首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied a protective effect of a course injections of melatonin on cognitive deficiency in rats with streptozotocin-induced diabetes (STZD). The mean time necessary for the fulfillment of the Morris' water test in animals with STZD after 7 days of testing was three times greater than the corresponding index in the control group. Rats with STZD, which were injected with 10 mg/kg melatonin daily for 21 days after introduction of STZ, demonstrated a significantly lower level of cognitive deficiency ((in these rats the mean time necessary for the test fulfillment was only 48% greater than that in the control animals). In rats with STZD, substantial changes in the content of NCAM isoforms in the brain structures (significant decreases in the NCAM180 content in the hippocampus, neocortex, and cerebellum, and in that of NCAM140 in the cerebellum) were observed. Course injections of melatonin into the rats with STZD promoted significant normalization of the composition of NCAM isoforms in the structures under study. The data obtained indicate that control of expression of separate NCAM isoforms can be one of the mechanisms through which melatonin prevents the development of cognitive deficiency in diabetic animals.  相似文献   

2.
Neurological and structural changes are paralleled by cognitive deficits in diabetes mellitus. The present study was designed to evaluate the expression of neural cell adhesion molecules (NCAM) in the hippocampus, cortex and cerebellum and to examine cognitive functions in diabetic rats. Diabetes was induced in male albino rats via intraperitoneal streptozotocin injection. Learning and memory behaviors were investigated using a passive avoidance test and a spatial version of the Morris water maze test. NCAM expression was detected in the hippocampus, cortex and cerebellum by an immunoblotting method. The diabetic rats developed significant impairment in learning and memory behaviours as indicated by deficits in passive avoidance and water maze tests as compared to control rats. Expression of NCAM 180 and 120 kDa were found to be higher in hippocampus and cortex of diabetic rat brains compared to those of control, whereas expression of NCAM 140 kDa decreased in these brain regions. Our findings suggest that streptozotocin-induced diabetes impairs cognitive functions and causes an imbalance in expression of NCAM in those brain regions involved in learning and memory. Altered expression of NCAM in hippocampus may be an important cause of learning and memory deficits that occur in diabetes mellitus.  相似文献   

3.
The neurotoxic effects of thinner, a mixture including aromatic compounds (in particular, toluene) and widely used as an industrial solvent, were examined. Exposure of rats to high inhalation concentrations (3000 p.p.m.) of thinner for 45 days (1 h per day) significantly influenced the cognitive functions and levels of neural cell adhesion molecules (NCAM) in the hippocampus, cortex, and cerebellum of experimental animals. These exposures also caused dramatic increases in levels of LPO (malondialdehyde and 4-hydroxyalkenals) in these cerebral structures, while melatonin administration significantly reduced the LPO amounts in these brain regions. The level of NCAM (180 kDa) decreased significantly in the hippocampus and cortex of thinner-exposed rats. Furthermore, thinner-exposed rats showed cognitive deficits in the passive avoidance and Morris water maze tasks; these negative effects were considerably compensated in rats additionally chronically treated with melatonin. It is concluded that treatment with melatonin prevents the development of learning and memory deficits caused by thinner exposure, possibly by reducing oxidative stress and normalizing the neural plasticity.  相似文献   

4.
Hyperglycemia plays a critical role in the development and progression of diabetic neuropathy. One of the mechanisms by which hyperglycemia causes neural degeneration is via the increased oxidative stress that accompanies diabetes. Metabolic and oxidative insults often cause rapid changes in glial cells. Key indicators of this response are increased synthesis of glial fibrillary acidic protein (GFAP) and S100B, both astrocytic markers. In the present study, we examined glial reactivity in hippocampus, cortex, and cerebellum of streptozotocin (STZ)-induced diabetic rats by determining the expression of GFAP and S-100B and we evaluated the effect of melatonin on the glial response. Western blot measurement of contents in brain regions after 6 weeks of STZ-induced diabetes indicated significant increases in these constituents compared with those in nondiabetic controls. Administration of melatonin prevented the upregulation of GFAP in all brain regions of diabetic rats. Using GFAP immunohistochemistry, we observed an increase in GFAP immunostaining in the hippocampus of STZ-diabetic rats relative to levels in the control brains. Treatment with melatonin resulted in an obvious reduction of GFAP-immunoreactive astrocytes in hippocampus. Like GFAP, S100B levels also were increased in all three brain areas of diabetic rats, an effect also reduced by melatonin treatment. Finally, the levels of lipid peroxidation products were elevated as a consequence of diabetes, with this change also being prevented by melatonin. These results suggest that diabetes causes increased glial reactivity possibly due to elevated oxidative stress, and administration of melatonin represents an achievable adjunct therapy for preventing gliosis.  相似文献   

5.
We studied the effects of i.p. injection of melatonin in pharmacotherapeutic doses and of constant illumination (a melatonin synthesis-suppressing factor) on the behavior of rats in the open-field test and on the content of the main isoforms of neural cell adhesion molecule (NCAM) in the hippocampus, cerebellum, and neocortex of these animals. In the studied brain structures of the rats kept under conditions preventing the melatonin synthesis, we observed suppression of the behavioral activity of animals and a decrease in the expression of the NCAM180 isoform. In rats injected with 10 mg/kg melatonin, changes in the behavioral activity were insignificant. In the hippocampus and neocortex of rats of this group, the NCAM180 content increased. Our experiments showed that melatonin can be involved in the control of balance of the expression of different NCAM isoforms. Such a balance is a crucial factor determining plastic rearrangements of the synaptic contacts.  相似文献   

6.
Nedzvetsky  V. S.  Baydas  G.  Nerush  P. A.  Kirichenko  S. V. 《Neurophysiology》2002,34(2-3):190-193
Cell adhesion molecules play a diverse role in neural development, signal transduction, structural linkage to extracellular and intracellular proteins, synaptic stabilization, neurogenesis, and learning. Neural cell adhesion molecules (NCAM) are members of the immunoglobulin superfamily and are involved in synaptic rearrangements in the mature brain. There are three major NCAM isoforms: NCAM 180, NCAM 140, and NCAM 120. Several studies reported that NCAM play a central role in memory formation. We investigated the effects of melatonin on the expression of NCAM in the hippocampus, cortex, and cerebellum of rats. The levels of NCAM isoforms were determined by Western blotting. After administration of melatonin for 7 days, the expression of NCAM 180 increased both in the hippocampus and in the cortex, as compared with the control. In contrast, in rats exposed to constant illumination for 7 days (a procedure that inhibits endogenous production of melatonin), levels of NCAM 180 dropped in the hippocampus and became undetectable in the cortex and cerebellum. Levels of NCAM 140 in the hippocampus of light-exposed rats also decreased. There was no change in the expression of NCAM 120 in any brain region. This is the first report indicating that melatonin exerts a modulatory effect on the expression of NCAM in brain areas related to realization of cognitive functions. Melatonin may be involved in structural remodeling of synaptic connections during memory and learning processes.  相似文献   

7.
Diabetes mellitus increases the risk of central nervous system (CNS) disorders such as stroke, seizures, dementia, and cognitive impairment. Berberine, a natural isoquinoline alkaloid, is reported to exhibit beneficial effect in various neurodegenerative and neuropsychiatric disorders. Moreover, astrocytes are proving critical for normal CNS function, and alterations in their activity and impaired oxidative stress could contribute to diabetes-related cognitive dysfunction. Metabolic and oxidative insults often cause rapid changes in glial cells. Key indicators of this response are increased synthesis of glial fibrillary acidic protein (GFAP) as an astrocytic marker. Therefore, we examined the effects of berberine on glial reactivity of hippocampus in streptozotocin (STZ)-induced diabetic rats, using GFAP immunohistochemistry. Lipid peroxidation, superoxide dismutase (SOD) activity, and nitrite levels were assessed as the parameters of oxidative stress. Eight weeks after diabetes induction, we observed increased numbers of GFAP+ astrocytes immunostaining associated with increased lipid peroxidation, decreased superoxide dismutase activity, and elevated nitrite levels in the hippocampus of STZ-diabetic rats. In contrast, chronic treatment with berberine (50 and 100 mg/kg p.o. once daily) lowered hyperglycemia, reduced oxidative stress, and prevented the upregulation of GFAP in the brain of diabetic rats. In conclusion, the present study demonstrated that the treatment with berberine resulted in an obvious reduction of oxidative stress and GFAP-immunoreactive astrocytes in the hippocampus of STZ-induced diabetic rats.
Fig. 1
Berberine and Gliosis.  相似文献   

8.
We studied the behavior of rats in an open-field test and the contents of neurospecific proteins [neural cell adhesion molecule (NCAM) and glial fibrillary acidic protein (GFAP)] in the brain cortex, hippocampus, striatum, midbrain, cerebellum, andpons Varolii 1, 12, 24, 120, and 168 h after a single X-ray irradiation session (dose of 0.25 Gy). Within the postirradiation period, manifestations of the behavioral activity of the animals were mostly suppressed, and the parameters related to the emotional state of the animals were influenced to a greater extent. The dynamics of the NCAM and GFAP contents were complex and dissimilar in the brain structures under study, but it was possible to observe some general regularities. Within early periods of time, 12 h after irradiation, the NCAM content increased in the cortex, hippocampus, and cerebellum. In these structures, it reached approximately 220, 170, and 150%, respectively, as compared with the control, while it dropped to about 40% in thepons Varolii. Changes in the GFAP content reached their maximum 24 h after irradiation; this index dropped to 29, 44, 34, and 67% in the striatum,pons Varolii, midbrain, and cerebellum, respectively, while it increased to 380% in the hippocampus. Later time intervals were characterized by smoother changes in the contents of the above neurospecific proteins. Seven days after irradiation, the NCAM content did not differ from initial values in the striatum and cerebellum and was higher than the control in the neocortex, hippocampus, and midbrain. Within this period, the GFAP level in the cerebellum and midbrain was relatively normalized, but it increased in the hippocampus and decreased in the pons and striatum. Therefore, the greatest postirradiation shifts in the NCAM and GFAP levels were observed in the structures of the limbic system, and this can be correlated with the data on testing the rats in an open field.  相似文献   

9.
Luteolin, a flavonoid isolated from Cirsium japonicum, has antioxidant, anti-inflammatory and neuroprotective activities. Our previous studies brought a prospect that luteolin benefited diabetic rats with cognitive impairments. In this study, we examined whether luteolin could suppress the inflammatory cytokines, thus increasing synapse-associated proteins in streptozotocin (STZ)-induced diabetes in rat models. The model rats underwent luteolin treatment for 8 consecutive weeks, followed by assessment of cognitive performances with MWM test. Nissl staining was employed to assess the neuropathological changes in the hippocampus and the effects of luteolin on diabetic rats. With animals sacrificed, expressions of inflammatory cytokines including interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) and synapse-associated proteins including growth-associated protein-43 (GAP-43) and synaptophysin (SYN) were determined. The results affirmed improvement of behavioral performances in the MWM test, downexpression of glycation end products (AGEs) in the plasma and the receptor for advanced glycation end products in the hippocampus, inhibition of IL-1β and TNF-α in both the hippocampus and plasma in diabetic rats. Furthermore, luteolin treatment upregulated the expressions of GAP-43 and SYN in the hippocampus. Thus, luteolin could ameliorate the cognitive dysfunctions in STZ-induced diabetic rat model.  相似文献   

10.
Diabetes enhances apoptosis induced by cerebral ischemia   总被引:2,自引:0,他引:2  
Li ZG  Britton M  Sima AA  Dunbar JC 《Life sciences》2004,76(3):249-262
The aim of this study is to explore the mechanism by which diabetes exaggerates cerebral stroke and its outcome. Since ischemia can be related to not only necrosis but apoptosis as well, we compared the development of apoptosis in STZ-diabetic rats and STZ-diabetic rats subjected to occlusion of the middle cerebral artery (MCA). 24-48 hr following MCA occlusion the animals were killed, the brain removed and prepared for evaluation by several indexes of apoptosis: nucleosomal DNA fragmentation, TUNEL staining, activation of caspase-3 and alteration in the expression of Bax and Bcl2. DNA fragmentation was not detected in the cortex of normal and diabetic animals, but was evident following MCA occlusion in diabetic rats. Bax expression was increased in the cortex of normal rats following MCA occlusion and this expression was further increased in the cortex of MCA occluded diabetic rats. Bcl2 expression was not changed in any of the groups. In the hippocampus, DNA fragmentation was not evident in control rats but was observed in diabetic rats. Ischemic injury did not enhance DNA laddering in diabetic animals. The expression of Bax was increased in diabetic rats but was not increased following MCA occlusion. Bcl2 expression was not changed by ischemia in any of the animal models. These data suggest that diabetes may enhance the development of stroke via increased cortical apoptotic activity but this was not additive in the hippocampus following ischemic injury.  相似文献   

11.
The effect of chronic emotional stress and ethanol on NCAM and GFAP levels in cerebral cortex, hippocampus, striatum, cerebellum and medulla-ponts was investigated. We report about increase of NCAM and GFAP concentrations in the cerebral cortex and decline of the total protein contents in the investigated brain areas of middle-sleep rats under the stress conditions. Ethanol in the dose of 0.5 g/kg during 7 days evoked opposite changes of NCAM and GFAP concentration and elevation of the total protein level in medulla-pons. In the other brain areas level changes of only one (any) of the two investigated neurospecific proteins were observed. Ethanol injections to the stressed rats normalized the relative weights of adrenals and the level of total protein in the brain areas but didn't normalize the behavioral activity in an "open field" test. Besides, we observed a dramatic increase of GFAP level (over 10 times) in the medulla-pons which may be connected with glioses. These results suggest the specific changes of NCAM and GFAP contents under the chronic emotional stress which don't correlate with changes in the hypophysis-adrenals system.  相似文献   

12.
The treatment of rodents with non-competitive antagonist of the N-Methyl-d-aspartate (NMDA) receptor, MK-801 (dizocilpine), induces symptoms of psychosis, deficits in spatial memory and impairment of synaptic plasticity. Recent studies have suggested that insulin administration might attenuate the cognitive dysfunctions through the modulatory effect on the expression of NMDA receptors and on the brain insulin signaling. Intrahepatic pancreatic islet transplantation is known as an efficient tool for correcting impaired insulin signaling. We examined the capacity of syngeneic islets grafted into the cranial subarachnoid cavity to attenuate behavioral dysfunctions in rats exposed to MK-801. Animals were examined in the open field (OF) and the Morris Water Maze (MWM) tests following acute or subchronic administration of MK-801. We found well-vascularized grafted islets expressing insulin, glucagon and somatostatin onto the olfactory bulb and prefrontal cortex. Significantly higher levels of insulin were detected in the hippocampus and prefrontal cortex of transplanted animals compared to the non-transplanted rats. All animals expressed normal peripheral glucose homeostasis for two months after transplantation. OF tests revealed that rats exposed to MK-801 treatment, showed hyper-responsiveness in motility parameters and augmented center field exploration compared to intact controls and these effects were attenuated by the grafted islets. Moreover, in the MWM, the rats treated with MK-801 showed impairment of spatial memory that were partially corrected by the grafted islets. In conclusion, intracranial islet transplantation leads to the expression of islet hormones in the brain and attenuates behavioral and cognitive dysfunctions in rats exposed to MK-801 administration without altering the peripheral glucose homeostasis.  相似文献   

13.
Homocysteine (Hcy), an independent risk factor for atherosclerosis, undergoes auto-oxidation and generates reactive oxygen species, which are thought to be main cause of Hcy neurotoxicity. However, the mechanisms leading to neurodegenerative disorders are poorly understood because studies that have investigated the potential neurotoxicity of hyperhomocysteinemia in vivo are scarce. The purpose of this study was to test whether daily administration of methionine, which induces hyperhomocysteinemia, causes glial hyperactivity, and also to investigate the protective effects of melatonin on the brain tissue against oxidative stress of Hcy in rats. There was a significant development of oxidative stress as indicated by an increase in malondialdehyde + 4-hydroxyalkenals in hippocampus and cortex of hyperhomocysteinemic rats, whereas significant reduction was found in the activity of glutathione peroxidase (GSH-Px). Co-treatment with melatonin inhibited the elevation of lipid peroxidation and significantly increased GSH-Px activity in the brain regions studied. Western blot analysis revealed an increase in glial fibrillary acidic protein (GFAP) contents both in hippocampus and frontal cortex (p < 0.001) of hyperhomocysteinemic rats compared to the controls. Administration of melatonin significantly decreased GFAP contents in hippocampus and cortex (p < 0.05). S100B contents increased only in frontal cortex in hyperhomocysteinemic rats compared to the control (p < 0.01) and was inhibited by melatonin treatment (p < 0.01). The present findings show that Hcy can sensitize glial cells, a mechanism which might contribute to the pathogenesis of neurodegenerative disorders, and further suggest that melatonin can be involved in protecting against the toxicity of Hcy by inhibiting free radical generation and stabilizing glial cell activity.  相似文献   

14.
Many studies have shown that the steamed root of Rehmannia glutinosa (SRG), which is widely used in the treatment of various neurodegenerative diseases in the context of Korean traditional medicine, is effective for improving cognitive and memory impairments. The purpose of this study was to examine whether SRG extracts improved memory defects caused by administering scopolamine (SCO) into the brains of rats. The effects of SRG on the acetylcholinergic system and proinflammatory cytokines in the hippocampus were also investigated. Male rats were administered daily doses of SRG (50, 100, and 200 mg/kg, i.p.) for 14 days, 1 h before scopolamine injection (2 mg/kg, i.p.). After inducing cognitive impairment via scopolamine administration, we conducted a passive avoidance test (PAT) and the Morris water maze (MWM) test as behavioral assessments. Changes in cholinergic system reactivity were also examined by measuring the immunoreactive neurons of choline acetyltransferase (ChAT) and the reactivity of acetylcholinesterase (AchE) in the hippocampus. Daily administration of SRG improved memory impairment according to the PAT, and reduced the escape latency for finding the platform in the MWM. The administration of SRG consistently significantly alleviated memory-associated decreases in cholinergic immunoreactivity and decreased interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) mRNA expression in the hippocampus. The results demonstrated that SRG had a significant neuroprotective effect against the neuronal impairment and memory dysfunction caused by scopolamine in rats. These results suggest that SRG may be useful for improving cognitive functioning by stimulating cholinergic enzyme activities and alleviating inflammatory responses.  相似文献   

15.
Survivors from sepsis present long-term cognitive deficits and some of these alterations resemble the pathophysiological mechanisms of neurodegenerative diseases. For this reason, we analyzed beta-amyloid peptide (Aβ) and synaptophysin levels in the brain of rats that survived from sepsis and their relation to cognitive dysfunction and to acute brain inflammation. Sepsis was induced in rats by cecal ligation and puncture, and 30 days after surgery, the hippocampus and prefrontal cortex were isolated just after cognitive evaluation by the inhibitory avoidance test. The immunocontent of Aβ and synaptophysin were analyzed by Western blot analysis. Aβ increased and synaptophysin decreased in septic animals both in the hippocampus and prefrontal cortex concurrent with the presence of cognitive deficits. Prefrontal levels of synaptophysin correlated to the performance in the inhibitory avoidance. Two different treatments known to decrease brain inflammation and oxidative stress when administered at the acute phase of sepsis decreased Aβ levels both in the prefrontal cortex and hippocampus, increased synaptophysin levels only in the prefrontal cortex, and improved cognitive deficit in sepsis-survivor animals. In conclusion, we demonstrated that brain from sepsis-survivor animals presented an increase in Aβ content and a decrease in synaptophysin levels and cognitive impairment. These alterations can be prevented by treatments aimed to decrease acute brain inflammation and oxidative stress.  相似文献   

16.
Previous studies have demonstrated that melatonin administration improves spatial learning and memory and hippocampal long-term potentiation in the adult Ts65Dn (TS) mouse, a model of Down syndrome (DS). This functional benefit of melatonin was accompanied by protection from cholinergic neurodegeneration and the attenuation of several hippocampal neuromorphological alterations in TS mice. Because oxidative stress contributes to the progression of cognitive deficits and neurodegeneration in DS, this study evaluates the antioxidant effects of melatonin in the brains of TS mice. Melatonin was administered to TS and control mice from 6 to 12 months of age and its effects on the oxidative state and levels of cellular senescence were evaluated. Melatonin treatment induced antioxidant and antiaging effects in the hippocampus of adult TS mice. Although melatonin administration did not regulate the activities of the main antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione S-transferase) in the cortex or hippocampus, melatonin decreased protein and lipid oxidative damage by reducing the thiobarbituric acid reactive substances (TBARS) and protein carbonyls (PC) levels in the TS hippocampus due to its ability to act as a free radical scavenger. Consistent with this reduction in oxidative stress, melatonin also decreased hippocampal senescence in TS animals by normalizing the density of senescence-associated β-galactosidase positive cells in the hippocampus. These results showed that this treatment attenuated the oxidative damage and cellular senescence in the brain of TS mice and support the use of melatonin as a potential therapeutic agent for age-related cognitive deficits and neurodegeneration in adults with DS.  相似文献   

17.
Homocysteine (Hcy), an independent risk factor for atherosclerosis, undergoes auto-oxidation and generates reactive oxygen species, which are thought to be main cause of Hcy neurotoxicity. However, the mechanisms leading to neurodegenerative disorders are poorly understood because studies that have investigated the potential neurotoxicity of hyperhomocysteinemia in vivo are scarce. The purpose of this study was to test whether daily administration of methionine, which induces hyperhomocysteinemia, causes glial hyperactivity, and also to investigate the protective effects of melatonin on the brain tissue against oxidative stress of Hcy in rats. There was a significant development of oxidative stress as indicated by an increase in malondialdehyde + 4-hydroxyalkenals in hippocampus and cortex of hyperhomocysteine mic rats, whereas significant reduction was found in the activity of glutathione peroxidase (GSH-Px). Co-treatment with melatonin inhibited the elevation of lipid peroxidation and significantly increased GSH-Px activity in the brain regions studied. Western blot analysis revealed an increase in glial fibrillary acidic protein (GFAP) contents both in hippocampus and frontal cortex (p < 0.001) of hyperhomocysteinemic rats compared to the controls. Administration of melatonin significantly decreased GFAP contents in hippocampus and cortex (p < 0.05). S100B contents increased only in frontal cortex in hyperhomocysteinemic rats compared to the control (p < 0.01) and was inhibited by melatonin treatment (p < 0.01). The present findings show that Hcy can sensitize glial cells, a mechanism which might contribute to the pathogenesis of neurodegenerative disorders, and further suggest that melatonin can be involved in protecting against the toxicity of Hcy by inhibiting free radical generation and stabilizing glial cell activity.  相似文献   

18.
Ménard C  Quirion R 《PloS one》2012,7(1):e28666
Normal aging is associated with impairments in cognition, especially learning and memory. However, major individual differences are known to exist. Using the classical Morris Water Maze (MWM) task, we discriminated a population of 24-months old Long Evans aged rats in two groups--memory-impaired (AI) and memory-unimpaired (AU) in comparison with 6-months old adult animals. AI rats presented deficits in learning, reverse memory and retention. At the molecular level, an increase in metabotropic glutamate receptors 5 (mGluR5) was observed in post-synaptic densities (PSD) in the hippocampus of AU rats after training. Scaffolding Homer 1b/c proteins binding to group 1 mGluR facilitate coupling with its signaling effectors while Homer 1a reduces it. Both Homer 1a and 1b/c levels were up-regulated in the hippocampus PSD of AU animals following MWM task. Using immunohistochemistry we further demonstrated that mGluR5 as well as Homer 1b/c stainings were enhanced in the CA1 hippocampus sub-field of AU animals. In fact mGluR5 and Homer 1 isoforms were more abundant and co-localized in the hippocampal dendrites in AU rats. However, the ratio of Homer 1a/Homer 1b/c bound to mGluR5 in the PSD was four times lower for AU animals compared to AI rats. Consequently, AU animals presented higher PKCγ, ERK, p70S6K, mTOR and CREB activation. Finally the expression of immediate early gene Arc/Arg3.1 was shown to be higher in AU rats in accordance with its role in spatial memory consolidation. On the basis of these results, a model of successful cognitive aging with a critical role for mGluR5, Homer 1 proteins and downstream signalling pathways is proposed here.  相似文献   

19.
Lycopene attenuates diabetes-associated cognitive decline in rats   总被引:2,自引:0,他引:2  
Kuhad A  Sethi R  Chopra K 《Life sciences》2008,83(3-4):128-134
Diabetes-induced learning and memory impairment, characterized by impaired cognitive functions and neurochemical and structural abnormalities, involve direct neuronal damage caused by intracellular glucose. The present study was designed to investigate the effect of lycopene, a potent anti-oxidant and anti-inflammatory molecule, on cognitive functions, oxidative stress and inflammation in streptozotocin (STZ)-induced diabetic rats. Cognitive functions were investigated using a spatial version of the Morris water maze test. Acetylcholinesterase activity, a marker of cholinergic dysfunction, was increased by 1.8 fold in the cerebral cortex of diabetic rats. There was about 2 fold and 2.2 fold rise in thiobarbituric acid-reactive substance levels in cerebral cortex and hippocampus of diabetic rats, respectively. Non-protein thiol levels and enzymatic activities of superoxide dismutase and catalase were decreased in both cerebral cortex and hippocampal regions of diabetic rat brain. Total nitric oxide levels in cerebral cortex and hippocampus was increased by 2.4 fold and 2 fold respectively. Serum tumor necrosis factor-alpha, an inflammatory marker, was found to increase by 8 fold in diabetic rats. Chronic treatment with lycopene (1, 2 and 4 mg/kg; p.o.) significantly and dose dependently attenuated cognitive deficit, increased acetylcholinesterase activity, oxidative-nitrosative stress and inflammation in diabetic rats. The results emphasize the involvement of oxidative-nitrosative stress and peripheral inflammation in the development of cognitive impairment in diabetic animals and point towards the therapeutic potential of lycopene in diabetes-induced learning and memory impairment.  相似文献   

20.
目的:探究缺血性脑损伤后,黄芪多糖(AG)对海马CA1区神经元重塑中粘附分子(NCAM)以及c-fos表达的影响。方法:取Wistar雄性大鼠100只,随机分成假手术组(SOG)、模型组(MG-1d,3d,7d),低剂量黄芪多糖治疗组(L-AGTG-1d,3d,7d),高剂量黄芪多糖治疗组(H-AGTG-1d,3d,7d),每组10只。所有MG和AGTG组颈部切开阻断右侧大脑中动脉,造成缺血性脑损伤后,AGTG组腹腔注射AG(5 mg/kg和15 mg/kg)。于1 d,3 d和7 d分别脑血流再灌注,随即评分神经功能缺损情况后取材,测算神经元凋亡数,免疫组织化学法和RT-PCR法半定量分析检测海马CA1区神经元NCAM和c-fos的表达。结果:L-AGTG和H-AGTG的神经功能缺损评分和海马神经元凋亡数显著低于MG(P<0.05或P<0.01),海马CA1区NCAM和c-fos的表达显著高于MG(P<0.05或P<0.01)。结论:黄芪多糖改善缺血性脑损伤大鼠的神经功能,可能与促进海马NCAM和c-fos表达,而阻止或逆转海马神经元凋亡有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号