首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
We studied a protective effect of a course injections of melatonin on cognitive deficiency in rats with streptozotocin-induced diabetes (STZD). The mean time necessary for the fulfillment of the Morris' water test in animals with STZD after 7 days of testing was three times greater than the corresponding index in the control group. Rats with STZD, which were injected with 10 mg/kg melatonin daily for 21 days after introduction of STZ, demonstrated a significantly lower level of cognitive deficiency ((in these rats the mean time necessary for the test fulfillment was only 48% greater than that in the control animals). In rats with STZD, substantial changes in the content of NCAM isoforms in the brain structures (significant decreases in the NCAM180 content in the hippocampus, neocortex, and cerebellum, and in that of NCAM140 in the cerebellum) were observed. Course injections of melatonin into the rats with STZD promoted significant normalization of the composition of NCAM isoforms in the structures under study. The data obtained indicate that control of expression of separate NCAM isoforms can be one of the mechanisms through which melatonin prevents the development of cognitive deficiency in diabetic animals.  相似文献   

2.
Nedzvetsky  V. S.  Baydas  G.  Nerush  P. A.  Kirichenko  S. V. 《Neurophysiology》2002,34(2-3):190-193
Cell adhesion molecules play a diverse role in neural development, signal transduction, structural linkage to extracellular and intracellular proteins, synaptic stabilization, neurogenesis, and learning. Neural cell adhesion molecules (NCAM) are members of the immunoglobulin superfamily and are involved in synaptic rearrangements in the mature brain. There are three major NCAM isoforms: NCAM 180, NCAM 140, and NCAM 120. Several studies reported that NCAM play a central role in memory formation. We investigated the effects of melatonin on the expression of NCAM in the hippocampus, cortex, and cerebellum of rats. The levels of NCAM isoforms were determined by Western blotting. After administration of melatonin for 7 days, the expression of NCAM 180 increased both in the hippocampus and in the cortex, as compared with the control. In contrast, in rats exposed to constant illumination for 7 days (a procedure that inhibits endogenous production of melatonin), levels of NCAM 180 dropped in the hippocampus and became undetectable in the cortex and cerebellum. Levels of NCAM 140 in the hippocampus of light-exposed rats also decreased. There was no change in the expression of NCAM 120 in any brain region. This is the first report indicating that melatonin exerts a modulatory effect on the expression of NCAM in brain areas related to realization of cognitive functions. Melatonin may be involved in structural remodeling of synaptic connections during memory and learning processes.  相似文献   

3.
We examined, using a Western blot technique, the contents and compositions of a specific neuronal protein, NCAM, and of an astrocyte marker, GFAP, in the hippocampus and cortex of rats with streptozotocin (STZ)-induced diabetes and compared these indices with those in control (intact) animals and STZ-diabetic rats treated with melatonin. Behavioral cognitive indices manifested in the passive avoidance test (PAT) and Morris water maze (MWM) learning performance were also estimated in the above groups of animals. As was found, STZ-diabetic rats demonstrated clear cognitive deficits according to the values of the retention latency in the PAT and time of reaching the escape platform in the MWM performance. In these animals, the GFAP content was elevated, and the amount of degraded products of this protein increased, as compared with the control. Simultaneously, considerable down-regulation of the NCAM expression and modifications of NCAM isoform composition were found in diabetic animals. In addition, significantly increased levels of lipid peroxidation (according to the amounts of malondialdehyde + 4-hydroxyalkenals) were measured in the cortex and hippocampus of rats with stable diabetic hyperglycemia. All the above-mentioned shifts were significantly smoothed or even nearly completely compensated in the case of treatment of STZ-diabetic rats with melatonin (10 mg/kg per day). The role of diabetes-related changes in the amount and composition of specific neural and glial proteins in the development of cognitive deficits, the involvement of oxidative stress in the mechanisms of the respective shifts, and possible mechanisms of the neuroprotective effect of melatonin with respect to diabetes-related pathological biochemical and behavioral shifts are discussed. Neirofiziologiya/Neurophysiology, Vol. 40, No. 2, pp. 105–111, March–April, 2008.  相似文献   

4.
We studied the behavior of rats in an open-field test and the contents of neurospecific proteins [neural cell adhesion molecule (NCAM) and glial fibrillary acidic protein (GFAP)] in the brain cortex, hippocampus, striatum, midbrain, cerebellum, andpons Varolii 1, 12, 24, 120, and 168 h after a single X-ray irradiation session (dose of 0.25 Gy). Within the postirradiation period, manifestations of the behavioral activity of the animals were mostly suppressed, and the parameters related to the emotional state of the animals were influenced to a greater extent. The dynamics of the NCAM and GFAP contents were complex and dissimilar in the brain structures under study, but it was possible to observe some general regularities. Within early periods of time, 12 h after irradiation, the NCAM content increased in the cortex, hippocampus, and cerebellum. In these structures, it reached approximately 220, 170, and 150%, respectively, as compared with the control, while it dropped to about 40% in thepons Varolii. Changes in the GFAP content reached their maximum 24 h after irradiation; this index dropped to 29, 44, 34, and 67% in the striatum,pons Varolii, midbrain, and cerebellum, respectively, while it increased to 380% in the hippocampus. Later time intervals were characterized by smoother changes in the contents of the above neurospecific proteins. Seven days after irradiation, the NCAM content did not differ from initial values in the striatum and cerebellum and was higher than the control in the neocortex, hippocampus, and midbrain. Within this period, the GFAP level in the cerebellum and midbrain was relatively normalized, but it increased in the hippocampus and decreased in the pons and striatum. Therefore, the greatest postirradiation shifts in the NCAM and GFAP levels were observed in the structures of the limbic system, and this can be correlated with the data on testing the rats in an open field.  相似文献   

5.
The neurotoxic effects of thinner, a mixture including aromatic compounds (in particular, toluene) and widely used as an industrial solvent, were examined. Exposure of rats to high inhalation concentrations (3000 p.p.m.) of thinner for 45 days (1 h per day) significantly influenced the cognitive functions and levels of neural cell adhesion molecules (NCAM) in the hippocampus, cortex, and cerebellum of experimental animals. These exposures also caused dramatic increases in levels of LPO (malondialdehyde and 4-hydroxyalkenals) in these cerebral structures, while melatonin administration significantly reduced the LPO amounts in these brain regions. The level of NCAM (180 kDa) decreased significantly in the hippocampus and cortex of thinner-exposed rats. Furthermore, thinner-exposed rats showed cognitive deficits in the passive avoidance and Morris water maze tasks; these negative effects were considerably compensated in rats additionally chronically treated with melatonin. It is concluded that treatment with melatonin prevents the development of learning and memory deficits caused by thinner exposure, possibly by reducing oxidative stress and normalizing the neural plasticity.  相似文献   

6.
Drozdov  A. L.  Chernaya  V. I. 《Neurophysiology》2002,34(1):13-16
We studied the dynamics of expression of neuronal cell adhesion molecule (NCAM) in the hippocampus of rats trained to perform conditioned active avoidance reaction (CAAR). Using a hard-phase immunoenzyme analysis technique, we quantitatively measured the NCAM content in the membrane fraction of hippocampal tissue and observed a statistically significant increase in this index on the third day and a certain decrease within the second to fourth weeks of the training course. These results confirm the statement that changes in the level of NCAM expression in the hippocampus of experimental animals can be one of the mechanisms providing plastic synaptic modifications in the processes of learning and formation of memory engrams and are also indicative of the important role of the hippocampus in such a formation.  相似文献   

7.
Neural recognition molecules such as the neural cell adhesion molecule (NCAM) have been implicated in synaptic plasticity, including long-term potentiation (LTP), sensitization, and learning and memory. The major isoform of NCAM carrying the longest cytoplasmic domain of all NCAM isoforms (NCAM180) is predominantly localized in postsynaptic membranes and postsynaptic densities of hippocampal neurons, with only a proportion of synapses carrying detectable levels of NCAM180. To investigate whether this differential expression of NCAM180 may correlate with distinct states of synaptic activity, LTP was induced by high-frequency stimulation of the perforant path and the percentage of NCAM180 immunopositive spine synapses determined in the outer third of the dentate molecular layer of the dentate gyrus by immunoelectron microscopy. Twenty-four hours following induction of LTP by high-frequency stimulation, the percentage of spine synapses expressing NCAM180 increases from 37% (passive control) to 70%. This increase was inhibited by the noncompetitive N-methyl-D -aspartate receptor antagonist MK801. Following repeated LTP induction at 10 consecutive days with one tetanization each day, 60% of all spine synapses were NCAM180 immunoreactive. Compared to passive control animals, the percentage of NCAM180 expressing synapses in low-frequency stimulated animals decreased from 37% to 28%. Spine synapses in the inner part of the dentate molecular layer not contacted by the afferents of the perforant path did not change the percentage of NCAM180-expressing synapses. The results obtained by the postembedding immunogold staining technique confirmed the difference in NCAM180 expression of spine synapses between passive control and potentiated animals. These observations suggest a role for NCAM180 in synaptic remodeling accompanying LTP. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 359–372, 1998  相似文献   

8.
目的:探究缺血性脑损伤后,黄芪多糖(AG)对海马CA1区神经元重塑中粘附分子(NCAM)以及c-fos表达的影响。方法:取Wistar雄性大鼠100只,随机分成假手术组(SOG)、模型组(MG-1d,3d,7d),低剂量黄芪多糖治疗组(L-AGTG-1d,3d,7d),高剂量黄芪多糖治疗组(H-AGTG-1d,3d,7d),每组10只。所有MG和AGTG组颈部切开阻断右侧大脑中动脉,造成缺血性脑损伤后,AGTG组腹腔注射AG(5 mg/kg和15 mg/kg)。于1 d,3 d和7 d分别脑血流再灌注,随即评分神经功能缺损情况后取材,测算神经元凋亡数,免疫组织化学法和RT-PCR法半定量分析检测海马CA1区神经元NCAM和c-fos的表达。结果:L-AGTG和H-AGTG的神经功能缺损评分和海马神经元凋亡数显著低于MG(P<0.05或P<0.01),海马CA1区NCAM和c-fos的表达显著高于MG(P<0.05或P<0.01)。结论:黄芪多糖改善缺血性脑损伤大鼠的神经功能,可能与促进海马NCAM和c-fos表达,而阻止或逆转海马神经元凋亡有关。  相似文献   

9.
Neural cell adhesion molecules (NCAMs) play critical roles during development of the nervous system. The aim of this study is to investigate the possible effect of ethanol exposure on the pattern of expression and sialylation of NCAM isoforms during postnatal rat brain development because alterations in NCAM content and distribution have been associated with defects in cell migration, synapse formation, and memory consolidation, and deficits in these processes have been observed after in utero alcohol exposure. The expression of NCAM isoforms in the developing cerebral cortex of pups from control and alcohol-fed mothers was assessed by western blotting, ribonuclease protection assay, and immunocytochemistry. The highly sialylated form of NCAM [polysialic acid (PSA)-NCAM] is mainly expressed during the neonatal period and then is down-regulated in parallel with the appearance of NCAM 180 and NCAM 140. Ethanol exposure increases PSA-NCAM levels during the neonatal period, delays the loss of PSA-NCAM, decreases the amount of NCAM 180 and NCAM 140 isoforms, and reduces sialyltransferase activity during postnatal brain development. Neuraminidase treatment of ethanol-exposed neonatal brains leads to more intense band degradation products, suggesting a higher content of NCAM polypeptides carrying PSA in these samples. However, NCAM mRNA levels are not changed by ethanol. Immunocytochemical analysis demonstrates that ethanol triggers an increase in PSA-NCAM immunolabeling in the cytoplasm of astroglial cells, accompanied by a decrease in immunogold particles over the plasma membrane. These findings indicate that ethanol exposure during brain development alters the pattern of NCAM expression and suggest that modification of NCAM could affect neuronal-glial interactions that might contribute to the brain defects observed after in utero alcohol exposure.  相似文献   

10.
We have investigated the possibility that morphologically different excitatory glutamatergic synapses of the "trisynaptic circuit" in the adult rodent hippocampus, which display different types of long-term potentiation (LTP), may express the immunoglobulin superfamily recognition molecules L1 and NCAM, the extracellular matrix molecule tenascin-R, and the extracellular matrix receptor constituent beta1 integrin in a differential manner. The neural cell adhesion molecules L1, NCAM (all three major isoforms), NCAM180 (the largest major isoform with the longest cytoplasmic domain), beta1 integrin, polysialic acid (PSA) associated with NCAM, and tenascin-R were localized by pre-embedding immunostaining procedures in the CA3/CA4 region (mossy fiber synapses) and in the dentate gyrus (spine synapses) of the adult rat hippocampus. Synaptic membranes of mossy fiber synapses where LTP is expressed presynaptically did not show detectable levels of immunoreactivity for any of the molecules/epitopes studied. L1, NCAM, and PSA, but not NCAM180 or beta1 integrin, were detectable on axonal membranes of fasciculating mossy fibers. In contrast to mossy fiber synapses, spine synapses in the outer third of the molecular layer of the dentate gyrus, which display postsynaptic expression mechanisms of LTP, were both immunopositive and immunonegative for NCAM, NCAM180, beta1 integrin, and PSA. Those spine synapses postsynaptically immunoreactive for NCAM or PSA also showed immunoreactivity on their presynaptic membranes. NCAM180 was not detectable presynaptically in spine synapses. L1 could not be found in spine synapses either pre- or postsynaptically. Also, the extracellular matrix molecule tenascin-R was not detectable in synaptic clefts of all synapses tested, but was amply present between fasciculating axons, axon-astrocyte contact areas, and astrocytic gap junctions. Differences in expression of the membrane-bound adhesion molecules at both types of synapses may reflect the different mechanisms for induction and/or maintenance of synaptic plasticity.  相似文献   

11.
Neurological and structural changes are paralleled by cognitive deficits in diabetes mellitus. The present study was designed to evaluate the expression of neural cell adhesion molecules (NCAM) in the hippocampus, cortex and cerebellum and to examine cognitive functions in diabetic rats. Diabetes was induced in male albino rats via intraperitoneal streptozotocin injection. Learning and memory behaviors were investigated using a passive avoidance test and a spatial version of the Morris water maze test. NCAM expression was detected in the hippocampus, cortex and cerebellum by an immunoblotting method. The diabetic rats developed significant impairment in learning and memory behaviours as indicated by deficits in passive avoidance and water maze tests as compared to control rats. Expression of NCAM 180 and 120 kDa were found to be higher in hippocampus and cortex of diabetic rat brains compared to those of control, whereas expression of NCAM 140 kDa decreased in these brain regions. Our findings suggest that streptozotocin-induced diabetes impairs cognitive functions and causes an imbalance in expression of NCAM in those brain regions involved in learning and memory. Altered expression of NCAM in hippocampus may be an important cause of learning and memory deficits that occur in diabetes mellitus.  相似文献   

12.
We have investigated the possibility that morphologically different excitatory glutamatergic synapses of the “trisynaptic circuit” in the adult rodent hippocampus, which display different types of long‐term potentiation (LTP), may express the immunoglobulin superfamily recognition molecules L1 and NCAM, the extracellular matrix molecule tenascin‐R, and the extracellular matrix receptor constituent beta1 integrin in a differential manner. The neural cell adhesion molecules L1, NCAM (all three major isoforms), NCAM180 (the largest major isoform with the longest cytoplasmic domain), beta1 integrin, polysialic acid (PSA) associated with NCAM, and tenascin‐R were localized by pre‐embedding immunostaining procedures in the CA3/CA4 region (mossy fiber synapses) and in the dentate gyrus (spine synapses) of the adult rat hippocampus. Synaptic membranes of mossy fiber synapses where LTP is expressed presynaptically did not show detectable levels of immunoreactivity for any of the molecules/epitopes studied. L1, NCAM, and PSA, but not NCAM180 or beta1 integrin, were detectable on axonal membranes of fasciculating mossy fibers. In contrast to mossy fiber synapses, spine synapses in the outer third of the molecular layer of the dentate gyrus, which display postsynaptic expression mechanisms of LTP, were both immunopositive and immunonegative for NCAM, NCAM180, beta1 integrin, and PSA. Those spine synapses postsynaptically immunoreactive for NCAM or PSA also showed immunoreactivity on their presynaptic membranes. NCAM180 was not detectable presynaptically in spine synapses. L1 could not be found in spine synapses either pre‐ or postsynaptically. Also, the extracellular matrix molecule tenascin‐R was not detectable in synaptic clefts of all synapses tested, but was amply present between fasciculating axons, axon‐astrocyte contact areas, and astrocytic gap junctions. Differences in expression of the membrane‐bound adhesion molecules at both types of synapses may reflect the different mechanisms for induction and/or maintenance of synaptic plasticity. © 2001 John Wiley & Sons, Inc. J Neurobiol 49: 142–158, 2001  相似文献   

13.
It was demonstrated that levels of free fatty acids and radioactively labeled ([14C]) ceramide in the liver, muscles, and brain of rats fed a saturated fat-enriched diet for 36 weeks (from 15 to 24 months) increased, as compared with the corresponding levels in control animals of the same age (24 months old). A high-saturated fat diet resulted in a rise in the content of sphingolipids synthesized de novo in the neocortex and hippocampus of 24-month-old rats. High levels of ceramide and sphingosine in the neocortex and hippocampus induced in these rats by the above diet correlated with considerable worsening of the conditioned reflex activity of animals (reflex of active avoidance in the shuttle chamber).  相似文献   

14.
《The Journal of cell biology》1993,123(6):1587-1595
We have used a transfection based approach to analyze the role of neural cell adhesion molecule (NCAM) in myogenesis at the stage of myoblast fusion to form multinucleate myotubes. Stable cell lines of myogenic C2 cells were isolated that express the transmembrane 140- or 180-kD NCAM isoforms or the glycosylphosphatidylinositol (GPI) linked isoforms of 120 or 125 kD. We found that expression of the 140-kD transmembrane isoform led to a potent enhancement of myoblast fusion. The 125-kD GPI-linked NCAM also enhanced the rate of fusion but less so when a direct comparison of cell surface levels of the 140-kD transmembrane form was carried out. While the 180-kD transmembrane NCAM isoform was effective in promoting C2 cell fusion similar to the 140-kD isoform, the 120-kD isoform did not have an effect on fusion parameters. It is possible that these alterations in cell fusion are associated with cis NCAM interactions in the plane of the membrane. While all of the transfected human NCAMs (the transmembrane 140- and 180-kD isoforms and the 125- and 120-kD GPI isoforms) could be clustered in the plane of the plasma membrane by species-specific antibodies there was a concomitant clustering of the endogenous mouse NCAM protein in all cases except with the 120-kD human isoform. These studies show that different isoforms of NCAM can undergo specific interactions in the plasma membrane which are likely to be important in fusion. While the transmembrane and the 125-kD GPI-anchored NCAMs are capable of enhancing fusion the 120-kD GPI NCAM is not. Thus it is likely that interactions associated with NCAM intracellular domains and also the muscle specific domain (MSD) region in the extracellular domain of the GPI-linked 125-kD NCAM are important. In particular this is the first role ascribed to the O-linked carbohydrate containing MSD region which is specifically expressed in skeletal muscle.  相似文献   

15.
We studied the effect of shift in the natural light/dark regimen (desynchronosis) and treatment with melatonin on behavioral characteristics of rats with different activity in the open-field test. Experiments were performed on 172 Wistar rats kept under conditions of the natural or shifted light/dark regimen. Some animals were intraperitoneally treated with 1 ml physiological saline or melatonin in doses of 1 and 2 mg/kg, while others did not receive the injections. Desynchronosis altered the normal rhythm of locomotor activity and abolished the differences between daytime and nighttime activity rats not receiving the injections. The influence of melatonin on locomotor activity of rats maintained under normal or shifted light/dark conditions depended on its dose, time of treatment, and initial behavioral characteristics of animals. Our results indicate that the use of melatonin for treatment of disturbances produced by a shift in the light/dark conditions should be performed taking into account individual behavioral characteristics of the organism.  相似文献   

16.
Cooperation between receptors allows integrated intracellular signaling leading to appropriate physiological responses. The Neural Cell Adhesion Molecule (NCAM) has three main isoforms of 120, 140 and 180 kDa, with adhesive and signaling properties, but their respective functions remains to be fully identified. Here we show that the human NCAM180 intracellular domain is a novel interactor of the human guanosine exchange factor (GEF) Ric8A using the yeast two hybrid system and immunoprecipitation. Furthermore, NCAM, Ric8A and G(αs) form a tripartite complex. Colocalization experiments by confocal microscopy revealed that human NCAM180 specifically induces the recruitment of Ric8A to the membrane. In addition, using an in vitro recombinant system, and in vivo by comparing NCAM knock-out mouse brain to NCAM heterozygous and wild type brains, we show that NCAM expression dose dependently regulates Ric8A redistribution in detergent resistent membrane microdomains (DRM). Previous studies have demonstrated essential roles for Ric8 in G(α) protein activity at G protein coupled receptors (GPCR), during neurotransmitter release and for asymmetric cell division. We observed that inhibition of Ric8A by siRNA or its overexpression, decreases or increases respectively, cAMP production following β-adrenergic receptor stimulation. Furthermore, in human HEK293T recombinant cells, NCAM180 potentiates the G(αs) coupled β-adrenergic receptor response, in a Ric8A dependent manner, whereas NCAM120 or NCAM140 do not. Finally, in mouse hippocampal neurons expressing endogenously NCAM, NCAM is required for the agonist isoproterenol to induce cAMP production, and this requirement depends on Ric8A. These data illustrate a functional crosstalk between a GPCR and an IgCAM in the nervous system.  相似文献   

17.
On Wistar rats characteristics were studied of investigating behaviour in the open field, of learning of conditioned food-reinforced reaction and also of BA and their metabolites content in various brain structures under local intracerebral injections of specific neurotoxins; 6-hydroxydopamine (6-OHDA) and 5,7-dihydroxytryptamine (5,7-DHT), abolishing correspondingly catecholaminergic and serotoninergic terminals. Bilateral injection of 6-OHDA in the neocortex led to a weakening of rats investigating activity in the open field and to an increase of the time of fulfillment of the forming of conditioned food-reinforced reaction. Administration of 5,7-DHT was accompanied by an increase of the investigating behaviour in the open field and a reduction of the duration of the forming of conditioned reaction. Administration of 6-OHDA to the neocortex caused a lowering of catecholamines level in the frontal area of the neocortex and the hippocampus. Analogous administration of 5,7-DHT elicited simultaneously with a deep level lowering of 5-HT and its metabolite in these structures, a change of catecholamines content which testifies to a lesser specificity of the neurotoxin 5,7-DHT in comparison with 6-OHDA. Structures lesion of serotoninergic and catecholaminergic systems of the frontal cortex and the hippocampus brought about by a local administration of 6-OHDA and 5,7-DHT in the neocortex was accompanied by differently directed changes in animals behaviour.  相似文献   

18.
Chronic stress in rodents was shown to induce structural shrinkage and functional alterations in the hippocampus that were linked to spatial memory impairments. Effects of chronic stress on the amygdala have been linked to a facilitation of fear conditioning. Although the underlying molecular mechanisms are still poorly understood, increasing evidence highlights the neural cell adhesion molecule (NCAM) as an important molecular mediator of stress‐induced structural and functional alterations. In this study, we investigated whether altered NCAM expression levels in the amygdala might be related to stress‐induced enhancement of auditory fear conditioning and anxiety‐like behavior. In adult C57BL/6J wild‐type mice, chronic unpredictable stress resulted in an isoform‐specific increase of NCAM expression (NCAM‐140 and NCAM‐180) in the amygdala, as well as enhanced auditory fear conditioning and anxiety‐like behavior. Strikingly, forebrain‐specific conditional NCAM‐deficient mice (NCAM‐floxed mice that express the cre‐recombinase under the control of the promoter of the α‐subunit of the calcium‐calmodulin‐dependent protein kinase II), whose amygdala NCAM expression levels are reduced, displayed impaired auditory fear conditioning which was not altered following chronic stress exposure. Likewise, chronic stress in these conditional NCAM‐deficient mice did not modify NCAM expression levels in the amygdala or hippocampus, while they showed enhanced anxiety‐like behavior, questioning the involvement of NCAM in this type of behavior. Together, our results strongly support the involvement of NCAM in the amygdala in the consolidation of auditory fear conditioning and highlight increased NCAM expression in the amygdala among the mechanisms whereby stress facilitates fear conditioning processes.  相似文献   

19.
The aim of this study was to determine whether changes in the circulating thyroid hormone (TH) and brain synaptosomal TH content affected the relative levels of mRNA encoding different thyroid hormone receptor (TR) isoforms in adult rat brain. Northern analysis of polyA+RNA from cerebral cortex, hippocampus and cerebellum of control and hypothyroid adult rats was performed in order to determine the relative expression of all TR isoforms. Circulating and synaptosomal TH concentrations were determined by radioimmunoassay. Region-specific quantitative differences in the expression pattern of all TR isoforms in euthyroid animals and hypothyroid animals were recorded. In hypothyroidism, the levels of TRα2 mRNA (non-T3-binding isoform) were decreased in all brain regions examined. In contrast the relative expression of TRα1 was increased in cerebral cortex and hippocampus, whereas in cerebellum remained unaffected. The TRβ1 relative expression in cerebral cortex and hippocampus of hypothyroid animals was not affected, whereas this TR isoform was not detectable in cerebellum. The TR isoform mRNA levels returned to control values following T4 intraperitoneal administration to the hypothyroid rats. The obtained results show that in vivo depletion of TH regulates TR gene expression in adult rat brain in a region-specific manner. (Mol Cell Biochem 278: 93–100, 2005)  相似文献   

20.
The effect of chronic emotional stress and ethanol on NCAM and GFAP levels in cerebral cortex, hippocampus, striatum, cerebellum and medulla-ponts was investigated. We report about increase of NCAM and GFAP concentrations in the cerebral cortex and decline of the total protein contents in the investigated brain areas of middle-sleep rats under the stress conditions. Ethanol in the dose of 0.5 g/kg during 7 days evoked opposite changes of NCAM and GFAP concentration and elevation of the total protein level in medulla-pons. In the other brain areas level changes of only one (any) of the two investigated neurospecific proteins were observed. Ethanol injections to the stressed rats normalized the relative weights of adrenals and the level of total protein in the brain areas but didn't normalize the behavioral activity in an "open field" test. Besides, we observed a dramatic increase of GFAP level (over 10 times) in the medulla-pons which may be connected with glioses. These results suggest the specific changes of NCAM and GFAP contents under the chronic emotional stress which don't correlate with changes in the hypophysis-adrenals system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号