首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activation of heterodimeric integrin adhesion receptors from low to high affinity states occurs in response to intracellular signals that act on the short cytoplasmic tails of integrin β subunits. Binding of the talin FERM (four-point-one, ezrin, radixin, moesin) domain to the integrin β tail provides one key activation signal, but recent data indicate that the kindlin family of FERM domain proteins also play a central role. Kindlins directly bind integrin β subunit cytoplasmic domains at a site distinct from the talin-binding site, and target to focal adhesions in adherent cells. However, the mechanisms by which kindlins impact integrin activation remain largely unknown. A notable feature of kindlins is their similarity to the integrin-binding and activating talin FERM domain. Drawing on this similarity, here we report the identification of an unstructured insert in the kindlin F1 FERM domain, and provide evidence that a highly conserved polylysine motif in this loop supports binding to negatively charged phospholipid head groups. We further show that the F1 loop and its membrane-binding motif are required for kindlin-1 targeting to focal adhesions, and for the cooperation between kindlin-1 and -2 and the talin head in αIIbβ3 integrin activation, but not for kindlin binding to integrin β tails. These studies highlight the structural and functional similarities between kindlins and the talin head and indicate that as for talin, FERM domain interactions with acidic membrane phospholipids as well β-integrin tails contribute to the ability of kindlins to activate integrins.  相似文献   

2.
Integrins mediate cell-cell and cell-extracellular matrix attachments. Integrins are signaling receptors because their cytoplasmic tails are docking sites for cytoskeletal and signaling proteins. Kindlins are a family of band 4.1-ezrin-radixin-moesin-containing intracellular proteins. Apart from regulating integrin ligand-binding affinity, recent evidence suggests that kindlins are involved in integrin outside-in signaling. Kindlin-3 is expressed in platelets, hematopoietic cells and endothelial cells. In humans, loss of kindlin-3 expression accounts for the rare autosomal disease leukocyte adhesion deficiency (LAD) type III that is characterized by bleeding disorders and defective recruitment of leukocytes into sites of infection. Studies have shown that the loss of kindlin-3 expression leads to poor ligand-binding properties of β1, β2 and β3 integrin subfamilies. The leukocyte-restricted β2 integrin subfamily comprises four members, namely αLβ2, αMβ2, αXβ2 and αDβ2. Integrin αMβ2 mediates leukocyte adhesion, phagocytosis, degranulation and it is involved in the maintenance of immune tolerance. Here we provide further evidence that kindlin-3 is required for integrin αMβ2-mediated cell adhesion and spreading using transfected K562 cells that expressed endogenous kindlin-3 but not β2 integrins. K562 stable cell line expressing si-RNA targeting kindlin-3, but not control-si-RNA, and transfected with constitutively activated integrin αMβ2N329S adhered and spread poorly on iC3b. We also show that kindlin-3 is required for the integrin αMβ2-Syk-Vav1 signaling axis that regulates Rac1 and Cdc42 activities. These findings reinforce a role for kindlin-3 in integrin outside-in signaling.  相似文献   

3.
Integrins are heterodimeric type I membrane cell adhesion molecules that are involved in many biological processes. Integrins are bidirectional signal transducers because their cytoplasmic tails are docking sites for cytoskeletal and signaling molecules. Kindlins are cytoplasmic molecules that mediate inside-out signaling and activation of the integrins. The three kindlin paralogs in humans are kindlin-1, -2, and -3. Each of these contains a 4.1-ezrin-radixin-moesin (FERM) domain and a pleckstrin homology domain. Kindlin-3 is expressed in platelets, hematopoietic cells, and endothelial cells. Here we show that kindlin-3 is involved in integrin αLβ2 outside-in signaling. It also promotes micro-clustering of integrin αLβ2. We provide evidence that kindlin-3 interacts with the receptor for activated-C kinase 1 (RACK1), a scaffold protein that folds into a seven-blade propeller. This interaction involves the pleckstrin homology domain of kindlin-3 and blades 5-7 of RACK1. Using the SKW3 human T lymphoma cells, we show that integrin αLβ2 engagement by its ligand ICAM-1 promotes the association of kindlin-3 with RACK1. We also show that kindlin-3 co-localizes with RACK1 in polarized SKW3 cells and human T lymphoblasts. Our findings suggest that kindlin-3 plays an important role in integrin αLβ2 outside-in signaling.  相似文献   

4.
Integrin-mediated cell-extracellular matrix (ECM) adhesion is critical for control of intracellular signaling; however, the mechanisms underlying this “outside-in” signaling are incompletely understood. Here we show that depletion of kindlin-2 impairs integrin outside-in signaling. Kindlin-2 is tyrosine-phosphorylated upon cell-ECM adhesion. Furthermore, kindlin-2 binds Src in a cell-ECM adhesion-regulatable fashion. At the molecular level, the kindlin-2·Src interaction is mediated by the kindlin-2 F0 and the Src SH2 and SH3 domains. Src activation increases kindlin-2 tyrosine phosphorylation and the kindlin-2·Src interaction. Conversely, inhibition of Src reduces kindlin-2 tyrosine phosphorylation and diminishes the kindlin-2·Src interaction. Finally, disruption of the kindlin-2·Src interaction, unlike depletion of kindlin-2, impairs neither cell-ECM adhesion nor cell-ECM adhesion-induced focal adhesion kinase Tyr-397 phosphorylation. However, it markedly inhibits cell-ECM adhesion-induced paxillin tyrosine phosphorylation, cell migration, and proliferation. These results suggest that kindlin-2 tyrosine phosphorylation and interaction with Src serve as a regulatable switch downstream of focal adhesion kinase in the integrin outside-in signaling circuit, relaying signals from cell-ECM adhesion to paxillin that control cell migration and proliferation.  相似文献   

5.
Kindlin-2 belongs to an emerging class of regulators for heterodimeric (α/β) integrin adhesion receptors. By binding to integrin β cytoplasmic tail via its C-terminal FERM-like domain, kindlin-2 promotes integrin activation. Intriguingly, this activation process depends on the N terminus of kindlin-2 (K2-N) that precedes the FERM domain. The molecular function of K2-N is unclear. We present the solution structure of K2-N, which displays a ubiquitin fold similar to that observed in kindlin-1. Using chemical shift mapping and mutagenesis, we found that K2-N contains a conserved positively charged surface that binds to membrane enriched with negatively charged phosphatidylinositol-(4,5)-bisphosphate. We show that while wild-type kindlin-2 is capable of promoting integrin activation, such ability is significantly reduced for its membrane-binding defective mutant. These data suggest a membrane-binding function of the ubiquitin-like domain of kindlin-2, which is likely common for all kindlins to promote their localization to the plasma membrane and control integrin activation.  相似文献   

6.
The kindlins represent a class of focal adhesion proteins implicated in integrin activation. They comprise three evolutionarily conserved members, kindlin-1, kindlin-2 and kindlin-3, that share considerable sequence and structural similarities. The kindlins have a bipartite FERM (four point one protein, ezrin, radixin, moesin) domain interrupted by a pleckstrin homology domain and can bind directly to various classes of integrins as well as participate in inside–out integrin activation. They are encoded by three different genes, namely KIND1 (FERMT1; chromosome 20p12.3), KIND2 (FERMT2; chromosome 14q22.1) and KIND3 (FERMT3; chromosome 11q13.1). Loss-of-function mutations in KIND1 and KIND3 cause Kindler syndrome and leukocyte adhesion deficiency-III syndrome, respectively, although no human disease has yet been associated with KIND2 gene pathology. In this review, we focus on the cellular functions of the kindlins and their clinical relevance.  相似文献   

7.
8.
The integrin family of heterodimeric cell adhesion molecules exists in both low- and high-affinity states, and integrin activation requires binding of the talin FERM (four-point-one, ezrin, radixin, moesin) domain to membrane-proximal sequences in the β-integrin cytoplasmic domain. However, it has recently become apparent that the kindlin family of FERM domain proteins is also essential for talin-induced integrin activation. FERM domains are typically composed of F1, F2, and F3 domains, but the talin FERM domain is atypical in that it contains a large insert in F1 and is preceded by a previously unrecognized domain, F0. Initial sequence alignments showed that the kindlin FERM domain was most similar to the talin FERM domain, but the homology appeared to be restricted to the F2 and F3 domains. Based on a detailed characterization of the talin FERM domain, we have reinvestigated the sequence relationship with kindlins and now show that kindlins do indeed contain the same domain structure as the talin FERM domain. However, the kindlin F1 domain contains an even larger insert than that in talin F1 that disrupts the sequence alignment. The insert, which varies in length between different kindlins, is not conserved and, as in talin, is largely unstructured. We have determined the structure of the kindlin-1 F0 domain by NMR, which shows that it adopts the same ubiquitin-like fold as the talin F0 and F1 domains. Comparison of the kindlin-1 and talin F0 domains identifies the probable interface with the kindlin-1 F1 domain. Potential sites of interaction of kindlin F0 with other proteins are discussed, including sites that differ between kindlin-1, kindlin-2, and kindlin-3. We also demonstrate that F0 is required for the ability of kindlin-1 to support talin-induced αIIbβ3 integrin activation and for the localization of kindlin-1 to focal adhesions.  相似文献   

9.
Talins and kindlins bind to the integrin β3 cytoplasmic tail and both are required for effective activation of integrin αIIbβ3 and resulting high-affinity ligand binding in platelets. However, binding of the talin head domain alone to β3 is sufficient to activate purified integrin αIIbβ3 in vitro. Since talin is localized to the cytoplasm of unstimulated platelets, its re-localization to the plasma membrane and to the integrin is required for activation. Here we explored the mechanism whereby kindlins function as integrin co-activators. To test whether kindlins regulate talin recruitment to plasma membranes and to αIIbβ3, full-length talin and kindlin recruitment to β3 was studied using a reconstructed CHO cell model system that recapitulates agonist-induced αIIbβ3 activation. Over-expression of kindlin-2, the endogenous kindlin isoform in CHO cells, promoted PAR1-mediated and talin-dependent ligand binding. In contrast, shRNA knockdown of kindlin-2 inhibited ligand binding. However, depletion of kindlin-2 by shRNA did not affect talin recruitment to the plasma membrane, as assessed by sub-cellular fractionation, and neither over-expression of kindlins nor depletion of kindlin-2 affected talin interaction with αIIbβ3 in living cells, as monitored by bimolecular fluorescence complementation. Furthermore, talin failed to promote kindlin-2 association with αIIbβ3 in CHO cells. In addition, purified talin and kindlin-3, the kindlin isoform expressed in platelets, failed to promote each other's binding to the β3 cytoplasmic tail in vitro. Thus, kindlins do not promote initial talin recruitment to αIIbβ3, suggesting that they co-activate integrin through a mechanism independent of recruitment.  相似文献   

10.
11.
Integrin activation, the rapid conversion of integrin adhesion receptors from low to high affinity, occurs in response to intracellular signals that act on the short cytoplasmic tails of integrin β subunits. Talin binding to integrin β tails provides one key activation signal, but additional factors are likely to cooperate with talin to regulate integrin activation. The integrin β tail-binding proteins kindlin-2 and kindlin-3 were recently identified as integrin co-activators. Here we report an analysis of kindlin-1 and kindlin-2 interactions with β1 and β3 integrin tails and describe the effect of kindlin expression on integrin activation. We demonstrate a direct interaction of kindlin-1 and -2 with recombinant integrin β tails in pulldown binding assays. Our mutational analysis shows that the second conserved NXXY motif (Tyr795), a preceding threonine-containing region (Thr788 and Thr789) of the integrin β1A tail, and a conserved tryptophan in the F3 subdomain of the kindlin FERM domain (kindlin-1 Trp612 and kindlin-2 Trp615) are required for direct kindlin-integrin interactions. Similar interactions were observed for integrin β3 tails. Using fluorescence-activated cell sorting we further show that transient expression of kindlin-1 or -2 in Chinese hamster ovary cells inhibits the activation of endogenous α5β1 or stably expressed αIIbβ3 integrins. This inhibition is not dependent on direct kindlin-integrin interactions because mutant kindlins exhibiting impaired integrin binding activity effectively inhibit integrin activation. Consistent with previous reports, we find that when co-expressed with the talin head, kindlin-1 or -2 can activate αIIbβ3. This effect is dependent on an intact integrin-binding site in kindlin. Notably however, even when co-expressed with activating levels of talin head, neither kindlin-1 or -2 can cooperate with talin to activate β1 integrins; instead they strongly inhibit talin-mediated activation. We suggest that kindlins are adaptor proteins that regulate integrin activation, that kindlin expression levels determine their effects, and that kindlins may exert integrin-specific effects.Integrins are a family of αβ heterodimeric transmembrane receptors that mediate cell adhesion to extracellular matrix, cell surface, or soluble protein ligands and modulate a variety of intracellular signaling cascades. A key feature of integrins is their ability to dynamically regulate their affinity for extracellular ligands. In a tightly regulated process generally termed integrin activation, intracellular signals that impinge upon the β subunit cytoplasmic tail induce conformational rearrangements in the integrin extracellular domains, increasing the binding affinity for extracellular ligands (1-3). Ligand-bound integrins then recruit additional signaling, adaptor, and cytoskeletal proteins to the integrin cytoplasmic domains, providing mechanical connections to the actin cytoskeleton and a link to a variety of signal transduction pathways (2-8).Recent years have seen significant advances in our understanding of integrin activation. Notable among these is the identification of the actin- and integrin-binding protein talin as a key integrin activator (1, 9). The 50-kDa talin head contains the principal integrin-binding site, and expression of the talin head is sufficient to activate β1 and β3 integrins (10, 11). The talin head contains a FERM (four point one ezrin radixin moesin) domain. FERM domains consist of trefoil arrangement of three subdomains (F1, F2, and F3). The phosphotyrosine-binding domain-like F3 subdomain of the talin FERM directly binds a conserved NP(I/L)Y motif in integrin β tails, and this interaction is necessary for integrin activation in vitro and in vivo (10, 12-19). However, although abundant evidence supports the importance of talin binding to integrin β tails during integrin activation, differences in sensitivity of integrins to talin activation and submaximal activation by overexpressed talin suggested that other activating factors may cooperate with talin (10, 20). In an attempt to identify and characterize potential co-activators, we investigated the kindlin family of FERM domain-containing proteins.Kindlin family proteins (21) were first characterized in nematodes where the sole Caenorhabditis elegans kindlin, UNC-112, was identified in an embryonic screen for defective motility and shown to be essential for the assembly of proper cell-matrix adhesion structures, where it normally co-localized with β integrin (22-24). UNC-112 is conserved across many species, because the nematode, fly, and human homologs are ∼60% similar (∼41% identical) over their entire length (24). Humans express three known homologs of UNC-112: kindlin-1 (Kindlerin, URP1, and FERMT1), kindlin-2 (Mig2 and mig-2), and kindlin-3 (Mig2B and URP2) (25-27). Kindlin-1 and -2 are most closely related, sharing 60% identity and 74% similarity, whereas kindlin-3 shares 53% identity and 69% similarity to kindlin-1 and 49% identity and 67% similarity to kindlin-2 (28). The kindlin proteins all contain a predicted Pleckstrin homology domain and a FERM domain that is most closely related to the talin FERM domain, particularly within the integrin-binding F3 subdomain (29). Based on this sequence similarity we proposed that kindlin FERM domains may directly bind integrin β tails, and we previously showed that kindlin-1 could be pulled down from cell lysates using recombinant integrin β1 and β3 tails and that kindlin-1 co-localized with integrins in focal adhesions (29). A similar localization was reported for kindlin-2 (26, 30), and recent reports provided clear evidence implicating kindlin-2 and kindlin-3 in regulation of integrin activation (31-33). Here, we have used integrin pulldown assays to demonstrate direct binding of full-length kindlin-1 to the cytoplasmic tails of β1A and β3 integrins and to identify key binding residues within the integrin tails and the kindlin F3 subdomain. We confirm that these interactions are important for recruiting kindlin-1 to focal adhesions and show that, contrary to expectations, overexpressed kindlin-1 or -2 inhibit β1 and β3 integrin activation. Overexpressed kindlin-1 or -2 can, however, cooperate with expressed talin head to activate β3 but not β1 integrins. We therefore provide the first data suggesting that kindlin-1 and -2 effects on integrin activation may show β subunit specificity.  相似文献   

12.
Kindlins are focal adhesion proteins that regulate integrin signaling. Although integrin activation is critical for bone development, little is known about the expression and role of kindlins in osteoblasts. We therefore investigated the function of kindlin-2 in osteoblast adhesion, spreading, and proliferation using small interfering RNA. In MC3T3-E1 cells, only kindlin-2 is highly expressed and localizes to focal adhesion. We found that kindlin-2 was involved in integrin activation in MC3T3-E1 cells and that kindlin-2 knockdown osteoblasts resulted in diminished cell adhesion, spreading, and proliferation. In this process, kindlin-2 knockdown impaired transient Rac1 activation, influencing Akt activation and AP-1 activity. In agreement with these data, pharmacological inhibition of Rac1 reduced MC3T3-E1 cell adhesion, spreading, and proliferation. Overall, these findings demonstrated that kindlin-2 governs Rac1 activation, which controls osteoblast function. Our findings provide the first insights concerning the function of kindlin-2 in osteoblast, and suggest that kindlin-2 is a critical mediator for osteoblast physiology.  相似文献   

13.
Cell surface integrin receptors mediate cell adhesion, migration and cellular signaling in all nucleated cells. They are activated by binding to extracellular ligands or by intracellular proteins, such as kindlins that engage with their cytoplasmic tails. Cells in the periodontal tissues express several integrins with overlapping ligand-binding capabilities. A distinct phenotype in the periodontium has only been described for knockouts or mutations of three integrin subunits, α11, β6 and β2. Integrin α11β1 appears to have some regulatory function in the periodontal ligament of continuously erupting incisors in mice. Integrin αvβ6 is expressed in the junctional epithelium (JE) of the gingiva. Animals deficient in this receptor develop classical signs of periodontal disease, including inflammation, apical migration of the JE and bone loss, suggesting that it plays a role in the regulation of periodontal inflmmation, likely through activation of transforming growth factor-β1. Lack of integrin activation in the JE is also associated with periodontitis. Patients with kindlin-1 mutations have severe early-onset periodontal disease. Finally, patients with mutations in the leukocyte-specific β2 integrin subunit have severe periodontal problems due to lack of transiting neutrophils in the periodontal tissues.  相似文献   

14.
Integrins are transmembrane adhesion receptors that bind extracellular matrix (ECM) proteins and signal bidirectionally to regulate cell adhesion and migration. In many cell types, integrins cluster at cell-ECM contacts to create the foundation for adhesion complexes that transfer force between the cell and the ECM. Even though the temporal and spatial regulation of these integrin clusters is essential for cell migration, how cells regulate their formation is currently unknown. It has been shown that integrin cluster formation is independent of actin stress fiber formation, but requires active (high-affinity) integrins, phosphoinositol-4,5-bisphosphate (PIP2), talin, and immobile ECM ligand. Based on these observations, we propose a minimal model for initial formation of integrin clusters, facilitated by localized activation and binding of integrins to ECM ligands as a result of biochemical feedback between integrin binding and integrin activation. By employing a diffusion-reaction framework for modeling these reactions, we show how spatial organization of bound integrins into clusters may be achieved by a local source of active integrins, namely protein complexes formed on the cytoplasmic tails of bound integrins. Further, we show how such a mechanism can turn small local increases in the concentration of active talin or active integrin into integrin clusters via positive feedback. Our results suggest that the formation of integrin clusters by the proposed mechanism depends on the relationships between production and diffusion of integrin-activating species, and that changes to the relative rates of these processes may affect the resulting properties of integrin clusters.  相似文献   

15.
Integrin activation is essential for dynamically linking the extracellular environment and cytoskeletal/signaling networks. Activation is controlled by integrins' short cytoplasmic tails (CTs). It is widely accepted that the head domain of talin (talin-H) can mediate integrin activation by binding to two sites in integrin beta's CT; in integrin beta(3) this is an NPLY(747) motif and the membrane-proximal region. Here, we show that the C-terminal region of integrin beta(3) CT, composed of a conserved TS(752)T region and NITY(759) motif, supports integrin activation by binding to a cytosolic binding partner, kindlin-2, a widely distributed PTB domain protein. Co-transfection of kindlin-2 with talin-H results in a synergistic enhancement of integrin alpha(IIb)beta(3) activation. Furthermore, siRNA knockdown of endogenous kindlin-2 impairs talin-induced alpha(IIb)beta(3) activation in transfected CHO cells and blunts alpha(v)beta(3)-mediated adhesion and migration of endothelial cells. Our results thus identify kindlin-2 as a novel regulator of integrin activation; it functions as a coactivator.  相似文献   

16.
Mechanical stresses directly regulate the function of several proteins of the integrin-mediated focal adhesion complex as they experience intra- and extracellular forces. Kindlin is a largely overlooked member of the focal adhesion complex whose roles in cellular mechanotransduction are only recently being identified. Recent crystallographic experiments have revealed that kindlins can form dimers that bind simultaneously to two integrins, providing a mechanistic explanation of how kindlins may promote integrin activation and clustering. In this study, using the newly identified molecular structure, we modeled the response of the kindlin2 dimer in complex with integrin β1 to mechanical cytoskeletal forces on integrins. Using molecular dynamics simulations, we show that forces on integrins are directly transmitted to the kindlin2 dimerization site, resulting in a shift in an R577-S550/E553 interaction network at this site. Under force, R577 on one protomer switches from interacting with S550 to forming new hydrogen bonds with E553 on the neighboring protomer, resulting in the strengthening of the kindlin2 dimer in complex with integrin β1. This force-induced strengthening is similar to the catch-bond mechanisms that have previously been observed in other adhesion molecules. Based on our results, we propose that the kindlin2 dimer is mechanosensitive and can strengthen integrin-mediated focal adhesions under force by shifting the interactions at its dimerization sites.  相似文献   

17.
The contributions of integrins to cellular responses depend upon their activation, which is regulated by binding of proteins to their cytoplasmic tails. Kindlins are integrin cytoplasmic tail binding partners and are essential for optimal integrin activation, and kindlin-3 fulfills this role in hematopoietic cells. Here, we used human platelets and human erythroleukemia (HEL) cells, which express integrin αIIbβ3, to investigate whether phosphorylation of kindlin-3 regulates integrin activation. When HEL cells were stimulated with thrombopoietin or phorbol 12-myristate 13-acetate (PMA), αIIbβ3 became activated as evidenced by binding of an activation-specific monoclonal antibody and soluble fibrinogen, adherence and spreading on fibrinogen, colocalization of β3 integrin and kindlin-3 in focal adhesions, and enhanced β3 integrin-kindlin-3 association in immunoprecipitates. Kindlin-3 knockdown impaired adhesion and spreading on fibrinogen. Stimulation of HEL cells with agonists significantly increased kindlin-3 phosphorylation as detected by mass spectrometric sequencing. Thr482 or Ser484 was identified as a phosphorylation site, which resides in a sequence not conserved in kindlin-1 or kindlin-2. These same residues were phosphorylated in kindlin-3 when platelets were stimulated with thrombin. When expressed in HEL cells, T482A/S484A kindlin-3 decreased soluble ligand binding and cell spreading on fibrinogen compared with wild-type kindlin-3. A membrane-permeable peptide containing residues 476–485 of kindlin-3 was introduced into HEL cells and platelets; adhesion and spreading of both cell types were blunted compared with a scrambled control peptide. These data identify a role of kindlin-3 phosphorylation in integrin β3 activation and provide a basis for functional differences between kindlin-3 and the two other kindlin paralogs.  相似文献   

18.
This study establishes that the physical state of the extracellular matrix can regulate integrin-mediated cytoskeletal assembly and tyrosine phosphorylation to generate two distinct types of cell-matrix adhesions. In primary fibroblasts, alpha(5)beta(1) integrin associates mainly with fibronectin fibrils and forms adhesions structurally distinct from focal contacts, independent of actomyosin-mediated cell contractility. These "fibrillar adhesions" are enriched in tensin, but contain low levels of the typical focal contact components paxillin, vinculin, and tyrosine-phosphorylated proteins. However, when the fibronectin is covalently linked to the substrate, alpha(5)beta(1) integrin forms highly tyrosine-phosphorylated, "classical" focal contacts containing high levels of paxillin and vinculin. These experiments indicate that the physical state of the matrix, not just its molecular composition, is a critical factor in defining cytoskeletal organization and phosphorylation at adhesion sites. We propose that molecular organization of adhesion sites is controlled by at least two mechanisms: 1) specific integrins associate with their ligands in transmembrane complexes with appropriate cytoplasmic anchor proteins (e.g., fibronectin-alpha(5)beta(1) integrin-tensin complexes), and 2) physical properties (e.g., rigidity) of the extracellular matrix regulate local tension at adhesion sites and activate local tyrosine phosphorylation, recruiting a variety of plaque molecules to these sites. These mechanisms generate structurally and functionally distinct types of matrix adhesions in fibroblasts.  相似文献   

19.
《The Journal of cell biology》1995,130(5):1181-1187
The integrins have recently been implicated in signal transduction. A likely mediator of integrin signaling is focal adhesion kinase (pp125FAK or FAK), a structurally distinct protein tyrosine kinase that becomes enzymatically activated upon engagement of integrins with their ligands. A second candidate signaling molecule is paxillin, a focal adhesion associated, cytoskeletal protein that coordinately becomes phosphorylated on tyrosine upon activation of pp125FAK. Paxillin physically complexes with two protein tyrosine kinases, pp60src and Csk (COOH-terminal src kinase), and the oncoprotein p47gag-crk, each of which could function as part of a paxillin signaling complex. Using an in vitro assay we have established that the cytoplasmic domain of the beta 1 integrin can bind to paxillin and pp125FAK from chicken embryo cell lysates. The NH2-terminal, noncatalytic domain of pp125FAK can bind directly to the cytoplasmic tail of beta 1 and recognizes integrin sequences distinct from those involved in binding to alpha-actinin. Paxillin binding is independent of pp125FAK binding despite the fact that both bind to the same region of beta 1. These results demonstrate that the cytoplasmic domain of the beta subunits of integrins contain binding sites for both signaling molecules and structural proteins suggesting that integrins can coordinate the generation of cytoplasmic signals in addition to their role in anchoring components of the cytoskeleton.  相似文献   

20.
Cell-extracellular matrix (cell-ECM) interactions mediated by integrin receptors are essential for providing positional and environmental information necessary for many cell functions, such as proliferation, differentiation and survival. In vitro studies on cell adhesion to randomly adsorbed molecules on substrates have been limited to sub-micrometer patches, thus preventing the detailed study of structural arrangement of integrins and their ligands. In this article, we illustrate the role of the distance between integrin ligands, namely the RGD (arginine-glycine-aspartate) sequence present in ECM proteins, in the control of cell adhesion. By using substrates, which carry cyclic RGD peptides arranged in highly defined nanopatterns, we investigated the dynamics of cell spreading and the molecular composition of adhesion sites in relation to a fixed spacing between the peptides on the surface. Our novel approach for in vitro studies on cell adhesion indicates that not only the composition, but also the spatial organization of the extracellular environment is important in regulating cell-ECM interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号