首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Spermospheremodels和盆栽试验结果表明 ,海岛棉 (GossypiumbarbadenseL .)苗接种自生固氮菌(Azotobactersp .)、巴西固氮螺菌NO40 (AzospirillumbrasilenseNO40 )、多粘芽孢杆菌 (BacilluspolymyxaCF)和根瘤菌 (Rhizobium) ,和以自生固氮菌分别与其它 3种供试菌种两者的混合菌 ,能增强棉花根际固氮酶活性和棉苗对氮的吸收 ,提高功能叶中氮、磷和叶绿素含量 ,从而有利于提高生物学产量 ,尤以自生固氮菌的促进效应最为显著。另一方面 ,混合菌处理较单一菌株处理 ,可以显著提高棉苗对氮的吸收 ,增加干物质积累提高皮棉产量 ,其中尤以固氮菌分别与根瘤菌或巴西固氮螺菌NO40的协同效应最显著  相似文献   

3.
禾本科植物联合固氮研究及其应用现状展望   总被引:11,自引:0,他引:11  
综述了近年来从禾本科植物体内和根际发现的内生固氮菌和根际固氮菌的种类、特征及对宿主的促生机理,以及固氮菌接种剂在农业生产中的应用现状和存在的问题,指出影响联合固氮菌接种效果的主要因素有土著微生物的竞争;植物基因型差异和环境条件的变化,如结合态氮(氨、亚硝酸盐、硝酸盐等)对固氮酶的合成阻遏和较高的氧分压对联合固氮菌的固氮效率影响.提出了发掘和利用禾本科植物的生物固氮潜力的努力方向:从自然界分离筛选获得广谱高效固氮菌株;应用基因工程构建耐铵、泌铵型联合固氮菌;诱导禾本科植物形成固氮根瘤;充分发挥植物内生固氮菌的优势.  相似文献   

4.
Strains ofKlebsiella pneumoniae, Klebsiella terrigena, Enterobacter agglomerans andAzospirillum lipoferum were compared as diazotrophic inoculants in association withPoa pratensis andTriticum aestivum. Each strain colonized both plants in numbers ranging from 104 to 107 bacteria per root, and electron microscopy and immunofluorescence staining of inoculated roots revealed bacteria mainly on root hairs. Indirect immunofluorescence with specific antifimbriae antibodies showed that the enteric bacteria expressed their fimbria in both associations. All associations were positive in an acetylene reduction test but only in half of them was atmospheric nitrogen transferred to the plant. In the inoculated plants, variable effects in the dry matter and N yields in both hosts were observed and no correlation was found between dry matter, nitrogen content or the amount of fixed nitrogen. In infected plants, the number of root hairs and lateral roots increased and the length of the zone of elongation decreased. The changes in root morphology were more evident in associations with enteric bacteria than with Azospirillum. The results give further evidence on the importance of bacterial adhesion in associative N2 fixation and suggest that bacteria-induced physiological changes in plant roots may be more important than the amount of nitrogen transferred to the plant.  相似文献   

5.
Malik  K.A.  Bilal  Rakhshanda  Mehnaz  Samina  Rasul  G.  Mirza  M.S.  Ali  S. 《Plant and Soil》1997,194(1-2):37-44
Leptochloa fusca (L.) Kunth (kallar grass) has previously been found to exhibit high rates of nitrogen fixation. A series of experiments to determine the level of biological nitrogen fixation using N isotopic dilution were carried out in nutrient solution and saline soil. These studies indicated an agronomically significant amount of nitrogen being fixed in soil. Kallar grass has a similar growth habitat to rice. Therefore similar studies were carried out with rice after isolating various diazotrophs from the roots which were also screened for their ability to produce auxin (IAA). Five such strains namely Azospirillum lipoferum N-4, Azospirillum brasilense Wb-3, Azoarcus K-1, Pseudomonas 96-51, Zoogloea Ky-1 were selected for inoculating two rice varieties i.e. NIAB-6 and BAS-370 under aseptic laboratory conditions. The nitrogen fixed was quantified using the N isotopic dilution method. Variety BAS-370 had nearly 70% nitrogen derived from atmosphere (Ndfa) when inoculated with Azospirillum N-4. Similar studies with the mixed inoculum using N fertilizer in the micro plots indicated that nearly 29% of plant nitrogen was derived from the atmosphere.  相似文献   

6.
7.
Bacterial growth in the rhizosphere and resulting changes in plant growth parameters were studied in small aseptic seedlings of birch (Betula pendula and B. pubescens) and grasses (Poa pratensis and Festuca rubra). The seedlings were inoculated with three Frankia strains (Ai1a and Ag5b isolated from native Alnus root nodules and Ai17 from a root nodule induced by soil originating from a Betula pendula stand), and three associative N2-fixing bacteria (Enterobacter agglomerans, Klebsiella pneumoniae and Pseudomonas sp., isolated from grass roots). Microscopic observations showed that all the Frankia strains were able to colonize and grow on the root surface of the plants tested without addition of an exogenous carbon source. No net growth of the associative N2-fixers was observed in the rhizosphere, although inoculum viable counts were maintained over the experimental period. Changes in both the biomass and morphology of plant seedlings in response to bacterial inoculation were recorded, which were more dependent on the plant species than on the bacterial strain.  相似文献   

8.
Summary. Large amounts of amino acids are produced by nitrogen-fixing bacteria such as Azotobacter, Azospirillum, Rhizobium, Mesorhizobium and Sinorhizobium when growing in culture media amended with different carbon and nitrogen sources. This kind of bacteria live in close association with plant roots enhanced plant growth mainly as a result of their ability to fix nitrogen, improving shoot and root development suppression of pathogenic bacteria and fungi, and increase of available P concentration. Also, it has been strongly evidenced that production of biologically substances such as amino acids by these rhizobacteria are involved in many of the processes that explain plant-grown promotion. This paper reviews literature concerning amino acids production by nitrogen-fixing bacteria. The role of amino acids in microbial interactions in the rhizosphere and establishment of plant bacterial association is also discussed.  相似文献   

9.
巨菌草不同生长时期的内生固氮菌群组成分析   总被引:1,自引:0,他引:1  
【背景】禾本科植物中存在着丰富的内生固氮菌资源,可为植物的生长、营养利用、增强抗逆性等起到重要的促进作用。【目的】揭示巨菌草不同生长时期根、茎、叶内生固氮细菌的组成及其变化。【方法】采用高通量测序技术对不同生长时期的巨菌草根、茎、叶内生固氮菌群进行群落分析。【结果】不同生长时期巨菌草根、茎、叶的15个样本分别得到4-6万条有效序列,主要分布在360 bp左右。根部巨菌草内生固氮菌群在成熟期最高,茎部和叶部均为拔节期最高,同一生长时期则为根叶茎,变化趋势与巨菌草植物样本的固氮酶活性变化趋势一致,其主要的菌群门类为变形菌门(Proteobacteria)和蓝藻菌门(Cyanobacteria),主要核心属为克雷伯氏菌属(Klebsiella)、草螺菌属(Herbaspirillum)和慢生根瘤菌(Bradyrhizobium)。整体上看,根、叶部来源的各自微生物菌群组成较为接近,茎部来源的菌群与根部、叶部有交叉,成熟期根部的联合固氮菌群种类和丰度最高。典范对应分析表明各来源样本固氮菌群的组成主要受环境温度影响,其次为湿度和pH。【结论】不同生长时期巨菌草根、茎、叶固氮菌群的组成及丰度存在着较大的差异,本研究可为巨菌草内生固氮菌群资源的开发和利用以及种质资源库的建立提供基础依据。  相似文献   

10.
The viable count of free-living diazotrophic bacteria in different crop rhizospheres varied from 1.11 x 10(4) to 8.5 x 10(5) CFU/g of soil. The majority of the diazotrophs phenotypically belong to either Azotobacter chroococcum, non-A. chroococcum type and to a heterogenous group tentatively named putative nitrogen-fixing (PNF) bacteria. In this study, 25 isolates of the PNF group were screened for their multiple plant growth-promoting (PGP) traits and grouped into 5 PGP types. An isolate, PNF(11) showed promising PGP potential in vitro and was characterized as a species of Achromobacter by 16S rRNA analysis. The isolate PNF(11) along with three other previously isolated PGP bacteria, Azotobacter sp. (AZS(3)), fluorescent pseudomonas (Ps(5)), Bacillus sp. (Bc(1)) were selected for crop inoculation response in green house experiment on Vigna radiata var.T44. Plants from inoculated and control pots were sampled and analyzed at 30, 45 and 60 days after sowing for various vegetative, nodule-related data and yield parameters. The findings indicated that selected isolate of PNF bacteria, and other PGP isolates with multiple activities significantly improve the plant growth parameters, yield parameters of Vigna radiata T44 over control and also show good compatibility with Bradyrhizobium inoculation.  相似文献   

11.
Summary Organic components leaked fromSorghum bicolor seedlings (‘root exudates’) were examined by recovering14C labelled compounds from root solutions of seedlings inoculated withAzospirillum brasilense, Azotobacter vinelandii orKlebsiella pneumoniae nif-. Up to 3.5% of the total14C recovered from shoots, roots, and nutrient solutions was found in the root solutions. Inoculation with Azospirillum and Azotobacter increased the amounts of14C and decreased the amounts of carbohydrates in the root solutions. When sucrose was added as a carbon source for the bacteria, the increase of14C in the solutions did not occur. Quantities of14C found in the root solutions were proportional to amounts of mineral nitrogen supplied to the plants. Bacterial growth also was proportional to nitrogen levels. When sorghum plants were grown in soil and labelled with14CO2, about 15% of the total14C recovered within 48 hours exposure was found in soil leachates.  相似文献   

12.
The occurrence and the dynamics of phototrophic purple nonsulphur bacteria (PPNSB) as well as Azospirillum, Azotobacter, Clostridium, and cyanobacteria at different rice growth stages were studied in two ricefields, at Kafr-El-Shiekh and Al-Fayoum in Egypt.The PPNSB existed in the both rice fields examined, but their numbers varied according to field conditions, habitat and rice growth stage. After transplanting, the number of PPNSB increased gradually, reached its maximum at maximum tillering stage, and thereafter declined toward harvest time. Numbers of PPNSB were generally comparable with that of the heterotrophic N2-fixers namely Azospirillum, Azotobacter, Clostridium and cyanobacteria, while that of phototrophic purple and green sulphur bacteria were relatively lower.The highest PPNSB numbers were generally found in rhizosphere (103–106 per g–1 dw soil) followed by soil (103–105 per g–1 dw soil) and floodwater (10–102 per ml). Rice plants showed a positive rhizosphere effect on PPNSB, clostridia, Azotobacter and Azospirillum, negative rhizosphere effect on cyanobacteria and green sulphur bacteria, and no effect on purple sulphur bacteria.  相似文献   

13.
The effects of rhizobacteria, i.e. Pseudomonas fluorescens, Azotobacter chyroococcum and Azospirillum brasilense, alone and in combination with root symbionts, Rhizobium sp. and Glomus mosseae, on the growth of chickpea, Cicer arietinum, and reproduction of Meloidogyne jaranica were studied. When added alone G. mosseae was better at improving plant growth and reducing galling and nematode reproduction than any other tested organism. Application of P. fluorescens caused an almost similar increase in plant growth to that caused by Rhizobium sp., while use of A. chroococcum was better than A. brasilense in improving growth of nematode --infected plants. Combined use of P. fluorescens with G. mosseae was better at improving plant growth and reducing galling and nematode multiplication than any other combined treatment.  相似文献   

14.
广西甘蔗根际高效联合固氮菌的筛选及鉴定   总被引:6,自引:0,他引:6  
胡春锦  林丽  史国英  汪茜  王钱崧  李杨瑞 《生态学报》2012,32(15):4745-4752
对广西主要甘蔗产区的根际联合固氮细菌进行了收集和评价,拟筛选获得对甘蔗具有潜在促生性能的联合固氮菌,为甘蔗生产节肥减耗提供依据。结合nifH基因扩增和固氮酶活性分析方法筛选获得36个固氮细菌菌株;进一步对所获得固氮菌株的固氮能力、溶磷性、分泌植物生长素IAA的特性等促进植物生长潜能进行评价,获得了5个同时具有较强固氮能力、降解无机磷和分泌植物生长激素IAA的功能菌株;通过Biolog鉴定系统和16S rRNA序列分析对5个具有较好应用潜力的固氮菌进行分类鉴定。结果表明这5个菌株分别属于Klebsiella sp.、Bacillus megaterium、Pseudomonas sp.、Pantoea sp.和Burkholderia sp.。本研究结果表明广西甘蔗根际联合固氮菌具有较大的开发利用潜力。  相似文献   

15.
In an agro-ecosystem, industrially produced nitrogenous fertilizers are the principal sources of nitrogen for plant growth; unfortunately these also serve as the leading sources of pollution. Hence, it becomes imperative to find pollution-free methods of providing nitrogen to crop plants. A diverse group of free-living, plant associative and symbiotic prokaryotes are able to perform biological nitrogen fixation (BNF). BNF is a two component process involving the nitrogen fixing diazotrophs and the host plant. Symbiotic nitrogen fixation is most efficient as it can fix nitrogen inside the nodule formed on the roots of the plant; delivering nitrogen directly to the host. However, most of the important crop plants are nonleguminous and are unable to form symbiotic associations. In this context, the plant associative and endophytic diazotrophs assume importance. BNF in nonlegumes can be encouraged either through the transfer of BNF traits from legumes or by elevating the nitrogen fixing capacity of the associative and endophytic diazotrophs. In this review we discuss mainly the microbiological strategies which may be used in nonleguminous crops for enhancement of BNF.  相似文献   

16.
Wheat lectin (wheat germ agglutinin, WGA), a representative of a broad group of cereal lectins, is excreted by plant roots into the surrounding medium and interacts with both pathogenic microflora and growth-stimulating rhizobacteria. WGA was found to serve as a molecular signal for the rhizobacterium Azospirillum brasilense, which forms endophytic and associative symbioses with wheat plants. The bacterial response to the lectin was pleiotropic: WGA at concentrations from 10(-10) to 10(-6) M exerted a dose-dependent effect on a range of processes in the bacterium that are important for the establishment and functioning of symbiosis. Plants with different WGA content differed in their responses to severe nitrogen starvation and to seed treatment with Azospirillum.  相似文献   

17.
Plants growing in close association with N(2)-fixing bacteria are able to overcome growth limitations in N-depleted soils. The molecular mechanism by which free-living, N(2)-fixing bacteria promote plant growth is still a matter of debate. By inoculating N-depleted tomato (Lycopersicon esculentum Mill.) plants with Azospirillum brasilense or Azoarcus sp. we could demonstrate the induction of the root NH(+)(4)-transporter gene, LEAMT1;2 (L. esculentum ammonium transporter 1;2), indicating that bacterial NH(+)(4) might be used as an N source under these conditions. Azospirillum brasilense (nif(-)) mutants, which lack the structural nifDK genes, failed to induce LEAMT1;2 expression. This suggests that root-associated N(2)-fixing bacteria do excrete NH(+)(4) to levels that can be sensed by tomato roots and is in agreement with the induction of expression of LEAMT1;2 with as low as > or = 1 microM external NH(+)(4). While peak expression was obtained with 2-5 microM NH(+)(4), a further increase in NH(+)(4) reduced LEAMT1;2-mRNA levels in a concentration-dependent manner. The inhibition of LEAMT1;2 expression by glutamine and the glutamine synthetase blocker L-methionine sulfoximine (MSX) provided evidence for the control of LEAMT1;2 expression by cytoplasmic NH(+)(4) concentration or the plant N status. Since micromolar concentrations of NH(+)(4) strongly increased the LEAMT1;2-mRNA levels, the transported NH(+)(4) ion itself could represent a key signal in the associative interaction between higher plants and N(2)-fixing micro-organisms.  相似文献   

18.
A common cellular mechanism of osmotic-stress adaptation is the intracellular accumulation of organic solutes (osmolytes). We investigated the mechanism of osmotic adaptation in the diazotrophic bacteria Azotobacter chroococcum, Azospirillum brasilense, and Klebsiella pneumoniae, which are adversely affected by high osmotic strength (i.e., soil salinity and/or drought). We used natural-abundance 13C nuclear magnetic resonance spectroscopy to identify all the osmolytes accumulating in these strains during osmotic stress generated by 0.5 M NaCl. Evidence is presented for the accumulation of trehalose and glutamate in Azotobacter chroococcum ZSM4, proline and glutamate in Azospirillum brasilense SHS6, and trehalose and proline in K. pneumoniae. Glycine betaine was accumulated in all strains grown in culture media containing yeast extract as the sole nitrogen source. Alternative nitrogen sources (e.g., NH4Cl or casamino acids) in the culture medium did not result in measurable glycine betaine accumulation. We suggest that the mechanism of osmotic adaptation in these organisms entails the accumulation of osmolytes in hyperosmotically stressed cells resulting from either enhanced uptake from the medium (of glycine betaine, proline, and glutamate) or increased net biosynthesis (of trehalose, proline, and glutamate) or both. The preferred osmolyte in Azotobacter chroococcum ZSM4 shifted from glutamate to trehalose as a consequence of a prolonged osmotic stress. Also, the dominant osmolyte in Azospirillum brasilense SHS6 shifted from glutamate to proline accumulation as the osmotic strength of the medium increased.  相似文献   

19.
以1-氨基环丙烷-1-羧酸(ACC)为唯一氮源,从黑龙江省大庆地区石油污染土壤的狼尾草根际土壤中分离筛选出2株产ACC脱氨酶的细菌,F4-1和F4-2。对分离的菌株进行生理生化和16S rDNA序列鉴定,确定F4-1为肠杆菌属(Enterobactersp.),F4-2为克雷伯菌属(Klebsiellasp.)。菌株F4-1的ACC脱氨酶活性为(1.40±0.17)μmolα-KA.(mg Pr.h)-1,高于F4-2的(1.03±0.03)μmolα-KA.(mg Pr.h)-1。随着L-Trp浓度的增加,菌株F4-1和F4-2的吲哚乙酸(IAA)合成量相应增加,总体上看F4-1的IAA合成能力高于F4-2。F4-1合成嗜铁素的能力也高于F4-2。  相似文献   

20.
N(2) fixation by bacteria in associative symbiosis with washed roots of 13 Poaceae and 8 other noncultivated plant species in Finland was demonstrated by the acetylene reduction method. The roots most active in C(2)H(2) reduction were those of Agrostis stolonifera, Calamagrostis lanceolata, Elytrigia repens, and Phalaris arundinacea, which produced 538 to 1,510 nmol of C(2)H(4).g (dry weight). h when incubated at pO(2) 0.04 with sucrose (pH 6.5), and 70 to 269 nmol of C(2)H(4). g (dry weight).h without an added energy source and unbuffered. Azospirillum lipferum, Enterobacter agglomerans, Klebsiella pneumoniae, and a Pseudomonas sp. were the acetylene-reducing organisms isolated. The results demonstrate the presence of N(2)-fixing organisms in associative symbiosis with plant roots found in a northern climatic region in acidic soils ranging down to pH 4.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号