首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two serine carboxypeptidases, MpiCP-1 and MpiCP-2, were purified to homogeneity from Monascus pilosus IFO 4480. MpiCP-1 is a homodimer with a native molecular mass of 125 kDa composed of two identical subunits of 61 kDa, while MpiCP-2 is a high mass homooligomer with a native molecular mass of 2,263 kDa composed of about 38 identical subunits of 59 kDa. This is unique among carboxypeptidases and distinguishes MpiCP-2 as the largest known carboxypeptidase. The two purified enzymes were both acidic glycoproteins. MpiCP-1 has an isoelectric point of 3.7 and a carbohydrate content of 11%, while for MpiCP-2 these values were 4.0 and 33%, respectively. The optimum pH and temperature were around 4.0 and 50°C for MpiCP-1, and 3.5 and 50°C for MpiCP-2. MpiCP-1 was stable over a broad range of pH between 2.0 and 8.0 at 37°C for 1 h, and up to 55°C for 15 min at pH 6.0, but MpiCP-2 was stable in a narrow range of pH between 5.5 and 6.5, and up to 50°C for 15 min at pH 6.0. Phenylmethylsulfonylfluoride strongly inhibited MpiCP-1 and completely inhibited MpiCP-2, suggesting that they are both serine carboxypeptidases. Of the substrates tested, benzyloxycarbonyl-l-tyrosyl-l-glutamic acid (Z-Tyr-Glu) was the best for both enzymes. The Km, Vmax, Kcat and Kcat/Km values of MpiCP-1 for Z-Tyr-Glu at pH 4.0 and 37°C were 1.33 mM, 1.49 mM min–1, 723 s–1 and 545 mM–1 s–1, and those of MpiCP-2 at pH 3.5 and 37°C were 1.55 mM, 1.54 mM min–1, 2,039 s–1 and 1,318 mM–1 s–1, respectively.  相似文献   

2.
A new acid carboxypeptidase was purified fromAspergillus oryzae grown on solid bran culture medium. The purified enzyme was found to be homogeneous by disc gel electrophoresis at pH 9.4 and isoelectric focusing. The enzyme was termedA. oryzae acid carboxypeptidase O-1 with isoelectric point 4.08. The substrate specificity of the new enzyme was investigated with proangiotensin, angiotensin, and bradykinin. Even when the proline was present at the penultimate position of the peptide, the enzyme rapidly hydrolyzed the carboxyterminal Pro-X (X=amino acid) peptide bond. TheK m andk cat values for angiotension (–Pro7–Phe8) at pH 3.7 and 30°C were 0.2 mM and 1.7 sec–1, respectively.  相似文献   

3.
A protease-producing bacterium was isolated from an alkaline wastewater of the soap industry and identified as Vibrio metschnikovii J1 on the basis of the 16S rRNA gene sequencing and biochemical properties. The strain was found to over-produce proteases when it was grown at 30°C in media containing casein as carbon source (14,000 U ml−1). J1 enzyme, the major protease produced by V. metschnikovii J1, was purified by a three-step procedure, with a 2.1-fold increase in specific activity and 33.3% recovery. The molecular weight of the purified protease was estimated to be 30 kDa by SDS-PAGE and gel filtration. The N-terminal amino acid sequence of the first 20 amino acids of the purified J1 protease was AQQTPYGIRMVQADQLSDVY. The enzyme was highly active over a wide range of pH from 9.0 to 12.0, with an optimum at pH 11.0. The optimum temperature for the purified enzyme was 60°C. The activity of the enzyme was totally lost in the presence of PMSF, suggesting that the purified enzyme is a serine protease. The kinetic constants K m and K cat of the purified enzyme using N-succinyl-l-Ala-l-Ala-l-Pro-l-Phe-p-nitroanilide were 0.158 mM and 1.14 × 105 min−1, respectively. The catalytic efficiency (K cat /K m) was 7.23 × 108 min−1 M−1. The enzyme showed extreme stability toward non-ionic surfactants and oxidizing agents. In addition, it showed high stability and compatibility with some commercial liquid and solid detergents. The aprJ1 gene, which encodes the alkaline protease from V. metschnikovii J1, was isolated, and its DNA sequence was determined. The deduced amino acid sequence of the preproenzyme differs from that of V. metschnikovii RH530 detergent-stable protease by 12 amino acids, 7 located in the propeptide and 5 in the mature enzyme.  相似文献   

4.
Summary d-(–)-Lactate dehydrogenase (LDH) was purified to homogeneity from a cell-free extract ofLactobacillus helveticus CNRZ 32. The native enzyme was determined to have a molecular weight of 152 000 and consisted of four identical subunits of 38 000. This enzyme was NAD dependent fructose 1,6-diphosphate (FDP) and ATP independent. It was most active on pyruvate followed by -hydroxypyruvate as substrates. TheK m values for pyruvate andd-(–)-lactate were 0.64 and 68.42 mM respectively, indicating that the enzyme has a higher affinity for pyruvate. The enzyme activity was completely inhibited byp-chloromercuribenzoate (1 mM) and partially by iodoacetate, suggesting the involvement of the sulfhydryl group (-SH) in catalysis. Optima for activity by the purified enzyme were pH 4.0 and 50–60°C. Limited inhibition ofd-(–)-LDH was observed with several divalent cations. Additionally, HgCl2 was observed to strongly inhibit enzyme activity. The purified enzyme was not affected by dithiothreitol or any of the metal chelating agents examined.  相似文献   

5.
A carboxypeptidase B (CPB) has been purified from dogfish (Scyliorhinus canicula) pancreas and partially characterized. The purification procedure included acetone precipitation, ion-exchange chromatography on a CM-cellulose column and gel filtration on Sephadex G-75. The purified enzyme migrates as a single band both on PAGE and SDS-PAGE. Its molecular mass is estimated to be about 32 kDa. The optimum of activity is obtained at pH 7.5–8.2. The enzyme is inhibited by typical metal-chelating agents (EDTA and o-phenanthroline) and by Hg2+. It is activated by Co2+, l-cysteine and by heat treatment at 40° and 50°C. Kinetic parameters, Km and kcat, of native enzyme, Co2+-activated CPB and heat-treated CPB have been determined  相似文献   

6.
Chitin deacetylase (CDA) is an enzyme that catalyzes the hydrolysis of acetamine groups of N-acetyl-d-glucosamine in chitin, converting it to chitosan in fungal cell walls. In the present study, the activity in batch culture of CDA from six Mucoralean strains, two of them wild type, isolated from dung of herbivores of Northeast Brazil, was screened. Among the strains tested, Cunninghamella bertholletiae IFM 46114 showed a high intracellular enzyme activity of 0.075 U/mg protein after 5 days of culture, and a wild-type strain of Mucor circinelloides showed a high intracellular enzyme activity of 0.060 U/mg protein, with only 2 days of culture, using N-acetylchitopentaose as substrate. This enzyme showed optimal activity at pH 4.5 in 25 mM glutamate-sodium buffer at 50°C, and was stable over 1 h preincubation at the same temperature. The kinetic parameters of CDA did not follow Michaelis-Menten kinetics, but rather Hill affinity distribution, showing probable allosteric behavior. The apparent KHILL and Vmax of CDA were 288±34 nmol/l and 0.08±0.01 U mg protein–1 min–1, respectively, using N-acetylchitopentaose as substrate at pH 4.5 at 50°C.  相似文献   

7.
Summary A new purification procedure for endo-\-1,3-1,4-d-glucanase from Bacillus licheniformis is described. The secreted enzyme was purified both from B. licheniformis and from recombinant Escherichia coli harbouring the cloned gene by ion exchange chromatography on a CM-Sepharose matrix at pH 5.6. The mature enzyme was resistant to proteolysis by trypsin and chymotrypsin but it was slowly digested by protease V8. It showed a continuous trimming where no large-limit polypeptides were noticeable thus supporting a monodomain structure. Former appearing peptides have been assigned theoretically according to the protein sequence and predictive methods of accessible areas. Kinetic parameters for the hydrolysis of barley \-glucan and lichenan by measuring the net release of reducing sugars at the optimum pH (7.02) and temperature (55° C) are k cat=3500 ±800 s–1 (turnover number) and K m=1.45±0.21 mg/ml for barley \-glucan and k cat=3000±750 s–1 and K m=1.98±0.40 mg/ml for lichenan. Correspondence to: E. Querol  相似文献   

8.
We purified an extracellular thermostable -galactosidase of Saccharopolyspora rectivirgula strain V2-2, a thermophilic actinomycete, to homogeneity and characterized it to be a monomeric enzyme with a relative molecular mass of 145 000 and s°20,w of 7.1 s. In addition to the hydrolytic activity of 1-O-substituted -d-galactopyranosides such as lactose [a Michaelis constant K m=0.75 mm and molecular activity (k cat)= 63.1 s–1 at pH 7.2 and 55° C] and p-nitrophenyl -d-galactopyranoside (K m=0.04 mm k cat= 55.8 s–1), the enzyme had a high transgalactosylation activity. The enzyme reacted with 1.75 m lactose at 70°C and pH 7.0 for 22 h to yield oligosaccharides in a maximum yield (other than lactose) of 41% (w/w). A general structure for the major transgalactosylic products could be expressed as (Gal)c-Glc, where n is 1, 2, 3, and 4 with a glucose at a reducing terminal. These oligosaccharides could selectively promote the growth of the genus Bifidobacterium found in human intestines. S. rectivirgula -galactosidase was stable at pH 7.2 up to 60°C (for 4 h in the presence of 10 m MnCl2) or 70°C (for 22 h in the presence of 1.75 m lactose and 10 m MnCl2). Thus the enzyme is applicable to an immobilized enzyme system at high temperatures (60°C <) for efficient production of the oligosaccharides from lactose. Correspondence to: T. Nakayama  相似文献   

9.
A thermophilic bacterium, which we designated as Geobacillus thermoleovorans 47b was isolated from a hot spring in Beppu, Oita Prefecture, Japan, on the basis of its ability to grow on bitter peptides as a sole carbon and nitrogen source. The cell-free extract from G. thermoleovorans 47b contained leucine aminopeptidase (LAP; EC 3.4.11.10), which was purified 164-fold to homogeneity in seven steps, using ammonium sulfate fractionation followed by the column chromatography using DEAE-Toyopearl, hydroxyapatite, MonoQ and Superdex 200 PC gel filtration, followed again by MonoQ and hydroxyapatite. The enzyme was a single polypeptide with a molecular mass of 42,977.2 Da, as determined by matrix-assisted laser desorption ionization and time-of-flight mass spectrometry, and was found to be thermostable at 90°C for up to 1 h. Its optimal pH and temperature were observed to be 7.6–7.8 and 60°C, respectively, and it had high activity towards the substrates Leu-p-nitroanilide (p-NA)(100%), Arg-p-NA (56.3%) and LeuGlyGly (486%). The Km and Vmax values for Leu-p-NA and LeuGlyGly were 0.658 mM and 25.0 mM and 236.2 mol min–1 mg–1 protein and 1,149 mol min–1 mg–1 protein, respectively. The turnover rate (kcat) and catalytic efficiency (kcat/ Km) for Leu-p-NA and LeuGlyGly were 10,179 s–1 and 49,543 s–1 and 15,470 mM–1 s–1 and 1981.7 mM–1 s–1, respectively. The enzyme was strongly inhibited by EDTA, 1,10-phenanthroline, dithiothreitol, -mercaptoethanol, iodoacetate and bestatin; and its apoenzyme was found to be reactivated by Co2+ .  相似文献   

10.
A recombinant putative glycoside hydrolase from Caldicellulosiruptor saccharolyticus was purified with a specific activity of 12 U mg−1 by heat treatment and His-Trap affinity chromatography, and identified as a single 56 kDa band upon SDS-PAGE. The native enzyme is a dimer with a molecular mass of 112 kDa as determined by gel filtration. The enzyme exhibited its highest activity when debranched arabinan (1,5-α-l-arabinan) was used as the substrate, demonstrating that the enzyme was an endo-1,5-α-l-arabinanase. The K m, k cat, and k cat/K m values were 18 mg ml−1, 50 s−1, and a 2.8 mg ml−1 s−1, respectively. Maximum enzyme activity was at pH 6.5 and 75°C. The half-lives of the enzyme at 65, 70 and 75°C were 2440, 254 and 93 h, respectively, indicating that it is the most thermostable of the known endo-1,5-α-l-arabinanases.  相似文献   

11.
A strain of Serratia marcescens that produced chondroitinase was isolated from soil. It produced a novel chondroitinase AC, which was purified to homogeneity. The enzyme was composed of two identical subunits of 35 kDa as revealed by SDS-PAGE and gel filtration. The isoelectric point for the chondroitinase AC was 7.19. Its optimal activity was at pH 7.5 and 40 °C. The purified enzyme was active on chondroitin sulfates A and C and hyaluronic acid, but was not with chondroitin sulfate B (dermatan sulfate), heparin or heparan sulfate. The apparent Km and Vmax of the chondroitinase AC for chondroitin sulfate A were 0.4 mg ml–1 and 85 mmol min–1 mg–1, respectively, and for chondroitin sulfate C, 0.5 mg ml–1 and 103 mmol min–1 mg–1, respectively.  相似文献   

12.
A hyper-thermostable, alkaline lipase from a newly-isolated, mesophilic Pseudomonas sp. was optimal at pH 11 and at 90 °C. It had a half-life of more than 13 h at 90 °C. It was activated by 30% when heated at 90 °C for 2 h. The enzyme had a greater affinity for mustard oil (K m=40 mg ml–1) than for olive oil (K m=140 mg ml–1).  相似文献   

13.
Summary An extracellular naringinase (an enzyme complex consisting of α-L-rhamnosidase and β-D-glucosidase activity, EC 3.2.1.40) that hydrolyses naringin (a trihydroxy flavonoid) for the production of rhamnose and glucose was purified from the culture filtrate of Aspergillus niger 1344. The enzyme was purified 38-fold by ammonium sulphate precipitation, ion exchange and gel filtration chromatography with an overall recovery of 19% with a specific activity of 867 units per mg of protein. The molecular mass of the purified enzyme was estimated to be about 168 kDa by gel filtration chromatography on a Sephadex G-200 column and the molecular mass of the subunits was estimated to be 85 kDa by sodium dodecyl sulphate-Polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme had an optimum pH of 4.0 and temperature of 50 °C, respectively. The naringinase was stable at 37 °C for 72 h, whereas at 40 °C the enzyme showed 50% inactivation after 96 h of incubation. Hg2+, SDS, p-chloromercuribenzoate, Cu2+ and Mn2+ completely inhibited the enzyme activity at a concentration of 2.5–10 mM, whereas, Ca2+, Co2+ and Mg2+ showed very little inactivation even at high concentrations (10–100 mM). The enzyme activity was strongly inhibited by rhamnose, the end product of naringin hydrolysis. The enzyme activity was accelerated by Mg2+ and remained stable for one year after storage at −20 °C. The purified enzyme preparation successfully hydrolysed naringin and rutin, but not hesperidin.  相似文献   

14.
To express Escherichia coli novablue dipeptidyl carboxypeptidase (EcDCP), the gene was amplified by PCR and cloned into the expression plasmid pQE-31 to yield pQE-EcDCP. His6-tagged EcDCP (His6-EcDCP) was over-expressed in E. coli M15 (pQE-EcDCP) as a soluble and active form under 0.05 mM IPTG induction at 26°C for 12 h. The recombinant enzyme was purified to homogeneity by Ni2+-NTA resin and had a molecular mass of approximately 75 kDa. The temperature and pH optima for His6-EcDCP were 37°C and 7.0, respectively. In the presence of 200 mM NaCl, His6-EcDCP was stimulated by 1.5 fold. The K M and k cat values of the enzyme for N-benzoyl-l-glycyl-l-histidyl-l-leucine were 1.83 mM and 168.3 s−1, respectively. His6-EcDCP activity was dramatically inhibited by 10 mM EDTA, 0.25 mM 1.10-phenanthroline, and 2.5 mM DEPC, but it was not affected by Ser, Asp, Lys, and Trp protease inhibitors. Analysis of His6-EcDCP by circular dichroism revealed that the secondary structures of the enzyme in 30 mM universal buffer (pH 7.0) were 17% α-helix, 35% β-sheet and 47% random coil. Mid point of thermal transition was calculated to be 55°C for the recombinant enzyme.  相似文献   

15.
A feruloyl esterase (StFAE-A) produced by Sporotrichum thermophile was purified to homogeneity. The purified homogeneous preparation of native StFAE-A exhibited a molecular mass of 57.0±1.5 kDa, with a mass of 33±1 kDa on SDS-PAGE. The pI of the enzyme was estimated by cation-exchange chromatofocusing to be at pH 3.1. The enzyme activity was optimal at pH 6.0 and 55–60 °C. The purified esterase was stable at the pH range 5.0–7.0. The enzyme retained 70% of activity after 7 h at 50 °C and lost 50% of its activity after 45 min at 55 °C and after 12 min at 60 °C. Determination of k cat/K m revealed that the enzyme hydrolyzed methyl p-coumarate 2.5- and 12-fold more efficiently than methyl caffeate and methyl ferulate, respectively. No activity on methyl sinapinate was detected. The enzyme was active on substrates containing ferulic acid ester linked to the C-5 and C-2 linkages of arabinofuranose and it hydrolyzed 4-nitrophenyl 5-O-trans-feruloyl--l-arabinofuranoside (NPh-5-Fe-Araf) 2-fold more efficiently than NPh-2-Fe-Araf. Ferulic acid (FA) was efficiently released from destarched wheat bran when the esterase was incubated together with xylanase from S. thermophile (a maximum of 34% total ferulic acid released after 1 h incubation). StFAE-A by itself could release FA, but at a level almost 47-fold lower than that obtained in the presence of xylanase. The potential of StFAE-A for the synthesis of various phenolic acid esters was tested using a ternary water-organic mixture consisting of n-hexane, 1-butanol and water as a reaction system.  相似文献   

16.
Anabaena sp. grew with mono- and di-ester phosphate compounds as sources of phosphate, indicating the presence of phosphomonoesterase (PMEase) and phosphodiesterase (PDEase) activities. Cell-bound PMEase and PDEase activities were detected during growth in 0.5 and 10 mg PO4l–1 only when the cellular phosphate concentration fell to 0.46% of cell protein and the activities increased as cellular phosphate content decreased. The Km values for these enzymes were 0.3mm forp-nitrophenyl phosphate and 0.2mm for bis-p-nitrophenyl phosphate, respectively. Only PMEase activity was found extracellularly. The pH optima for PMEase and PDEase were 10.2 and 10.4, respectively, and the temperature optima at pH 10.2 were 37°C and 40°C, respectively. Ca2+ increased the enzyme activities while Zn2+ caused marked inhibition. The inorganic phosphate repressed the cellular PMEase activity after a lag of 4 h.  相似文献   

17.
Based on analysis of the genome sequence of Bacillus licheniformis ATCC 14580, an isomerase-encoding gene (araA) was proposed as an l-arabinose isomerase (L-AI). The identified araA gene was cloned from B. licheniformis and overexpressed in Escherichia coli. DNA sequence analysis revealed an open reading frame of 1,422 bp, capable of encoding a polypeptide of 474 amino acid residues with a calculated isoelectric point of pH 4.8 and a molecular mass of 53,500 Da. The gene was overexpressed in E. coli, and the protein was purified as an active soluble form using Ni–NTA chromatography. The molecular mass of the purified enzyme was estimated to be ~53 kDa by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and 113 kDa by gel filtration chromatography, suggesting that the enzyme is a homodimer. The enzyme required a divalent metal ion, either Mn2+or Co2+, for enzymatic activity. The enzyme had an optimal pH and temperature of 7.5 and 50°C, respectively, with a k cat of 12,455 min−1 and a k cat/K m of 34 min−1 mM−1 for l-arabinose, respectively. Although L-AIs have been characterized from several other sources, B. licheniformis L-AI is distinguished from other L-AIs by its wide pH range, high substrate specificity, and catalytic efficiency for l-arabinose, making B. licheniformis L-AI the ideal choice for industrial applications, including enzymatic synthesis of l-ribulose. This work describes one of the most catalytically efficient L-AIs characterized thus far.  相似文献   

18.
3-Deoxy-d-manno-2-octulosonate-8-phosphate (KDO8P) synthase, catalyzes the aldol-type condensation between phosphoenolpyruvate (PEP) and d-arabinose-5-phosphate (A5P) to produce the unusual 8-carbon sugar KDO8P, and inorganic phosphate. A 15.5-kb segment containing the kdsA gene from the hyperthermophilic bacterium Aquifex pyrophilus was cloned from a genomic library and sequenced. The native kdsA gene lacks a typical ribosome binding site, but contains a conserved U,A-rich sequence upstream to the start codon. The purified kdsA gene product catalyzes the formation of KDO8P from its natural substrates, PEP and A5P, as determined by 1H NMR analysis. KDO8P synthase showed maximum activity at 80 °C and pH 5.5–6.0 at 10-min reaction assay. At temperatures of 70, 80, and 90 °C, the enzyme exhibited half-lives of 8.0, 2.25, and 0.5 h, respectively. The kinetic constants at 60 °C were KmA5P=70 M, KmPEP=290 M, and kcat=4 s–1. The isolated enzyme contained 0.19 and 0.26 mol iron and zinc, respectively, per mole of enzyme subunit. Treatment with metal chelators eliminated enzyme activity, and by the addition of several divalent metal ions, the activity was restored and even exceeded the original activity. These results indicate that A. pyrophilus KDO8P synthase is a metal-dependent enzyme. A C11A mutant of KDO8P synthase from A. pyrophulis retained less than 1% of the wild-type activity and was shown to be incapable of metal binding.Communicated by G. Antranikian  相似文献   

19.
A multi-functional enzyme ICChI with chitinase/lysozyme/exochitinase activity from the latex of Ipomoea carnea subsp. fistulosa was purified to homogeneity using ammonium sulphate precipitation, hydrophobic interaction and size exclusion chromatography. The enzyme is glycosylated (14–15%), has a molecular mass of 34.94 kDa (MALDI–TOF) and an isoelectric point of pH 5.3. The enzyme is stable in pH range 5.0–9.0, 80 °C and the optimal activity is observed at pH 6.0 and 60 °C. Using p-nitrophenyl-N-acetyl-β-d-glucosaminide, the kinetic parameters Km, Vmax, Kcat and specificity constant of the enzyme were calculated as 0.5 mM, 2.5 × 10−8 mol min−1 μg enzyme−1, 29.0 s−1 and 58.0 mM−1 s−1 respectively. The extinction coefficient was estimated as 20.56 M−1 cm−1. The protein contains eight tryptophan, 20 tyrosine and six cysteine residues forming three disulfide bridges. The polyclonal antibodies raised and immunodiffusion suggests that the antigenic determinants of ICChI are unique. The first fifteen N-terminal residues G–E–I–A–I–Y–W–G–Q–N–G–G–E–G–S exhibited considerable similarity to other known chitinases. Owing to these unique properties the reported enzyme would find applications in agricultural, pharmaceutical, biomedical and biotechnological fields.  相似文献   

20.
The thermophilic fungus,Humicola sp isolated from soil, secreted extracellular -galactosidase in a medium cotaining wheat bran extract and yeast extract. Maximum enzyme production was found in a medium containing 5% wheat bran extract as a carbon source and 0.5% beef extract as a carbon and nitrogen source. Enzyme secretion was strongly inhibited by the presence of Cu2+, Ni2+ and Hg2+ (1mM) in the fermentation medium. Production of enzyme under stationary conditions resulted in 10-fold higher activity than under shaking conditions. The temperature range for production of the enzyme was 37° C to 55°C, with maximum activity (5.54 U ml–1) at 45°C. Optimum pH and temperature for enzyme activity were 5.0 and 60° C respectively. One hundred per cent of the original activity was retained after heating the enzyme at 60°C for 1 h. At 5mM Hg2+ strongly inhibited enzyme activity. TheK m andV max forp-nitrophenyl--d-galactopyranoside were 60M and 33.6 mol min–1 mg–1, respectively, while for raffinose those values were 10.52 mM and 1.8 mol min–1 mg–1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号