM MgCl2, was in the range of 1-5 x 10(4) M-1.  相似文献   

12.
The fluorescence quenching properties of a brominated derivative of androstenol 5 alpha,6 beta-dibromoandrostan-3 beta-ol have been used to study binding to phospholipid bilayers and to the (Ca2+ + Mg2+)-ATPase purified from sarcoplasmic reticulum of rabbit skeletal muscle. It is shown that androstenol is excluded from the phospholipid/protein interface of the ATPase but can bind to other (non-annular sites) on the ATPase. Binding to these sites increases in strength with decreasing chain length for the phospholipids present in the system. Binding is also stronger in the presence of phospholipids in the gel phase than in the liquid crystalline phase. Androstenol increases the ATPase activity of the ATPase reconstituted with phosphatidylcholines of chain lengths less than C18, but has no effect on activity for the ATPase reconstituted with phosphatidylcholines of chain lengths C18 or greater. The effects of cholestanols on the activity of the ATPase reconstituted with dimyristoleoylphosphatidylcholine depend on the configuration of the sterol, with 5 alpha-cholestan-3 alpha-ol having little effect but the other isomers causing a marked stimulation.  相似文献   

13.
J M East  A G Lee 《Biochemistry》1982,21(17):4144-4151
1,2-Bis(9,10-dibromooleoyl)phosphatidylcholine (BRPC) has been prepared from dioleoylphosphatidylcholine (DOPC). It is shown that the gel to liquid-crystalline phase transition for BRPC occurs below ca. 5 degrees C and that the motional properties of bilayers of BRPC and DOPC as detected by spin-labeled fatty acids are similar. The ATPase activities of the (Ca2+-Mg2+)-ATPase from rabbit muscle sarcoplasmic reticulum reconstituted with BRPC and DOPC are similar. The brominated lipid quenches the fluorescence of the ATPase and can be used to determine selectivity of lipid binding to the ATPase. We show that there is little selectivity on the basis of fatty acyl chain length. Binding constants for phosphatidylcholines and phosphatidylserines are similar in the absence of calcium, although that for phosphatidylserine decreases in the presence of calcium. Phosphatidylethanolamines binds less strongly than phosphatidylcholines, although the difference is small. The largest difference in binding constants is seen between phosphatidylcholines in the gel and liquid-crystalline phases, with a distribution coefficient of 30 in favor of the liquid-crystalline phase. It is shown that the distribution of the ATPase in mixtures of dipalmitoylphosphatidylcholine and BRPC can be understood in terms of the phase diagram for this mixture of lipids. Activities of the ATPase in the presence of mixtures of lipids can be explained in terms of the relative binding constants obtained from the fluorescence experiments.  相似文献   

14.
The fluorescent reagent, S-mercuric N-dansyl-cysteine, reacts specifically with thiols of the purified Ca2+-ATPase of the sarcoplasmic reticulum, producing an increase of fluorescence of fluorescence intensity at 500 nm (lambda ex = 335 nm). The reaction is stoichiometric, and the increase of the fluorescence intensity is proportional to the number of blocked thiols. Twelve reactive thiols per 10(5) daltons of ATPase peptide fall into roughly three classes. Blocking of the most reactive thiol entails little inhibition of enzyme activity. Blocking of the five thiols reacting next (intermediate class) results in almost complete inhibition of both phosphorylated intermediate formation and ATP hydrolysis. The second order rate constants of the reaction of thiols have been determined by stopped flow studies. The most reactive thiol and the six least reactive thiols can each be treated as a single class with respect to the rate constant; five thiols of intermediate reactivity appear to have different rate constants (k2, k3, ..k6). Of these constants, k1, corresponding to the most reactive thiol, does not change with [Ca2+]. Upon increasing [Ca2+] from 10(-9) to 10(-5) M, k2 increase and k7-12 decreases; the changes roughly parallel the activation of ATPase activity and the Ca2+ binding to the high affinity alpha sites (Ikemoto, N. (1975) J. Biol. Chem. 250, 7219-7224). Upon further increase of [Ca2+] k2 decreases and k7-12 increase, in parallel with the inhibition of ATPase activity and with the Ca2+ binding to the low affinity gamma sites.  相似文献   

15.
Mu- and m-calpain are cysteine proteases requiring micro- and millimolar Ca2+ concentrations for their activation in vitro. Among other mechanisms, interaction of calpains with membrane phospholipids has been proposed to facilitate their activation by nanomolar [Ca2+] in living cells. Here the interaction of non-autolysing, C115A active-site mutated heterodimeric human mu-calpain with phospholipid bilayers was studied in vitro using protein-to-lipid fluorescence resonance energy transfer and surface plasmon resonance. Binding to liposomes was Ca2+-dependent, but not selective for specific phospholipid head groups. [Ca2+]0.5 for association with lipid bilayers was not lower than that required for the exposure of hydrophobic surface (detected by TNS fluorescence) or for enzyme activity in the absence of lipids. Deletion of domain V reduced the lipid affinity of the isolated small subunit (600-fold) and of the heterodimer (10- to 15-fold), thus confirming the proposed role of domain V for membrane binding. Unexpectedly, mutations in the acidic loop of the 'C2-like' domain III, a putative Ca2+ and phospholipid-binding site, did not affect lipid affinity. Taken together, these results support the hypothesis that in vitro membrane binding of mu-calpain is due to the exposed hydrophobic surface of the active conformation and does not reduce the Ca2+ requirement for activation.  相似文献   

16.
We attempted to establish whether lanthanide ions, when added to sarcoplasmic reticulum (SR) membranes in the absence of nucleotide, compete with Ca2+ for binding to the transport sites of the Ca(2+)-ATPase in these membranes, or whether they bind to different sites. Equilibrium measurements of the effect of lanthanide ions on the intrinsic fluorescence of SR ATPase and on 45Ca2+ binding to it were performed either at neutral pH (pH 6.8), i.e. when endogenous or contaminating Ca2+ was sufficient to nearly saturate the ATPase transport sites, or at acid pH (pH 5.5), which greatly reduced the affinity of calcium for its sites on the ATPase. These measurements did reveal apparent competition between Ca2+ and the lanthanide ions La3+, Gd3+, Pr3+, and Tb3+, which all behaved similarly, but this competition displayed unexpected features: lanthanide ions displaced Ca2+ with a moderate affinity and in a noncooperative way, and the pH dependence of this displacement was smaller than that of the Ca2+ binding to its own sites. Simultaneously, we directly measured the amount of Tb3+ bound to the ATPase relative to the amount of Ca2+ and found that Tb3+ ions only reduced significantly the amount of Ca2+ bound after a considerable number of Tb3+ ions had bound. Furthermore, when we tested the effect of Ca2+ on the amount of Tb3+ bound to the SR membranes, we found that the Tb3+ ions which bound at low Tb3+ concentrations were not displaced when Ca2+ was added at concentrations which saturated the Ca2+ transport sites. We conclude that the sites on SR ATPase to which lanthanide ions bind with the highest affinity are not the high affinity Ca2+ binding and transport sites. At higher concentrations, lanthanide ions did not appear to be able to replace Ca2+ ions and preserve the native structure of their binding pocket, as evaluated in rapid filtration measurements from the effect of moderate concentrations of lanthanide ions on the kinetics of Ca2+ dissociation. Thus, the presence of lanthanide ions slowed down the dissociation from its binding site of the first, superficially bound 45Ca2+ ion, instead of specifically preventing the dissociation of the deeply bound 45Ca2+ ion. These results highlight the need for caution when interpreting, in terms of calcium sites, experimental data collected using lanthanide ions as spectroscopic probes on SR membrane ATPase.  相似文献   

17.
The fluorescence of TNP-nucleotides bound to sarcoplasmic reticulum ATPase is enhanced upon formation of phosphorylated enzyme intermediate either with ATP in the presence of Ca2+ or, to a greater extent, with Pi in the absence of Ca2+. Binding of the TNP-nucleotides does not occur if the ATPase is labeled at the active site with fluorescein isothiocyanate. Addition of ADP to the TNP-nucleotide X enzyme complex phosphorylated with Pi causes dissociation of TNP-nucleotide and a proportional reduction in fluorescence. These and other kinetic observations indicate that the TNP-nucleotide exchanges with ADP following enzyme phosphorylation with ATP or occupies the ADP portion of the catalytic site following enzyme phosphorylation with Pi. This interaction with the phosphorylated site results in fluorescence enhancement of the TNP-nucleotide. Comparison of the TNP-nucleotide fluorescence features in different solvents with that of the TNP-nucleotide bound to sarcoplasmic reticulum ATPase indicates that, following phosphorylation, the binding domain excludes solvent molecules and confers restricted mobility to the TNP-nucleotide. Solvent exclusion and substrate immobilization accompany, to a greater extent, phosphorylation of the active site with Pi in the absence of Ca2+. TNP-nucleotides bound to the catalytic sites were also found to be acceptors of resonance energy transfer from enzyme tryptophan in the extramembranous domain of the ATPase which also contains the catalytic site.  相似文献   

18.
Cobalt ion inhibits the Ca2+ + Mg2(+)-ATPase activity of sealed sarcoplasmic reticulum vesicles, of solubilized membranes and of the purified enzyme. To use Co2+ appropriately as a spectroscopic ruler to map functional sites of the Ca2+ + Mg2(+)-ATPase, we have carried out studies to obtain the kinetic parameters needed to define the experimental conditions to conduct the fluorimetric studies. 1. The apparent K0.5 values of inhibition of this ATPase are 1.4 mM, 4.8 mM and 9.5 mM total Co2+ at pH 8.0, 7.0 and 6.0, respectively. The inhibition by Co2+ is likely to be due to free Co2+ binding to the enzyme. Millimolar Ca2+ can fully reverse this inhibition, and also reverses the quenching of the fluorescence of fluorescein-labeled sarcoplasmic reticulum membranes due to Co2+ binding to the Ca2+ + Mg2(+)-ATPase. Therefore, we conclude that Co2+ interacts with Ca2+ binding sites. 2. Co2+.ATP can be used as a substrate by this enzyme with Vmax of 2.4 +/- 0.2 mumol ATP hydrolyzed min-1 (mg protein)-1 at 20-22 degrees C and pH 8.0, and with a K0.5 of 0.4-0.5 mM. 3. Co2+ partially quenches, about 10 +/- 2%, the fluorescence of fluorescein-labeled sarcoplasmic reticulum Ca2+ + Mg2(+)-ATPase upon binding to this enzyme at pH 8.0. From the fluorescence data we have estimated an average distance between Co2+ and fluorescein in the ATPase of 1.1-1.8 nm or 1.3-2.1 nm for one or two equidistant Co2+ binding sites, respectively. 4. Co2+.ATP quenches about 20-25% of the fluorescence of fluorescein-labeled Ca2+ + Mg2(+)-ATPase, from which we obtain a distance of 1.1-1.9 nm between Co2+ and fluorescein located at neighbouring catalytic sites.  相似文献   

19.
A monoclonal antibody (2B3) directed against the calmodulin-binding (Ca2+ + Mg2+)-dependent ATPase from pig stomach smooth muscle was prepared. This antibody reacts with a 130,000-Mr protein that co-migrates on SDS/polyacrylamide-gel electrophoresis with the calmodulin-binding (Ca2+ + Mg2+)-ATPase purified from smooth muscle by calmodulin affinity chromatography. The antibody causes partial inhibition of the (Ca2+ + Mg2+)-ATPase activity in plasma membranes from pig stomach smooth muscle, in pig erythrocytes and human erythrocytes. It appears to be directed against a specific functionally important site of the plasmalemmal Ca2+-transport ATPase and acts as a competitive inhibitor of ATP binding. Binding of the antibody does not change the Km of the ATPase for Ca2+ and its inhibitory effect is not altered by the presence of calmodulin. No inhibition of (Ca2+ + Mg2+)-ATPase activity or of the oxalate-stimulated Ca2+ uptake was observed in a pig smooth-muscle vesicle preparation enriched in endoplasmic reticulum. These results confirm the existence in smooth muscle of two different types of Ca2+-transport ATPase: a calmodulin-binding (Ca2+ + Mg2+)-ATPase located in the plasma membrane and a second one confined to the endoplasmic reticulum.  相似文献   

20.
The fluorescence emission spectrum of dansylundecanoic acid is sensitive to the environment and appears at a lower wavelength when the fatty acid is bound to protein than when it is bound to phospholipid. When bound to the (Ca2+-Mg2+)-ATPase of sarcoplasmic reticulum, the emission spectrum can be resolved into separate components assigned to fatty acid bound to protein and to lipid. Efficiency of energy transfer from the tryptophan residues of the ATPase to dansylundecanoic is higher for protein-bound probe than for lipid-bound probe. Fluorescence titrations are consistent with three fatty acid binding sites per ATPase with a Kd of 7 microM, and these sites are postulated to occur at the protein-protein interface in ATPase oligomers. Fatty acid incorporated into the lipid component of the membrane appears to be bound outside the lipid annulus around the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号