首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD1 proteins constitute a third class of antigen-presenting molecules. They are cell surface glycoproteins, expressed as approximately 50-kDa glycosylated heavy chains that are noncovalently associated with beta2-microglobulin. They bind lipids rather than peptides. Although their structure confirms the similarity of CD1 proteins to MHC class I and class II antigen presenting molecules, the mCD1d groove is relatively narrow, deep, and highly hydrophobic and it has two binding pockets instead of the several shallow pockets described for the classical MHC-encoded antigen-presenting molecules. Based upon their amino acid sequences, such a hydrobphobic groove provides an ideal environment for the binding of lipid antigens. The Natural Killer T (NKT) cells use their TCR to recognize glycolipids bound to or presented by CD1d. T cells reactive to lipids presented by CD1 have been involved in the protection against autoimmune and infectious diseases and in tumor rejection. Thus, the ability to identify, purify , and track the response of CD1-reactive NKT cell is of great importance . The generation of tetramers of alpha Galactosyl ceramide (a-Galcer) with CD1d has significant insight into the biology of NKT cells. Tetramers constructed from other CD1 molecules have also been generated and these new reagents have greatly expanded the knowledge of the functions of lipid-reactive T cells, with potential use in monitoring the response to lipid-based vaccines and in the diagnosis of autoimmune diseases and other treatments.  相似文献   

2.
Natural killer T cells: rapid responders controlling immunity and disease   总被引:6,自引:0,他引:6  
Natural killer T (NKT) cells are a subset of T cells that share properties of natural killer cells and conventional T cells. They are involved in immediate immune responses, tumor rejection, immune surveillance and control of autoimmune diseases. Most NKT cells express both an invariant T cell antigen receptor and the NK cell receptor NK1.1, and are referred to as invariant NKT cells. This invariant T cell receptor is restricted to interactions with glycolipids presented by the non-classical MHC, CD1d. These NKT cells rapidly produce high levels of interleukin (IL)-2, IFN-gamma, TNF-alpha, and IL-4 upon stimulation through their TCR. Most also have cytotoxic activity similar to NK cells. NKT cells are involved in a number of pathological conditions, and have been shown to regulate viral infections in vivo, and control tumor growth. They may also play both protective and harmful roles in the progression of certain autoimmune diseases, such as diabetes, lupus, atherosclerosis, and allergen-induced asthma.  相似文献   

3.
CD1 molecules belong to non-polymorphic MHC class I-like proteins and present lipid antigens to T cells. Five different CD1 genes (CD1a-e) have been identified and classified into two groups. Group 1 include CD1a-c and present pathogenic lipid antigens to αβ T cells reminiscence of peptide antigen presentation by MHC-I molecules. CD1d is the only member of Group 2 and presents foreign and self lipid antigens to a specialized subset of αβ T cells, NKT cells. NKT cells are involved in diverse immune responses through prompt and massive production of cytokines. CD1d-dependent NKT cells are categorized upon the usage of their T cell receptors. A major subtype of NKT cells (type I) is invariant NKT cells which utilize invariant Vα14-Jα18 TCR alpha chain in mouse. The remaining NKT cells (type II) utilize diverse TCR alpha chains. Engineered CD1d molecules with modified intracellular trafficking produce either type I or type II NKT cell-defects suggesting the lipid antigens for each subtypes of NKT cells are processed/generated in different intracellular compartments. Since the usage of TCR by a T cell is the result of antigen-driven selection, the intracellular metabolic pathways of lipid antigen are a key in forming the functional NKT cell repertoire. [BMB Reports 2014; 47(5): 241-248]  相似文献   

4.
NKT cells are CD1d-restricted T cells that recognize lipid antigens. They also have been shown to play critical roles in the regulation of immune responses. In the immune responses against tumors, two subsets of NKT cells, type I and type II, play opposing roles and cross-regulate each other. As members of both the innate and adaptive immune systems, which form a network of multiple components, they also interact with other immune components. Here, we discuss the function of NKT cells in tumor immunity and their interaction with other regulatory cells, especially CD4+CD25+Foxp3+ regulatory T cells.  相似文献   

5.
The T cell response to B cell lymphomas differs from the majority of solid tumors in that the malignant cells themselves are derived from B lymphocytes, key players in immune response. B cell lymphomas are therefore well situated to manipulate their surrounding microenvironment to enhance tumor growth and minimize anti-tumor T cell responses. We analyzed the effect of T cells on the growth of a transplantable B cell lymphoma and found that iNKT cells suppressed the anti-tumor CD8(+) T cell response. Lymphoma cells transplanted into syngeneic wild type (WT) mice or Jalpha18(-/-) mice that specifically lack iNKT cells grew initially at the same rate, but only the mice lacking iNKT cells were able to reject the lymphoma. This effect was due to the enhanced activity of tumor-specific CD8(+) T cells in the absence of iNKT cells, and could be partially reversed by reconstitution of iNKT cells in Jalpha 18(-/-) mice. Treatment of tumor-bearing WT mice with alpha -galactosyl ceramide, an activating ligand for iNKT cells, reduced the number of tumor-specific CD8(+) T cells. In contrast, lymphoma growth in CD1d1(-/-) mice that lack both iNKT and type II NKT cells was similar to that in WT mice, suggesting that type II NKT cells are required for full activation of the anti-tumor immune response. This study reveals a tumor-promoting role for iNKT cells and suggests their capacity to inhibit the CD8(+) T cell response to B cell lymphoma by opposing the effects of type II NKT cells.  相似文献   

6.
Tissue-specific segregation of CD1d-dependent and CD1d-independent NK T cells.   总被引:24,自引:0,他引:24  
NKT cells, defined as T cells expressing the NK cell marker NK1.1, are involved in tumor rejection and regulation of autoimmunity via the production of cytokines. We show in this study that two types of NKT cells can be defined on the basis of their reactivity to the monomorphic MHC class I-like molecule CD1d. One type of NKT cell is positively selected by CD1d and expresses a biased TCR repertoire together with a phenotype found on activated T cells. A second type of NKT cell, in contrast, develops in the absence of CD1d, and expresses a diverse TCR repertoire and a phenotype found on naive T cells and NK cells. Importantly, the two types of NKT cells segregate in distinct tissues. Whereas thymus and liver contain primarily CD1d-dependent NKT cells, spleen and bone marrow are enriched in CD1d-independent NKT cells. Collectively, our data suggest that recognition of tissue-specific ligands by the TCR controls localization and activation of NKT cells.  相似文献   

7.
Sulfatide-reactive type II NKT cells have been shown to regulate autoimmunity and anti-tumor immunity. Although, two major isoforms of sulfatide, C16:0 and C24:0, are enriched in the pancreas, their relative role in autoimmune diabetes is not known. Here, we report that sulfatide/CD1d-tetramer(+) cells accumulate in the draining pancreatic lymph nodes, and that treatment of NOD mice with sulfatide or C24:0 was more efficient than C16:0 in stimulating the NKT cell-mediated transfer of a delay in onset from T1D into NOD.Scid recipients. Using NOD.CD1d(-/-) mice, we show that this delay of T1D is CD1d-dependent. Interestingly, the latter delay or protection from T1D is associated with the enhanced secretion of IL-10 rather than IFN-g by C24:0-treated CD4(+) T cells and the deviation of the islet-reactive diabetogenic T cell response. Both C16:0 and C24:0 sulfatide isoforms are unable to activate and expand type I iNKT cells. Collectively, these data suggest that C24:0 stimulated type II NKT cells may regulate protection from T1D by activating DCs to secrete IL-10 and suppress the activation and expansion of type I iNKT cells and diabetogenic T cells. Our results raise the possibility that C24:0 may be used therapeutically to delay the onset and protect from T1D in humans.  相似文献   

8.
The majority of T lymphocytes carrying the NK cell marker NK1.1 (NKT cells) depend on the CD1d molecule for their development and are distinguished by their potent capacity to rapidly secrete cytokines upon activation. A substantial fraction of NKT cells express a restricted TCR repertiore using an invariant TCR Valpha14-Jalpha281 rearrangement and a limited set of TCR Vbeta segments, implying recognition of a limited set of CD1d-associated ligands. A second group of CD1d-reactive T cells use diverse TCR potentially recognizing a larger diversity of ligands presented on CD1d. In TCR-transgenic mice carrying rearranged TCR genes from a CD1d-reactive T cell with the diverse type receptor (using Valpha3. 2/Vbeta9 rearrangements), the majority of T cells expressing the transgenic TCR had the typical phenotype of NKT cells. They expressed NK1.1, CD122, intermediate TCR levels, and markers indicating previous activation and were CD4/CD8 double negative or CD4+. Upon activation in vitro, the cells secreted large amounts of IL-4 and IFN-gamma, a characteristic of NKT cells. In mice lacking CD1d, TCR-transgenic cells with the NKT phenotype were absent. This demonstrates that a CD1d-reactive TCR of the "non-Valpha 14" diverse type can, in a ligand-dependent way, direct development of NK1.1+ T cells expressing expected functional and cell-surface phenotype characteristics.  相似文献   

9.
NKT cells in donor bone marrow (BM) have been demonstrated to protect against graft-vs-host disease (GVHD) following BM transplantation. Murine NKT cells are divided into two distinct subsets based on the invariant Valpha14Jalpha18 TCR expression. However, details of the subset and mechanisms of the BM NKT cells involved in suppressing GVHD have not been clarified. Irradiated BALB/c or C3H/HeN mice administered B6 or Jalpha18(-/-) BM cells show attenuation of GVHD, whereas recipients given CD1d(-/-) BM cells did not show attenuation. Moreover, coinjection of BM non-Valpha14Jalpha18 CD1d-restricted (type II) NKT cells and CD1d(-/-) BM cells suppressed GVHD, whereas coinjection of BM Valpha14Jalpha18 TCR (type I) NKT cells did not. These protective effects on GVHD depended upon IFN-gamma-producing type II NKT cells, which induced the apoptosis of donor T cells. The splenocytes of mice administered BM cells from B6.IL-4(-/-) or Jalpha18(-/-)IL-4(-/-) mice produced lower levels of IL-4 and IL-10 than the splenocytes of mice transplanted with BM cells from B6, B6.IFN-gamma(-/-), Jalpha18(-/-), or Jalpha18(-/-)IFN-gamma(-/-) mice. Taken together, our results show that IFN-gamma-producing BM type II NKT cells suppress GVHD by inducing the apoptosis of donor T cells, while IL-4-producing BM type II NKT cells protect against GVHD by deviating the immune system toward a Th2-type response.  相似文献   

10.
NK T (NKT) cells are an important component of the innate immune system and recognize the MHC class I-like CD1d molecule. NKT cells possess significant immunoregulatory activity due to their rapid secretion of large quantities of pro- and anti-inflammatory cytokines following CD1d-dependent stimulation. Because the innate immune system is programmed to respond to a multitude of diverse stimuli and must be able to quickly differentiate between pathogenic and endogenous signals, we hypothesized that, apart from stimulation via the TCR (e.g., CD1d-dependent activation), there must be multiple activation pathways that can be triggered through other cell surface receptors on NKT cells. Therefore, we analyzed the ability of CD44, a structurally diverse cell surface receptor expressed on most cells, to stimulate murine NKT cells, compared with conventional T cells. Stimulation of CD44 through Ab cross-linking or binding to its natural ligands hyaluronan and osteopontin induced NKT cells to secrete cytokines, up-regulate activation markers, undergo morphological changes, and resist activation-induced cell death, whereas conventional T cells only exhibited changes in morphology and protection from activation-induced cell death. This CD44-specific stimulation of NKT cells correlated with their ability to bind hyaluronan. Thus, fundamental differences in CD44 function between these lymphocyte subsets suggest an important biological role for CD44 in the innate immune response.  相似文献   

11.
Valpha24 invariant (Valpha24i) CD1d-restricted NKT cells are widely regarded to have immune regulatory properties. They are known to have a role in preventing autoimmune diseases and are involved in optimally mounted immune responses to pathogens and tumor cells. We were interested in understanding how these cells provide protection in autoimmune diseases. We first observed, using EBV/MHC I tetrameric complexes, that expansion of Ag-specific cells in human PBMCs was reduced when CD1d-restricted NKT cells were concomitantly activated. This was accompanied by an increase in a CD4(-)CD8alphaalpha(+) subset of Valpha24i NKT cells. To delineate if a specific subset of NKT cells was responsible for this effect, we generated different subsets of human CD4(-) and CD4(+) Valpha24i NKT clones and demonstrate that a CD4(-)CD8alphaalpha(+) subset with highly efficient cytolytic ability was unique among the clones in being able to suppress the proliferation and expansion of activated T cells in vitro. Activated clones were able to kill CD1d-bearing dendritic or target cells. We suggest that one mechanism by which CD1d-restricted NKT cells can exert a regulatory role is by containing the proliferation of activated T cells, possibly through timely lysis of APCs or activated T cells bearing CD1d.  相似文献   

12.
Dendritic cells (DC) are key regulators of T cell immunity and tolerance. NKT cells are well-known enhancers of Th differentiation and regulatory T cell function. However, the nature of the DC directing T and NKT cell activation and polarization as well as the role of the respective CD1d Ags presented is still unclear. In this study, we show that peptide-specific CD4(+)IL-10(+) T cell-mediated full experimental autoimmune encephalomyelitis (EAE) protection by TNF-treated semimatured DCs was dependent on NKT cells recognizing an endogenous CD1d ligand. NKT cell activation by TNF-matured DCs induced high serum levels of IL-4 and IL-13 which are absent in NKT cell-deficient mice, whereas LPS plus anti-CD40-treated fully mature DCs induce serum IFN-gamma. In the absence of IL-4Ralpha chain signaling or NKT cells, no complete EAE protection was achieved by TNF-DCs, whereas transfer of NKT cells into Jalpha281(-/-) mice restored it. However, activation of NKT cells alone was not sufficient for EAE protection and early serum Th2 deviation. Simultaneous activation of NKT cells and CD4(+) T cells by the same DC was required for EAE protection. Blocking experiments demonstrated that NKT cells recognize an endogenous glycolipid presented on CD1d on the injected DC. Together, this indicates that concomitant and interdependent presentation of MHC II/self-peptide and CD1d/self-isoglobotrihexosylceramide to T and NKT cells by the same partially or fully matured DC determines protective and nonprotective immune responses in EAE.  相似文献   

13.
Attempts to harness mouse type I NKT cells in different therapeutic settings including cancer, infection, and autoimmunity have proven fruitful using the CD1d-binding glycolipid α-galactosylceramide (α-GalCer). In these different models, the effects of α-GalCer mainly relied on the establishment of a type I NKT cell-dependent immune cascade involving dendritic cell, NK cell, B cell, or conventional CD4(+) and CD8(+) T cell activation/regulation as well as immunomodulatory cytokine production. In this study, we showed that γδ T cells, another population of innate-like T lymphocytes, displayed a phenotype of activated cells (cytokine production and cytotoxic properties) and were required to achieve an optimal α-GalCer-induced immune response. Using gene-targeted mice and recombinant cytokines, a critical need for IL-12 and IL-18 has been shown in the α-GalCer-induced IFN-γ production by γδ T cells. Moreover, this cytokine production occurred downstream of type I NKT cell response, suggesting their bystander effect on γδ T cells. In line with this, γδ T cells failed to directly recognize the CD1d/α-GalCer complex. We also provided evidence that γδ T cells increase their cytotoxic properties after α-GalCer injection, resulting in an increase in killing of tumor cell targets. Moreover, using cancer models, we demonstrated that γδ T cells were required for an optimal α-GalCer-mediated anti-tumor activity. Finally, we reported that immunization of wild-type mice with α-GalCer enhanced the adaptive immune response elicited by OVA, and this effect was strongly mediated by γδ T cells. We conclude that γδ T cells amplify the innate and acquired response to α-GalCer, with possibly important outcomes for the therapeutic effects of this compound.  相似文献   

14.
In this study we show that like MHC class I and class II molecules, cell surface CD1d expression on APC is regulated and affects T cell activation under physiological conditions. Although IFN-gamma alone is sufficient for optimum expression of MHC, CD1d requires two signals, one provided by IFN-gamma and a second mediated by microbial products or by the proinflammatory cytokine TNF. IFN-gamma-dependent CD1d up-regulation occurs on macrophages following infection with live bacteria or exposure to microbial products in vitro and in vivo. APC expressing higher CD1d levels more efficiently activate NKT cell hybridomas and primary NKT cells independently of whether the CD1d-restricted TCR recognizes foreign or self-lipid Ags. Our findings support a model in which CD1d induction regulates NKT cell activation.  相似文献   

15.
Allergic asthma is characterized by Th2-driven eosinophilic airway inflammation and by a central feature called airway hyperreactivity (AHR), development of which requires the presence of classical type I invariant NK T (iNKT) cells. Allergen-induced AHR, however, develops in beta(2)-microglobulin (beta(2)m)(-/-) mice, which lack classical iNKT cells, suggesting that in some situations iNKT cells may be dispensable for the development of AHR. In contrast, our studies now suggest that a CD1d-restricted, NK1.1(+) noninvariant TCR NKT cell population is present in beta(2)m(-/-) mice and is responsible for the development of AHR but not for Th2 responses. Furthermore, treatment of beta(2)m(-/-) mice with anti-CD1d mAb or anti-NK1.1 mAb unexpectedly abolished allergen-induced AHR. The CD1-restricted NKT cells in these mice, which failed to respond to alpha-galactosylceramide and which therefore were not classical type I iNKT cells, appear to represent an NKT cell subset restricted by a beta(2)m-independent form of CD1d. These results indicate that, although classical type I iNKT cells are normally required for the development of AHR, under different circumstances other NKT cell subsets, including nonclassical NKT cells, may substitute for classical iNKT cells and induce AHR.  相似文献   

16.
Natural killer T (NKT) cells play an important role in controlling cancers, infectious diseases and autoimmune diseases. Although the rhesus macaque is a useful primate model for many human diseases such as infectious and autoimmune diseases, little is known about their NKT cells. We analyzed V alpha 24TCR+ T cells from rhesus macaque peripheral blood mononuclear cells stimulated with alpha-galactosylceramide (alpha-GalCer) and interleukin-2. We found that rhesus macaques possess V alpha 24TCR+ T cells, suggesting that recognition of alpha-GalCer is highly conserved between rhesus macaques and humans. The amino acid sequences of the V-J junction for the V alpha 24TCR of rhesus macaque and human NKT cells are highly conserved (93% similarity), and the CD1d alpha1-alpha2 domains of both species are highly homologous (95.6%). These findings indicate that the rhesus macaque is a useful primate model for understanding the contribution of NKT cells to the control of human diseases.  相似文献   

17.
CD8alphaalpha+CD4-TCRalphabeta+ T cells are a special lineage of T cells found predominantly within the intestine as intraepithelial lymphocytes and have been shown to be involved in the maintenance of immune homeostasis. Although these cells are independent of classical MHC class I (class Ia) molecules, their origin and function in peripheral lymphoid tissues are unknown. We have recently identified a novel subset of nonintestinal CD8alphaalpha+CD4-TCRalphabeta+ regulatory T cells (CD8alphaalpha Tregs) that recognize a TCR peptide from the conserved CDR2 region of the TCR Vbeta8.2-chain in the context of a class Ib molecule, Qa-1a, and control- activated Vbeta8.2+ T cells mediating experimental autoimmune encephalomyelitis. Using flow cytometry, spectratyping, and real-time PCR analysis of T cell clones and short-term lines, we have determined the TCR repertoire of the CD8alphaalpha regulatory T cells (Tregs) and found that they predominantly use the TCR Vbeta6 gene segment. In vivo injection of anti-TCR Vbeta6 mAb results in activation of the CD8alphaalpha Tregs, inhibition of the Th1-like pathogenic response to the immunizing Ag, and protection from experimental autoimmune encephalomyelitis. These data suggest that activation of the CD8alphaalpha Tregs present in peripheral lymphoid organs other than the gut can be exploited for the control of T cell-mediated autoimmune diseases.  相似文献   

18.
Type 1 diabetes (T1D) is a chronic autoimmune disease that results from T cell-mediated destruction of pancreatic β cells. CD1d-restricted NKT lymphocytes have the ability to regulate immunity, including autoimmunity. We previously demonstrated that CD1d-restricted type II NKT cells, which carry diverse TCRs, prevented T1D in the NOD mouse model for the human disease. In this study, we show that CD4(+) 24αβ type II NKT cells, but not CD4/CD8 double-negative NKT cells, were sufficient to downregulate diabetogenic CD4(+) BDC2.5 NOD T cells in adoptive transfer experiments. CD4(+) 24αβ NKT cells exhibited a memory phenotype including high ICOS expression, increased cytokine production, and limited display of NK cell markers, compared with double-negative 24αβ NKT cells. Blocking of ICOS or the programmed death-1/programmed death ligand 1 pathway was shown to abolish the regulation that occurred in the pancreas draining lymph nodes. To our knowledge, these results provide for the first time cellular and molecular information on how type II CD1d-restricted NKT cells regulate T1D.  相似文献   

19.
Asthma is a common chronic inflammatory disease involving many different cell types. Recently, type I natural killer T (NKT) cells have been demonstrated to play a crucial role in the development of asthma. However, the roles of type II NKT cells in asthma have not been investigated before. Interestingly, type I and type II NKT cells have been shown to have opposing roles in antitumor immunity, antiparasite immunity, and autoimmunity. We hypothesized that sulfatide-activated type II NKT cells could prevent allergic airway inflammation by inhibiting type I NKT cell function in asthma. Strikingly, in our mouse model, activation of type II NKT cells by sulfatide administration and adoptive transfer of sulfatide-activated type II NKT cells result in reduced-inflammation cell infiltration in the lung and bronchoalveolar lavage fluid, decreased levels of IL-4 and IL-5 in the BALF; and decreased serum levels of ovalbumin-specific IgE and IgG1. Furthermore, it is found that the activation of sulfatide-reactive type II NKT cells leads to the functional inactivation of type I NKT cells, including the proliferation and cytokine secretion. Our data reveal that type II NKT cells activated by glycolipids, such as sulfatide, may serve as a novel approach to treat allergic diseases and other disorders characterized by inappropriate type I NKT cell activation.  相似文献   

20.
NKT cells that express the semi-invariant TCR are innate-like lymphocytes whose functions are regulated by self and foreign glycolipid ligands presented by the Ag-presenting, MHC class I-like molecule CD1d. Activation of NKT cells in vivo results in rapid release of copious amounts of effector cytokines and chemokines with which they regulate innate and adaptive immune responses to pathogens, certain types of cancers, and self-antigens. The nature of CD1d-restricted ligands, the manner in which they are recognized, and the unique effector functions of NKT cells suggest an immunoregulatory role for this T cell subset. Their ability to respond fast and our ability to steer NKT cell cytokine response to altered lipid ligands make them an important target for vaccine design and immunotherapies against autoimmune diseases. This review summarizes our current understanding of CD1d-restricted ligand recognition by NKT cells and how these innate-like lymphocytes regulate inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号