首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Labyrinth morphology in extant elasmobranchs (neoselachians: sharks, skates and rays) and several extinct chondrichthyans ranging in age from Pliocene to Devonian is investigated using high-resolution computed tomography (CT scanning) and digital reconstitution techniques. The elasmobranch labyrinth is highly specialized toward low-frequency semi-directional sound detection (LFSDP), optimally around 100 Hz. Several features associated with LFSDP in neoselachians also occur in Mesozoic hybodonts (e.g., Egertonodus, Tribodus) and in some incertae sedis extinct sharks (Acronemus, Tristychius), but are absent in osteichthyans, extant and fossil holocephalans, and certain Paleozoic chondrichthyans (ctenacanths, symmoriiforms, Pucapampella). Thus, LFSDP is regarded as an evolutionary novelty of elasmobranchs that arose some time after their divergence from chimaeroids. The suite of characters associated with LFSDP was probably acquired progressively, some characters being more widely distributed among fossil chondrichthyans than others. LFSDP evolved only within chondrichthyans whose otico-occipital fissure became secondarily closed during ontogeny.  相似文献   

2.
S. J. Burch    R. Lawson    D. H. Davies 《Journal of Zoology》1984,203(3):303-310
Serum transferrins from two holocephalan, five elasmobranch and three teleost species have been compared using quantitative microcomplement fixation. Calculated immunological distances emphasize the close relationship between the holocephalans and elasmobranchs and strongly support the view that they should be considered as part of a natural assemblage which is widely separated from the teleosts.
If the Holocephali and elasmobranchs have been separate since the beginning of the Carboniferous, this implies that transferrin has evolved at a rate approximating to 0-15-0-26 immunological units per million years involving some 9–15% substitution of amino acids. These values are extremely low and indicate that holocephalan and elasmobranch transferrins have evolved some 2–3–7 times more slowly than those known from any other group of vertebrates.  相似文献   

3.
Living vertebrate diversity comprises hagfishes and lampreys (Cyclostomata), elasmobranchs and holocephalans (Chondrichthyes), and bony fish which include tetrapods (Osteichthyes). Based on dissections and an extensive comparative analysis, we provide an updated overview of the anatomy, homologies and evolution of cyclostome and chondrichthyan cephalic muscles, with osteichthyans as primary comparative taxa. The analysis also infers plesiomorphic conditions for vertebrates and gnathostomes. We follow a uniform myological terminology for the Gnathostomata to demonstrate that the last common ancestor of extant vertebrates probably had a single intermandibularis and other mandibular muscles (labial muscles), some constrictores hyoidei and branchiales, and epibranchial and hypobranchial muscle sheets. The division of the cucullaris into levatores arcuum branchialium and protractor pectoralis is an osteichthyan synapomorphy and reflects an evolutionary trend towards a greater separation between the head and pectoral girdle that culminated in the formation of the tetrapod neck. Hence, this paper addresses a long‐standing, central issue regarding vertebrate comparative anatomy. It thus provides a valuable basis for future evolutionary, developmental and functional studies of vertebrates and/or of specific vertebrate subgroups/model organisms. © 2014 The Linnean Society of London  相似文献   

4.
The morphology of the middle ear region including the basicranium and quadrate of tinamous is compared among ratites and flying birds belonging to the Procellariiformes, Sphenisciformes, Pelecaniformes, and Ciconiiforms. The middle ears of tinamous and ratites share a number of important characters including absence of a separate foramen for the glossopharyngeal nerve; eustachian tube, carotid artery, and stapedial artery encased in bone; and a metotic process with vascular canals or notches. Outgroup analysis confirms these characters as synapomorphies. These data support the position that the Tinami and Ratiti form a monophyletic assemblage.  相似文献   

5.
Remarkably preserved specimens of Cowralepis mclachlani Ritchie, 2005 (Proc Linn Soc NSW 126:215–259) (Phyllolepida, Placodermi) represent a unique ontogenetic sequence adding to our understanding of anatomy, function, and phylogeny among basal jawed vertebrates (gnathostomes). A systematic review demonstrates that the Phyllolepida are a subgroup of the Arthrodira. Consideration of visceral and neurocranial characters supports the hypothesis that placoderms are the sister group to remaining gnathostomes. Placoderms possess, as adult plesiomorphic features, a number of characters that are only seen in the development of extant gnathostomes—a peramorphic shift relative to placoderms. Developmental evidence in vertebrates leads to a revised polarity of character transitions. These include 1) hyomandibula‐neurocranium and ventral parachordal‐palatoquadrate articulations (vertebrate synapomorphies); 2) jointed pharynx, paired basibranchials, anterior ethmoidal‐palatoquadrate articulation, short trabeculae cranii, and anterior and posterior neurocranial fissures (gnathostome synapomorphies); and 3) fused basibranchials, dorsal palatoquadrate‐neurocranium articulation, loss of the anterior neurocranial fissure, elongated trabeculae cranii, and transfer of the ventral parachordal‐palatoquadrate articulation to the trabeculae (crown group gnathostomes). The level of preservation in C. mclachlani provides the basis for a reinterpretation of phyllolepid anatomy and function. Cowralepis mclachlani possesses paired basibranchials allowing the reinterpretation of the visceral skeleton in other placoderms. Mandible depression in C. mclachlani follows an osteichthyan pattern and the ventral visceral skeleton acts as a functional unit. Evidence for hypobranchial musculature demonstrates the neural crest origin of the basibranchials and that Cowralepis was a suction feeder. Finally, the position of the visceral skeleton relative to the neurocranium in placoderms parallels the condition in selachians and osteichthyans, but differs in the elongation of the occiput. The cucullaris fossa of placoderms (interpreted as a site of muscle attachment) is shown to represent, in part, the parabranchial chamber. J. Morphol., 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Although modern hexanchiforms are the only extant elasmobranchs with a postorbital articulation, according to most morphological and molecular cladistic analyses they are not basal, suggesting that Huxley ( 1876 Proc Zool Soc 1876;24–59) correctly identified this articulation as “an altogether secondary connection.” A postorbital articulation is present in many Paleozoic sharks, but differs from that found in hexanchiforms in its morphology, topographic position on the braincase, and inferred ontogenetic origins. Furthermore, a postorbital articulation is absent in hybodonts (the putative extinct sister group to neoselachians). It is proposed that the term amphistylic should be restricted to the modern hexanchiform condition, where the articular facet is located on the primary postorbital process. An identical articulation probably existed in some extinct galeomorphs (e.g., ?Synechodus dubrisiensis, ?Paraorthacodus), but is not widespread within elasmobranchs generally. The term archaeostylic (“ancient pillar”) is proposed here for the suspensorial arrangement in Paleozic sharks with a postorbital articulation on the ventrolateral part of the lateral commissure. Such an articulation is not known in other gnathostomes and may represent a basal chondrichthyan synapomophy (especially if ?Pucapampella is a stem chondrichthyan), suggesting that the autodiastylic pattern is not primitive for chondrichthyans and that holocephalans have secondarily lost a postorbital articulation. The amphistylic condition may have arisen from the archaeostylic, or it could have been acquired independently within neoselachians, but in either case it is most parsimoniously viewed as apomorphic. J. Morphol., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

7.
Zhu M  Yu X  Choo B  Qu Q  Jia L  Zhao W  Qiao T  Lu J 《PloS one》2012,7(4):e35103

Background

The pectoral and pelvic girdles support paired fins and limbs, and have transformed significantly in the diversification of gnathostomes or jawed vertebrates (including osteichthyans, chondrichthyans, acanthodians and placoderms). For instance, changes in the pectoral and pelvic girdles accompanied the transition of fins to limbs as some osteichthyans (a clade that contains the vast majority of vertebrates – bony fishes and tetrapods) ventured from aquatic to terrestrial environments. The fossil record shows that the pectoral girdles of early osteichthyans (e.g., Lophosteus, Andreolepis, Psarolepis and Guiyu) retained part of the primitive gnathostome pectoral girdle condition with spines and/or other dermal components. However, very little is known about the condition of the pelvic girdle in the earliest osteichthyans. Living osteichthyans, like chondrichthyans (cartilaginous fishes), have exclusively endoskeletal pelvic girdles, while dermal pelvic girdle components (plates and/or spines) have so far been found only in some extinct placoderms and acanthodians. Consequently, whether the pectoral and pelvic girdles are primitively similar in osteichthyans cannot be adequately evaluated, and phylogeny-based inferences regarding the primitive pelvic girdle condition in osteichthyans cannot be tested against available fossil evidence.

Methodology/Principal Findings

Here we report the first discovery of spine-bearing dermal pelvic girdles in early osteichthyans, based on a new articulated specimen of Guiyu oneiros from the Late Ludlow (Silurian) Kuanti Formation, Yunnan, as well as a re-examination of the previously described holotype. We also describe disarticulated pelvic girdles of Psarolepis romeri from the Lochkovian (Early Devonian) Xitun Formation, Yunnan, which resemble the previously reported pectoral girdles in having integrated dermal and endoskeletal components with polybasal fin articulation.

Conclusions/Significance

The new findings reveal hitherto unknown similarity in pectoral and pelvic girdles among early osteichthyans, and provide critical information for studying the evolution of pelvic girdles in osteichthyans and other gnathostomes.  相似文献   

8.
The relationships of placoderm fishes   总被引:1,自引:0,他引:1  
  相似文献   

9.
10.
Glial cells are responsible for a wide range of functions in the nervous system of vertebrates. The myelinated nervous systems of extant elasmobranchs have the longest independent history of all gnathostomes. Much is known about the development of glia in other jawed vertebrates, but research in elasmobranchs is just beginning to reveal the mechanisms guiding neurodevelopment. This study examines the development of glial cells in the bamboo shark, Chiloscyllium punctatum, by identifying the expression pattern of several classic glial and myelin proteins. We show for the first time that glial development in the bamboo shark (C. punctamum) embryo follows closely the one observed in other vertebrates and that neural development seems to proceed at a faster rate in the PNS than in the CNS. In addition, we observed more myelinated tracts in the PNS than in the CNS, and as early as stage 32, suggesting that the ontogeny of myelin in sharks is closer to osteichthyans than agnathans.  相似文献   

11.
Cartilaginous fishes (chondrichthyans) have traditionally been taken as an early offshoot among jawed vertebrates. To examine some crucial chondrichthyan relationships, we have sequenced the mitochondrial genomes of the holocephalan Chimaera monstrosa (ratfish) and the basal galeomorph species Heterodontus francisci (horn shark) and analysed them together with the corresponding data set of several other chondrichthyans, teleosts, the coelacanth, the African lungfish and the bichir. The rooting point of the tree was established using unequivocal outgroups, the sea lamprey , the sea lancelet or echinoderms. The phylogenetic analyses identified monophyletic Chondrichthyes in a terminal position in the piscine tree, lending no support to the traditionally accepted basal position of cartilaginous fishes among extant gnathostomes. The findings suggest that the cartilage characterizing extant chondrichthyans is a retention of an embryonic condition, thus representing a derived rather than a primitive phylogenetic and developmental stage. Similarly, the analyses suggest that the open gill slits of neoselachians (sharks and rays) constitute a derived state compared to the operculum (gill cover) characterizing bony fishes and holocephalans. The analyses did not support the so-called Squalea/Galea hypothesis which posits that batomorphs (sharks, rays) have arisen from recent selachians (sharks). Inconsistent with the common understanding of piscine and gnathostome evolution, the two taxa having lungs, the African lungfish and the bichir, had a basal position in the piscine tree. The findings put into question the phylogenetic validity of the taxonomic nomenclature attributed to various vertebrate, notably piscine, clades.  相似文献   

12.

Background

The relationships of cartilaginous fishes are discussed in the light of well preserved three-dimensional Paleozoic specimens. There is no consensus to date on the interrelationship of Paleozoic chondrichthyans, although three main phylogenetic hypotheses exist in the current literature: 1. the Paleozoic shark-like chondrichthyans, such as the Symmoriiformes, are grouped along with the modern sharks (neoselachians) into a clade which is sister group of holocephalans; 2. the Symmoriiformes are related to holocephalans, whereas the other Paleozoic shark-like chondrichthyans are related to neoselachians; 3. many Paleozoic shark-like chondrichthyans, such as the Symmoriiformes, are stem chondrichthyans, whereas stem and crown holocephalans are sister group to the stem and crown neoselachians in a crown-chondrichthyan clade. This third hypothesis was proposed recently, based mainly on dental characters.

Methodology/Principal Findings

On the basis of two well preserved chondrichthyan neurocrania from the Late Carboniferous of Kansas, USA, we describe here a new species of Symmoriiformes, Kawichthys moodiei gen. et sp. nov., which was investigated by means of computerized X-ray synchrotron microtomography. We present a new phylogenetic analysis based on neurocranial characters, which supports the third hypothesis and corroborates the hypothesis that crown-group chondrichthyans (Holocephali+Neoselachii) form a tightly-knit group within the chondrichthyan total group, by providing additional, non dental characters.

Conclusions/Significance

Our results highlight the importance of new well preserved Paleozoic fossils and new techniques of observation, and suggest that a new look at the synapomorphies of the crown-group chondrichthyans would be worthwhile in terms of understanding the adaptive significance of phylogenetically important characters.  相似文献   

13.
Young GC 《Biology letters》2008,4(1):110-114
Exceptional braincase preservation in some Devonian placoderm fishes permits interpretation of muscles and cranial nerves controlling eye movement. Placoderms are the only jawed vertebrates with anterior/posterior obliques as in the jawless lamprey, but with the same function as the superior/inferior obliques of other gnathostomes. Evidence of up to seven extraocular muscles suggests that this may be the primitive number for jawed vertebrates. Two muscles innervated by cranial nerve 6 suggest homologies with lampreys and tetrapods. If the extra muscle acquired by gnathostomes was the internal rectus, Devonian fossils show that it had a similar insertion above and behind the eyestalk in both placoderms and basal osteichthyans.  相似文献   

14.
Meeting the challenge of sampling an ancient aquatic landscape by the early vertebrates was crucial to their survival and would establish a retinal bauplan to be used by all subsequent vertebrate descendents. Image-forming eyes were under tremendous selection pressure and the ability to identify suitable prey and detect potential predators was thought to be one of the major drivers of speciation in the Early Cambrian. Based on the fossil record, we know that hagfishes, lampreys, holocephalans, elasmobranchs and lungfishes occupy critical stages in vertebrate evolution, having remained relatively unchanged over hundreds of millions of years. Now using extant representatives of these ‘living fossils’, we are able to piece together the evolution of vertebrate photoreception. While photoreception in hagfishes appears to be based on light detection and controlling circadian rhythms, rather than image formation, the photoreceptors of lampreys fall into five distinct classes and represent a critical stage in the dichotomy of rods and cones. At least four types of retinal cones sample the visual environment in lampreys mediating photopic (and potentially colour) vision, a sampling strategy retained by lungfishes, some modern teleosts, reptiles and birds. Trichromacy is retained in cartilaginous fishes (at least in batoids and holocephalans), where it is predicted that true scotopic (dim light) vision evolved in the common ancestor of all living gnathostomes. The capacity to discriminate colour and balance the tradeoff between resolution and sensitivity in the early vertebrates was an important driver of eye evolution, where many of the ocular features evolved were retained as vertebrates progressed on to land.  相似文献   

15.
The osteology of an almost complete braincase of the rauisuchian archosaur Batrachotomus kupferzellensis Gower from the Middle Triassic of Germany is described. There is a possibly discrete epiotic ossification, the metotic fissure is undivided by bone (i.e. there is a metotic foramen), the medial wall of the otic capsule is mostly ossified, the cerebral branch of the internal carotid artery entered the lateral surface of the parabasisphenoid, the ventral ramus of the opisthotic is more prominent laterally than a strong subvertical ridge on the exoccipital and basioccipital that lies posterior to the external foramen for the hypoglossal nerve, and the perilymphatic foramen faces away from the otic capsule in a posterior direction. Braincase morphology in the rauisuchians Saurosuchus galilei , Postosuchus kirkpatricki, and Tikisuchus romeri is reviewed. A matrix of 27 braincase characters for 12 archosaurian taxa is analysed. The most parsimonious hypothesis is consistent with the currently orthodox view of archosaurian phylogeny, except in that aetosaurians are more closely related to crocodylomorphs than is any rauisuchian. This phylogeny is used in a brief interpretation of the evolution of derived braincase features present in extant crocodilians. © 2002 The Linnean Society of London, Zoological Journal of the Linnean Society , 2002, 136 , 49–76.  相似文献   

16.
Recent discoveries of early bony fishes from the Silurian and earliest Devonian of South China (e.g. Psarolepis, Achoania, Meemannia, Styloichthys and Guiyu) have been crucial in understanding the origin and early diversification of the osteichthyans (bony fishes and tetrapods). All these early fishes, except Guiyu, have their dermal skeletal surface punctured by relatively large pore openings. However, among these early fishes little is known about scale morphology and dermal skeletal histology. Here we report new data about the scales and dermal skeletal histology of Psarolepis romeri, a taxon with important implications for studying the phylogeny of early gnathostomes and early osteichthyans. Seven subtypes of rhombic scales with similar histological composition and surface sculpture are referred to Psarolepis romeri. They are generally thick and show a faint antero-dorsal process and a broad peg-and-socket structure. In contrast to previously reported rhombic scales of osteichthyans, these scales bear a neck between crown and base as in acanthodian scales. Histologically, the crown is composed of several generations of odontodes and an irregular canal system connecting cylindrical pore cavities. Younger odontodes are deposited on older ones both superpositionally and areally. The bony tissues forming the keel of the scale are shown to be lamellar bone with plywood-like structure, whereas the other parts of the base are composed of pseudo-lamellar bone with parallel collagen fibers. The unique tissue combination in the keel (i.e., extrinsic Sharpey''s fibers orthogonal to the intrinsic orthogonal sets of collagen fibers) has rarely been reported in the keel of other rhombic scales. The new data provide insights into the early evolution of rhombic (ganoid and cosmoid) scales in osteichthyans, and add to our knowledge of hard tissues of early vertebrates.  相似文献   

17.
Newly discovered fossils from the Silurian and Devonian periods are beginning to challenge embedded perceptions about the origin and early diversification of jawed vertebrates (gnathostomes). Nevertheless, an explicit cladistic framework for the relationships of these fossils relative to the principal crown lineages of the jawed vertebrates (osteichthyans: bony fishes and tetrapods; chondrichthyans: sharks, batoids, and chimaeras) remains elusive. We critically review the systematics and character distributions of early gnathostomes and provide a clearly stated hierarchy of synapomorphies covering the jaw‐bearing stem gnathostomes and osteichthyan and chondrichthyan stem groups. We show that character lists, designed to support the monophyly of putative groups, tend to overstate their strength and lack cladistic corroboration. By contrast, synapomorphic hierarchies are more open to refutation and must explicitly confront conflicting evidence. Our proposed synapomorphy scheme is used to evaluate the status of the problematic fossil groups Acanthodii and Placodermi, and suggest profitable avenues for future research. We interpret placoderms as a paraphyletic array of stem‐group gnathostomes, and suggest what we regard as two equally plausible placements of acanthodians: exclusively on the chondrichthyan stem, or distributed on both the chondrichthyan and osteichthyan stems. © 2014 The Authors. Zoological Journal of the Linnean Society published by John Wiley & Sons Ltd on behalf of The Linnean Society of London  相似文献   

18.
19.
This review identifies a number of exciting new developments in the understanding of vision in cartilaginous fishes that have been made since the turn of the century. These include the results of studies on various aspects of the visual system including eye size, visual fields, eye design and the optical system, retinal topography and spatial resolving power, visual pigments, spectral sensitivity and the potential for colour vision. A number of these studies have covered a broad range of species, thereby providing valuable information on how the visual systems of these fishes are adapted to different environmental conditions. For example, oceanic and deep-sea sharks have the largest eyes amongst elasmobranchs and presumably rely more heavily on vision than coastal and benthic species, while interspecific variation in the ratio of rod and cone photoreceptors, the topographic distribution of the photoreceptors and retinal ganglion cells in the retina and the spatial resolving power of the eye all appear to be closely related to differences in habitat and lifestyle. Multiple, spectrally distinct cone photoreceptor visual pigments have been found in some batoid species, raising the possibility that at least some elasmobranchs are capable of seeing colour, and there is some evidence that multiple cone visual pigments may also be present in holocephalans. In contrast, sharks appear to have only one cone visual pigment. There is evidence that ontogenetic changes in the visual system, such as changes in the spectral transmission properties of the lens, lens shape, focal ratio, visual pigments and spatial resolving power, allow elasmobranchs to adapt to environmental changes imposed by habitat shifts and niche expansion. There are, however, many aspects of vision in these fishes that are not well understood, particularly in the holocephalans. Therefore, this review also serves to highlight and stimulate new research in areas that still require significant attention.  相似文献   

20.
《Journal of morphology》2017,278(9):1220-1228
The pharyngeal skeleton is a key vertebrate anatomical system in debates on the origin of jaws and gnathostome (jawed vertebrate) feeding. Furthermore, it offers considerable potential as a source of phylogenetic data. Well‐preserved examples of pharyngeal skeletons from stem‐group gnathostomes remain poorly known. Here, we describe an articulated, nearly complete pharyngeal skeleton in an Early Devonian placoderm fish, Paraplesiobatis heinrichsi Broili, from Hunsrück Slate of Germany. Using synchrotron light tomography, we resolve and reconstruct the three‐dimensional gill arch architecture of Paraplesiobatis and compare it with other gnathostomes. The preserved pharyngeal skeleton comprises elements of the hyoid arch (probable ceratohyal) and a series of branchial arches. Limited resolution in the tomography scan causes some uncertainty in interpreting the exact number of arches preserved. However, at least four branchial arches are present. The final and penultimate arches are connected as in osteichthyans. A single median basihyal is present as in chondrichthyans. No dorsal (epibranchial or pharyngobranchial) elements are observed. The structure of the pharyngeal skeleton of Paraplesiobatis agrees well with Pseudopetalichthys from the same deposit, allowing an alternative interpretation of the latter taxon. The phylogenetic significance of Paraplesiobatis is considered. A median basihyal is likely an ancestral gnathostome character, probably with some connection to both the hyoid and the first branchial arch pair. Unpaired basibranchial bones may be independently derived in chondrichthyans and osteichthyans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号