首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   8篇
  2023年   1篇
  2021年   1篇
  2016年   2篇
  2015年   4篇
  2014年   5篇
  2013年   2篇
  2012年   3篇
  2011年   5篇
  2010年   4篇
  2009年   5篇
  2008年   4篇
  2007年   3篇
  2006年   3篇
  2005年   3篇
  2004年   4篇
  2003年   1篇
  2002年   3篇
  2001年   3篇
  2000年   5篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1992年   1篇
  1991年   7篇
  1990年   5篇
  1989年   4篇
  1988年   5篇
  1987年   3篇
  1986年   5篇
  1985年   2篇
  1984年   3篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   1篇
  1977年   3篇
  1975年   2篇
  1971年   1篇
排序方式: 共有116条查询结果,搜索用时 15 毫秒
1.
Focal adhesions (FAs) are integrin‐containing protein complexes regulated by a network of hundreds of protein–protein interactions. They are formed in a spatiotemporal manner upon the activation of integrin transmembrane receptors, which is crucial to trigger cell adhesion and many other cellular processes including cell migration, spreading and proliferation. Despite decades of studies, a detailed molecular level understanding on how FAs are organized and function is lacking due to their highly complex and dynamic nature. However, advances have been made on studying key integrin activators, talin and kindlin, and their associated proteins, which are major components of nascent FAs critical for initiating the assembly of mature FAs. This review will discuss the structural and functional findings of talin and kindlin and their immediate interaction network, which will shed light upon the architecture of nascent FAs and how they act as seeds for FA assembly to dynamically regulate diverse adhesion‐dependent physiological and pathological responses.  相似文献   
2.
We have hypothesized that ligand-induced binding sites (LIBS), i.e. sites expressed on cell surface receptors only after ligand binding causes the receptor to change shape, mediate subsequent biological events. To test this hypothesis, we have raised monoclonal antibodies that preferentially react with an integrin (platelet glycoprotein (GP) IIb-IIIa) after it bind Arg-Gly-Asp-containing ligands. The 13 anti-LIBS antibodies obtained define at least three distinct GPIIb-IIIa epitopes; one of these epitopes is also expressed following occupancy of another integrin, the vitronectin receptor. Certain of these LIBSs appear to mediate functions, since the antibodies that define them inhibit GPIIb-IIIa-mediated fibrin clot contraction or platelet adhesion to collagen. Nevertheless, none of the anti-LIBS antibodies inhibit binding of the primary ligand, fibrinogen. These data indicate that LIBS may mediate distinct consequences of receptor occupancy.  相似文献   
3.
The contributions of integrins to cellular responses depend upon their activation, which is regulated by binding of proteins to their cytoplasmic tails. Kindlins are integrin cytoplasmic tail binding partners and are essential for optimal integrin activation, and kindlin-3 fulfills this role in hematopoietic cells. Here, we used human platelets and human erythroleukemia (HEL) cells, which express integrin αIIbβ3, to investigate whether phosphorylation of kindlin-3 regulates integrin activation. When HEL cells were stimulated with thrombopoietin or phorbol 12-myristate 13-acetate (PMA), αIIbβ3 became activated as evidenced by binding of an activation-specific monoclonal antibody and soluble fibrinogen, adherence and spreading on fibrinogen, colocalization of β3 integrin and kindlin-3 in focal adhesions, and enhanced β3 integrin-kindlin-3 association in immunoprecipitates. Kindlin-3 knockdown impaired adhesion and spreading on fibrinogen. Stimulation of HEL cells with agonists significantly increased kindlin-3 phosphorylation as detected by mass spectrometric sequencing. Thr482 or Ser484 was identified as a phosphorylation site, which resides in a sequence not conserved in kindlin-1 or kindlin-2. These same residues were phosphorylated in kindlin-3 when platelets were stimulated with thrombin. When expressed in HEL cells, T482A/S484A kindlin-3 decreased soluble ligand binding and cell spreading on fibrinogen compared with wild-type kindlin-3. A membrane-permeable peptide containing residues 476–485 of kindlin-3 was introduced into HEL cells and platelets; adhesion and spreading of both cell types were blunted compared with a scrambled control peptide. These data identify a role of kindlin-3 phosphorylation in integrin β3 activation and provide a basis for functional differences between kindlin-3 and the two other kindlin paralogs.  相似文献   
4.
The WAVE3 cytoskeletal protein promotes cancer invasion and metastasis. We have shown that the WAVE3-mediated activation of cancer cell invasion is due, in part, to its regulation of expression and activity of key metalloproteinases (MMPs), including MMP9, which is centrally involved in invadopodia-mediated degradation of the extracellular matrix (ECM). MMP9 is also a major NFκB target gene, suggesting a potential linkage of WAVE3 to this pathway, which we sought to investigate. Mechanistically, we found that loss of WAVE3 in cancer cells leads to inhibition of NFκB signaling as a result of a decrease in the nuclear translocation of NFκB and therefore loss of activation of NFκB target genes. Conversely, overexpression of WAVE3 was sufficient to enhance NFκB activity. Both pharmacologic and genetic manipulations of NFκB effector molecules show that the biological consequence of loss of WAVE3 function in the NFκB pathway result the inhibition of invadopodia formation and ECM degradation by cancer cells, and these changes are a consequence of decreased MMP9 expression and activity. Loss of WAVE3 also sensitized cancer cells to apoptosis and cell death driven by TNFα, through the inhibition of the AKT pro-survival pathway. Our results identify a novel function of WAVE3 in NFκB signaling, where its activity is essential for the regulation of invadopodia and ECM degradation. Therefore, targeted therapeutic inhibition of WAVE3 will sensitize cancer cells to apoptosis and cell death, and suppress cancer invasion and metastasis.  相似文献   
5.
Salivary gland duct ligation is an alternative to gland excision for treating sialorrhea or reducing salivary gland size prior to tumor excision. Duct ligation also is used as an approach to study salivary gland aging, regeneration, radiotherapy, sialolithiasis and sialadenitis. Reports conflict about the contribution of each salivary cell population to gland size reduction after ductal ligation. Certain cell populations, especially acini, reportedly undergo atrophy, apoptosis and proliferation during reduction of gland size. Acini also have been reported to de-differentiate into ducts. These contradictory results have been attributed to different animal or salivary gland models, or to methods of ligation. We report here a bilateral double ligature technique for rabbit parotid glands with histologic observations at 1, 7, 14, 30, 60 days after ligation. A large battery of special stains and immunohistochemical procedures was employed to define the cell populations. Four stages with overlapping features were observed that led to progressive shutdown of gland activities: 1) marked atrophy of the acinar cells occurred by 14 days, 2) response to and removal of the secretory material trapped in the acinar and ductal lumens mainly between 30 and 60 days, 3) reduction in the number of parenchymal (mostly acinar) cells by apoptosis that occurred mainly between 14–30 days, and 4) maintenance of steady-state at 60 days with a low rate of fluid, protein, and glycoprotein secretion, which greatly decreased the number of leukocytes engaged in the removal of the luminal contents. The main post- ligation characteristics were dilation of ductal and acinar lumens, massive transient infiltration of mostly heterophils (rabbit polymorphonuclear leukocytes), acinar atrophy, and apoptosis of both acinar and ductal cells. Proliferation was uncommon except in the larger ducts. By 30 days, the distribution of myoepithelial cells had spread from exclusively investing the intercalated ducts pre-ligation to surrounding a majority of the residual duct-like structures, many of which clearly were atrophic acini. Thus, both atrophy and apoptosis made major contributions to the post-ligation reduction in gland size. Structures also occurred with both ductal and acinar markers that suggested acini differentiating into ducts. Overall, the reaction to duct ligation proceeded at a considerably slower pace in the rabbit parotid glands than has been reported for the salivary glands of the rat.  相似文献   
6.
7.
αVβ3, a broadly distributed member of the integrin family of adhesion receptors, has been implicated in a variety of physiological and pathophysiological events, including control of bone density, angiogenesis, apoptosis, tumor growth, and metastasis. Recently, it has been shown that activation of αVβ3, its transition from a low- to a high-affinity/avidity state, influences its recognition of certain ligands. Bone sialoprotein (BSP) is recognized as an important ligand for αVβ3 in processes ranging from bone formation to the homing of metastatic tumor cells. Here, the influence of αVβ3 activation on the adhesion and migration of relevant cells to BSP has been examined. Stimulation of lymphoblastoid, osteoblastoid, and human umbilical vein endothelial cells (HUVEC) with PMA or Mn2+ markedly enhanced αVβ3-dependent adhesion to BSP. αVβ3-mediated migration of HUVEC or osteoblastic cells to BSP was substantially enhanced by stimulation, demonstrating that αVβ3 activation enhances both adhesive and migratory responses. However, adhesion and/or migration of certain tumor cell lines, including M21 melanoma and MDA MB435 and SKBR3 breast carcinoma cell lines, to BSP was constitutively high and was not augmented by αVβ3-activating stimuli. Inhibitors of the intracellular signaling molecules, phosphatidylinositol 3-kinase with wortmannin, hsp90-dependent kinases with geldanamycin, and calpain with calpeptin, but not MAPKK with PD98059, reduced the high spontaneous adhesion and migration of the M21 cells to BSP, consistent with the constitutive activation of the receptor on these tumor cells. These results indicate that the activation state of αVβ3 can regulate cell migration and adhesion to BSP and, by extension, to other ligands of this receptor. The constitutive activation of αVβ3 on neoplastic cells may contribute to tumor growth and metastatic potential.  相似文献   
8.
Larjava H  Plow EF  Wu C 《EMBO reports》2008,9(12):1203-1208
Integrin-mediated cell-ECM (extracellular matrix) adhesion is a fundamental process that controls cell behaviour. For correct cell-ECM adhesion, both the ligand-binding affinity and the spatial organization of integrins must be precisely controlled; how integrins are regulated, however, is not completely understood. Kindlins constitute a family of evolutionarily conserved cytoplasmic components of cell-ECM adhesions that bind to beta-integrin cytoplasmic tails directly and cooperate with talin in integrin activation. In addition, kindlins interact with many components of cell-ECM adhesions--such as migfilin and integrin-linked kinase--to promote cytoskeletal reorganization. Loss of kindlins causes severe defects in integrin signalling, cell-ECM adhesion and cytoskeletal organization, resulting in early embryonic lethality (kindlin-2), postnatal lethality (kindlin-3) and Kindler syndrome (kindlin-1). It is therefore clear that kindlins, together with several other integrin-proximal proteins, are essential for integrin signalling and cell-ECM adhesion regulation.  相似文献   
9.
To gain insight into the mechanism by which the alpha(M)I-domain of integrin alpha(M)beta(2) interacts with multiple and unrelated ligands, the identity of the neutrophil inhibitory factor (NIF) recognition site was sought. A systematic strategy in which individual amino acid residues within three previously implicated segments were changed to those in the alpha(L)I-domain, which is structurally very similar but does not bind NIF, was implemented. The capacity of the resulting mutants, expressed as glutathione S-transferase fusion proteins, to recognize NIF was assessed. These analyses ultimately identified Asp(149), Arg(151), Gly(207), Tyr(252), and Glu(258) as critical for NIF binding. Cation binding, a function of the metal ion-dependent adhesion site (MIDAS) motif, was assessed by terbium luminescence to evaluate conformational perturbations induced by the mutations. All five mutants bound terbium with unaltered affinities. When the five residues were inserted into the alpha(L)I-domain, the chimera bound NIF with high affinity. Another ligand of alpha(M)beta(2), C3bi, which is known to use the same segments of the alpha(M)I-domain in engaging the receptor, failed to bind to the chimeric alpha(L)I-domain. Thus, the alpha(M)I-domain appears to present a mosaic of exposed amino acids within surface loops on its MIDAS face, and different ligands interact with different residues to attain high affinity binding.  相似文献   
10.
Binding of ligands that contain Arg-Gly-Asp to adhesion receptors induces cell spreading and aggregation and alters gene expression, possibly due to conformational changes within occupied adhesion receptors. PMI-1 is a monoclonal antibody which reacts with the platelet fibrinogen receptor, glycoprotein IIb-IIIa, and reports such a conformational change. ADP stimulation of platelets results in a fibrinogen-dependent increase in binding of the PMI-1 antibody. Peptides containing Arg-Gly-Asp also reversibly increase the binding of this antibody to cells and to purified glycoprotein IIb-IIIa. The PMI-1 antibody inhibits platelet adhesion and spreading on certain substrata (Shadle, P. J., Ginsberg, M. H., Plow, E. F., and Barondes, S. H. (1984) J. Cell Biol. 99, 2056-2060); thus this occupancy-modulated site may participate in adhesive function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号