首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
C I Reich  R W VanHoy  G L Porter  J A Wise 《Cell》1992,69(7):1159-1169
U1 snRNA is an essential splicing factor known to base pair with 5' splice sites of premessenger RNAs. We demonstrate that pairing between the universally conserved CU just downstream from the 5' junction interaction region and the 3' splice site AG contributes to efficient splicing of Schizosaccharomyces pombe introns that typify the AG-dependent class described in mammals. Strains carrying mutations in the 3' AG of an artificial intron accumulate linear precursor, indicative of a first step block. Lariat formation is partially restored in these mutants by compensatory changes in nucleotides C7 and U8 of U1 snRNA. Consistent with a general role in fission yeast splicing, mutations at C7 are lethal, while U8 mutants are growth impaired and accumulate linear, unspliced precursor to U6 snRNA. U1 RNA-mediated recognition of the 3' splice site may have origins in analogous intramolecular interactions in an ancestral self-splicing RNA.  相似文献   

2.
Intron sequences involved in lariat formation during pre-mRNA splicing   总被引:114,自引:0,他引:114  
R Reed  T Maniatis 《Cell》1985,41(1):95-105
We have shown that lariat formation during in vitro splicing of several RNA precursors, from Drosophila to man, occurs at a unique and identifiable but weakly conserved site, 18 to 37 nucleotides proximal to the 3' splice site. Lariat formation within an artificial intron lacking a normal branch-point sequence occurs at a cryptic site a conserved distance (approximately 23 nucleotides) from the 3' splice site. Analysis of beta-thalassemia splicing mutations revealed that lariat formation in the first intron of the human beta-globin gene occurs at the same site in normal and mutant precursors, even though alternate 5' and 3' splice sites are utilized in the mutants. Remarkably, cleavage at the 5' splice site and lariat formation do not occur when the precursor contains a beta-thalassemia deletion removing the polypyrimidine stretch and AG dinucleotide at the 3' splice site. In contrast, a single base substitution in the AG dinucleotide blocks cleavage at the 3' splice site but not at the 5' site.  相似文献   

3.
Nuclear pre-mRNA splicing necessitates specific recognition of the pre-mRNA splice sites. It is known that 5' splice site selection requires base pairing of U6 snRNA with intron positions 4-6. However, no factor recognizing the highly conserved 5' splice site GU has yet been identified. We have tested if the known U6 snRNA-pre-mRNA interaction could be extended to include the first intron nucleotides and the conserved 50GAG52 sequence of U6 snRNA. We observe that some combinations of 5' splice site and U6 snRNA mutations produce a specific synthetic block to the first splicing step. In addition, the U6-G52U allele can switch between two competing 5' splice sites harboring different nucleotides following the cleavage site. These results indicate that U6 snRNA position 52 interacts with the first nucleotide of the intron before 5' splice site cleavage. Some combinations of U6 snRNA and pre-mRNA mutations also blocked the second splicing step, suggesting a role for the corresponding nucleotides in a proofreading step before exon ligation. From studies in diverse organisms, various functions have been ascribed to the conserved U6 snRNA 47ACAGAG52 sequence. Our results suggest that these discrepancies might reflect variations between different experimental systems and point to an important conserved role of this sequence in the splicing reaction.  相似文献   

4.
The 5'-terminal region of U1 snRNA is highly complementary to the consensus exon-intron regions of hnRNA and it has been suggested that U1 snRNP might play a role in the splicing of the pre-mRNA by intermolecular base-pairing between these regions. Here the secondary structure of the 5' terminus of U1 RNA in the isolated native U1 snRNP particle has been investigated by site-directed enzymatic cleavage of the RNA. Individual oligodeoxynucleotides complementary to various sequences within the first 15 nucleotides of the 5' terminus of U1 RNA have been tested for their ability to form stable DNA X RNA hybrids, with subsequent cleavage of the U1 RNA by RNase H. Our results show unequivocally that the 9 nucleotides at the 5' terminus which are complementary to a consensus 5' splice site are indeed single-stranded in the intact U1 snRNP particle, and are not protected by snRNP proteins. However, they also indicate that the U1 sequence complementary to an intron's consensus 3' end is not readily available for intermolecular base-pairing, either in the intact U1 snRNP particle or in the deproteinized U1 RNA molecule. Therefore our data favour the possibility that U1 snRNP plays a role only in the recognition of a 5' splice site of hnRNA, rather than being involved in the alignment of both ends of an intron for splicing.  相似文献   

5.
The first cleavage in mammalian pre-rRNA processing occurs within the 5' external transcribed spacer (ETS). We have recently shown that the U3 snRNP is required for this cleavage reaction, binds to the rRNA precursor, and remains complexed with the downstream processing product after the reaction has been completed (1). Using psoralen crosslinking in mouse cell extract we have detected a new interaction between U3 RNA and the mouse ETS processing substrate and its processed product. The crosslinked sites on both U3 and ETS RNAs have been mapped by RNase H cleavage and primer extension analyses. The crosslinked sites in U3 RNA map to C5, U6, and U8. U8 lies within and C5 and U6 are adjacent to an evolutionarily conserved U3 sequence termed box A'. In the ETS the crosslinked sites are U1012 and U1013, 362 nucleotides downstream from the processing site. Although the crosslinked site is dispensable for the primary processing reaction in vitro, a short conserved sequence just 3' to the cleavage site (nucleotides 650-668) is absolutely required for crosslink formation. We conclude that the interaction between U3 RNA and the 5' ETS detected by psoralen crosslinking may play a role in subsequent step(s) of pre-rRNA processing.  相似文献   

6.
U5 snRNA interacts with exon sequences at 5' and 3' splice sites.   总被引:55,自引:0,他引:55  
A J Newman  C Norman 《Cell》1992,68(4):743-754
U5 snRNA is an essential pre-mRNA splicing factor whose function remains enigmatic. Specific mutations in a conserved single-stranded loop sequence in yeast U5 snRNA can activate cleavage of G1----A mutant pre-mRNAs at aberrant 5' splice sites and facilitate processing of dead-end lariat intermediates to mRNA. Activation of aberrant 5' cleavage sites involves base pairing between U5 snRNA and nucleotides upstream of the cleavage site. Processing of dead-end lariat intermediates to mRNA correlates with base pairing between U5 and the first two bases in exon 2. The loop sequence in U5 snRNA may therefore by intimately involved in the transesterification reactions at 5' and 3' splice sites. This pattern of interactions is strikingly reminiscent of exon recognition events in group II self-splicing introns and is consistent with the notion that U5 snRNA may be related to a specific functional domain from a group II-like self-splicing ancestral intron.  相似文献   

7.
8.
We have investigated use of a conserved non-canonical GA 5' splice site present in vertebrate fibroblast growth factor receptor (FGFR) genes. Despite previous studies suggesting that GA at the beginning of an intron is incompatible with splicing, we observe efficient utilization of this splice site for human FGFR1 gene constructs. We show that use of the GA splice site is dependent on both a conventional splice site six nucleotides upstream and sequence elements within the downstream intron. Furthermore, our results are consistent with competition between the tandem 5' splice sites being mediated by U6 snRNP, rather than U1 snRNP. Thus the GA 5' splice site represents an extension of the adjacent conventional 5' splice site, the first natural example of such a composite 5' splice site.  相似文献   

9.
J M Dungan  K P Watkins    N Agabian 《The EMBO journal》1996,15(15):4016-4029
The existence of the Trypanosoma brucei 5' splice site on a small RNA of uniform sequence (the spliced leader or SL RNA) has allowed us to characterize the RNAs with which it interacts in vivo by psoralen crosslinking treatment. Analysis of the most abundant crosslinks formed by the SL RNA allowed us previously to identify the spliced leader-associated (SLA) RNA. The role of this RNA in trans-splicing, as well as the possible existence of an analogous RNA interaction in cis-splicing, is unknown. We show here that the 5' splice site region of the SL RNA is also crosslinked in vivo to a second small RNA. Although it is very small and lacks a 5' trimethylguanosine (TMG) cap, the SLA2RNA possesses counterparts of the conserved U5 snRNA stem-loop 1 and internal loop 1 sequence elements, as well as a potential trypanosome snRNA core protein binding site; these combined features meet the phylogenetic definition of U5 snRNA. Like U5, the SLA2 RNA forms an RNP complex with the U4 and U6 RNAs, and interacts with the 5' splice site region via its putative loop 1 sequence. In a final analogy with U5, the SLA2 RNA is found crosslinked to a molecule identical to the free 5' exon splicing intermediate. These data present a compelling case for the SLA2 RNA not only as an active trans-spliceosomal component, but also for its identification as the trypanosome U5 structural homolog. The presence of a U5-like RNA in this ancient eukaryote establishes the universality of the spliceosomal RNA core components.  相似文献   

10.
Caenorhabditis elegans is unusual among animals in having a highly conserved octamer sequence at the 3' splice site: UUUU CAG/R. This sequence can bind to the essential heterodimeric splicing factor U2AF, with U2AF65 contacting the U tract and U2AF35 contacting the splice site itself (AG/R). Here we demonstrate a strong correspondence between binding to U2AF of RNA oligonucleotides with variant octamer sequences and the frequency with which such variations occur in splice sites. C. elegans U2AF has a strong preference for the octamer sequence and exerts much of the pressure for 3' splice sites to have the precise UUUUCAG/R sequence. At two positions the splice site has a very strong preference for U even though alternative bases can also bind tightly to U2AF, suggesting that evolution can select against sequences that may have a relatively modest reduction in binding. Although pyrimidines are frequently present at the first base in the exon, U2AF has a very strong bias against them, arguing there is a mechanism to compensate for weakened U2AF binding at this position. Finally, the C in the consensus sequence must remain adjacent to the AG/R rather than to the stretch of U's, suggesting this C is recognized by U2AF35.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号