首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一株红壤溶磷菌的分离、鉴定及溶磷特性   总被引:9,自引:0,他引:9  
【目的】为了提高红壤磷素利用率,探讨溶磷菌溶磷机理。【方法】利用难溶性无机盐培养基从花生根际土壤样品中分离到一株溶磷菌C5-A,结合菌落形态特征、生理生化和16S rRNA序列确定该菌株的系统发育地位;通过菌株C5-A在NBRIP液体培养基培养过程中培养液pH变化确定其溶磷能力;利用液体发酵实验测定不同的碳源、氮源对菌株C5-A溶磷的影响;通过高效液相色谱检测C5-A在不同氮源培养液中有机酸的种类和浓度。【结果】菌株C5-A鉴定为洋葱伯克霍尔德氏菌(Burkholderia cepacia),遗传稳定性较好。在FePO4和AlPO4培养液中,菌株C5-A的溶磷量和pH变化呈显著负相关;菌株C5-A对磷酸三钙、磷酸铝、磷酸铁、磷矿粉均有较强的溶解能力,最高溶磷量分别为125.79、227.34、60.02和321.15 mg/L;菌株C5-A对不同浓度的两种磷矿粉有较强的溶解能力;分别以麦芽糖和草酸铵为碳源和氮源时溶磷量最高。高效液相色谱检测出10种有机酸,分别为草酸(葡萄糖酸)、乙酸、苹果酸、琥珀酸和5种未知有机酸,然而,乙酸而非草酸似乎是影响C5-A溶磷的重要有机酸。【结论】从红壤花生根际土壤中筛选到一株对难溶性无机盐具有较强溶解能力溶的菌株C5-A,有望为开发高效红壤微生物磷肥提供种质资源。  相似文献   

2.
牡丹根际溶磷放线菌的筛选及其溶磷特性   总被引:3,自引:0,他引:3  
通过从牡丹根际土壤中分离筛选溶磷放线菌,得到一株具有较强溶磷能力的菌株PSPSA1,根据形态特征、生理生化特性以及16S rDNA序列分析对菌株进行鉴定,并研究其溶磷遗传稳定性及溶磷特性.菌株PSPSA1被鉴定为白网链霉菌,具有较好的溶磷遗传稳定性.在不同磷源培养液中溶磷量依次为磷酸钙(158.5 mg·L-1)>磷酸铝(139.9 mg·L-1)>磷酸铁(127.7 mg·L-1)>卵磷脂(45.6 mg·L-1),在无机磷培养液中的溶磷量均与pH呈现显著负相关性,在有机磷培养液中的溶磷量与pH没有显著相关性.在不同碳源条件下的溶磷量依次为乳糖>葡糖糖>麦芽糖>果糖>蔗糖>淀粉>纤维素,在不同氮源条件下的溶磷量依次为蛋白胨>硝酸铵>硫酸铵>硝酸钾>尿素,以葡萄糖为碳源、蛋白胨为氮源时,菌株的溶磷量最高可达202.6 mg·L-1.土培60 d,单施菌株土壤有效磷含量比对照增加68.2%,菌株与有机肥混施土壤有效磷含量比单施有机肥增加76.7%.表明菌株PSPSA1能够溶解多种难溶磷,在土壤中溶磷效果显著,与有机肥混施其溶磷能力明显提高,有望成为高效生物磷肥的优良菌种.  相似文献   

3.
一株耐盐日本曲霉的筛选及其溶磷促生作用   总被引:2,自引:0,他引:2  
【目的】从内蒙古种植葵花的盐碱地中筛选高效溶磷真菌,为盐碱地增产节肥开发生物肥料提供溶磷菌种资源。【方法】利用ITS r DNA序列鉴定菌株、固体培养基测定耐盐性,液体摇床培养与盆栽试验结合分析菌株溶磷能力,盆栽和田间试验明确菌株M1促进作物生长和增产作用;LC-MS技术测定菌株M1在液体培养基中分泌有机酸和植物激素含量,明确菌株M1的溶磷和促生机理。【结果】溶磷菌株M1鉴定为日本曲霉(Aspergillus japonicus)。液体培养基接种菌株M1培养6 d,以Ca_3(PO_4)_2为磷源时上清液有效磷达1020.89 mg/L,溶解率为63.30%;以AlPO_4为磷源时有效磷达995.69 mg/L,溶解率为48.59%;以贵州开阳磷矿粉、江苏锦屏磷矿粉、云南晋宁磷矿粉、河北钒山磷矿粉和云南昆阳磷矿粉为磷源接种菌株M1,从晋宁磷矿粉释放的有效磷浓度最高,达到363.64 mg/L。菌株M1可耐受10%NaCl。将M1制备的菌剂分别接种于施用Ca_3(PO_4)_2、AlPO_4和开阳磷矿粉3种磷源的4种盆栽试验土壤包括北京石灰性潮土、安徽黏性潮土、安徽水稻土和山东沿海盐潮土。结果显示,菌株M1对玉米植株促生效果显著,玉米植株鲜重比对照提高2.14%–90.91%、干重增加22.15%–268.28%;土壤有效磷提高21.81–24.27 mg/kg。菌株M1与4种土壤的适配性均高于对照菌株DSM 821。田间小区花生产量结果显示,接种溶磷菌剂M1增产效果最好,花生果实产量达4.46 t/hm~2,比不接种菌剂的对照处理增加0.81 t/hm~2,增产22.19%。菌株M1在含有磷酸三钙、磷酸铝和开阳磷矿粉3种难溶磷培养液中经过6 d培养,均产生7种有机酸,其中草酸和柠檬酸含量最高,分别为616.16 mg/L和413.69 mg/L;培养液均能检测到吲哚乙酸(IAA)和玉米素,IAA含量为15.45–77.58 mg/L,玉米素浓度为0.06–0.11 mg/L。【结论】获得了一株高效溶解多种难溶磷的日本曲霉菌M1,它能显著增加土壤有效磷、促进玉米生长和花生增产,与4种典型土壤适配性好,具有良好的农业应用前景。  相似文献   

4.
拉恩氏菌W25对缓冲容量的响应及其产酸特性   总被引:1,自引:0,他引:1  
【目的】进一步了解拉恩氏菌W25的溶磷机理和对土壤缓冲容量的响应。【方法】在液体摇瓶培养过程中,采用调节培养液pH的方法研究模拟土壤的缓冲容量对拉恩氏菌W25溶磷量的影响;通过单因子试验和HPLC相结合的方法,研究不同碳源、磷源条件下W25的溶磷能力及产酸特性。【结果】拉恩氏菌W25在磷酸三钙培养液中培养120 h后有效磷含量达到最大值,培养液有效磷含量与培养液pH变化之间呈极显著负相关性(P<0.01);W25在培养第48?96 h具有较强的缓冲能力,培养液有效磷含量加碱处理与未加碱处理差异不显著(P<0.05),从第120 h开始,缓冲能力开始减弱,在168 h后基本丧失了缓冲能力;W25在不同碳源条件下溶磷能力差异显著(P<0.05),依次为葡萄糖>乳糖>蔗糖>甘露醇>淀粉,不同磷源中培养液有效磷含量差异极显著(P<0.01),依次为磷酸三钙>磷酸铁>磷酸铝>磷矿粉;不同碳源、磷源条件下W25培养液中有机酸的种类和浓度差异较大,W25溶磷能力的大小不仅与产酸的种类有关,而且也与产酸的浓度有关。【结论】研究结果为更深入研究拉恩氏菌溶磷机理提供条件,为拉恩氏菌的应用提供理论基础。  相似文献   

5.
石灰性土壤拉恩式溶磷细菌的筛选鉴定及溶磷特性   总被引:3,自引:0,他引:3  
从山西石灰性土壤作物根际分离筛选出多株溶磷细菌,经过多次分离纯化得到一株溶磷能力较强的菌株W25,通过菌落形态、生理生化特性和16S rRNA序列分析,确定溶磷菌W25为拉恩式菌属.对W25溶解磷特性进一步研究表明:其对磷酸三钙、磷酸铝和磷酸铁最高溶磷能力分别为385.5、110.4、216.6 mg·L-1;在磷酸铝和磷酸铁培养液中,W25溶磷量与培养液pH的相关系数分别为0.56和0.81,呈极显著负相关;在不同碳氮源条件下,W25以葡萄糖为碳源和NH4NO3为氮源时对磷酸三钙的溶磷量最高,对碳源的利用顺序依次为葡萄糖>乳糖>蔗糖>甘露醇>淀粉,对氮源的利用顺序依次为NH4NO3 >NH4Cl>(NH4)2SO4>NaNO3>KNO3.不同氮源对W25产生有机酸的种类影响较大,以铵态氮为氮源产生甲酸和乙酸,以硝态氮为氮源产生草酸和琥珀酸,以硝酸铵为氮源还产生柠檬酸.  相似文献   

6.
类芦根际溶磷真菌的筛选、鉴定及其溶磷能力分析   总被引:6,自引:0,他引:6  
为揭示类芦(Neyraudia reynaudiana)等水土保持植物的耐低磷机制,开发溶磷菌种质资源,提高赤红壤磷素利用率,从类芦根际土壤中筛选到一株溶磷能力较强的真菌FP1,经形态学和ITS序列分析,鉴定为黑曲霉(Aspergillus niger)。3种难溶性磷酸盐液体培养基接种菌株FP1后,其pH值和溶磷量的动态变化显示,培养液的pH值均呈显著下降趋势。溶磷量与培养时间有关,除磷酸三钙外,菌株FP1对其他难溶性磷酸盐的溶磷趋势均为先上升再下降并趋于稳定。菌株FP1对不同磷源的最大溶磷率顺序为:磷酸铝(92.02%)磷酸三钙(41.62%)3种磷酸盐的混合物(35.86%)磷酸铁(19.20%)。FP1对磷酸铝和磷酸铁都具有较强的溶磷能力,表明抗逆性强的水土保持植物类芦根际土壤蕴藏着高效的溶磷微生物资源。  相似文献   

7.
溶磷菌和固氮菌溶解磷矿粉时的互作效应   总被引:13,自引:0,他引:13  
采用4株溶磷菌(Lx81、Dm84、Jm92、Lx191)、和3株固氮菌(ChW5、ChW6、ChO6)单独和混合接种后测定培养液有效磷含量、pH值及总有机酸含量的方法,研究溶磷菌和固氮菌溶解磷矿粉时的互作效应。结果表明,相对于单独接种溶磷菌:Lx81与3株固氮菌分别混合培养能提高磷矿粉的溶解能力,4株溶磷菌与ChW6,Lx81、Dm84、Lx191与Ch06分别混合培养及Jm92+ChW5组合溶磷量极显著增加(P〈0.01);Dm84+ChW5、Lxl91+ChW5、Jm92+Ch06组合的溶磷量下降(P〈0.01)。除Lx81+ChW6、Lx81+Ch06培养液pH值降低外,混合培养的其它组合培养液pH值均较单独接种溶磷菌时升高。有机酸测定结果表明,Lx81、Jm92与ChW5、Ch06分别混合培养、ChW6+Lx81组合有机酸含量升高(P〈0.01),其它7种组合的有机酸含量均较单独接种溶磷菌的值下降(P〈0.01)。溶磷菌和固氮菌单菌培养时溶磷量与pH值、溶磷量与总有机酸含量及pH值与总有机酸含量之间呈现线性相关;Dm84、Lx191与3株固氮菌分别混合培养溶磷量与pH值之间、Lx81与3株固氮菌分别混合培养溶磷量与总有机酸含量之间呈现线性相关,其它组合的溶磷量与pH值、总有机酸含量间没有相关性。溶磷菌和固氮菌混合培养对溶解磷矿粉既有协同作用也有拮抗作用。  相似文献   

8.
微生物溶解磷矿粉能力与pH及分泌有机酸的关系   总被引:25,自引:0,他引:25  
从玉米根际和非根际土壤中分离得到的 74株溶解磷矿粉的微生物 ,发现它们的溶磷能力差异很大 ,主要决定于菌株本身的特性 ,与其来源无关 ,真菌普遍比细菌要强。真菌的溶磷能力与其培养介质的 pH之间呈显著的负相关 ,但细菌的这种关系非常弱。二者都产生多种有机酸 ,真菌主要分泌草酸、丙二酸和乳酸 ,而细菌主要分泌草酸、酒石酸、丙二酸、乳酸和乙酸 ,不同菌株分泌有机酸的数量和种类差异很大 ,但溶磷量与有机酸总量或单个有机酸浓度之间 ,没有发现显著的相关性 ,唯独柠檬酸与真菌的溶磷量之间存在显著的相关性。说明不同菌株有完全不同的溶磷机理 ,可能多种机理并存。  相似文献   

9.
贵州两处茶园溶磷青霉菌的筛选、鉴定及溶磷能力分析   总被引:2,自引:0,他引:2  
为维持土壤自然完整性、活化利用土壤中难溶性磷,从贵州名茶产地都匀、贵定茶园土壤中筛选高效溶磷真菌,为制备真菌肥料提供菌种资源。利用溶磷指数(SPI)、形态特征和ITS rDNA序列筛选、鉴定菌株,并采用液体摇床培养实验测定鉴定菌株在以磷酸钙、磷酸铁或磷酸铝为唯一磷源的无机磷液体培养基中的溶磷能力。共筛选到7个高效溶磷菌落,经形态观察分属2种菌株,鉴定为微紫青霉(Penicillium janthinellum)和赭绿青霉(Penicillium ochrochloron)。液体培养基接种、摇床培养15 d,微紫青霉菌在以Ca3(PO4)2、Fe3(PO4)2或AlPO4为唯一磷源的上清液中有效磷含量分别为73.47 mg·L^-1、30.93 mg·L^-1和14.00 mg·L^-1,4℃继续保存至30d后对Fe-P和Al-P的溶解量分别达到72.20 mg·L^-1、32.84 mg·L^-1;赭绿青霉菌培养15d的溶磷量分别为30.72 mg·L^-1、4.14 mg·L^-1和1.51 mg·L^-1,30d对Fe-P和Al-P的溶解量分别达到35.19 mg·L^-1和10.98 mg·L^-1。微紫青霉菌溶解无机磷能力明显优于赭绿青霉菌,有望应用于地区缺磷茶园土壤真菌肥料的制备。  相似文献   

10.
一株高效解磷真菌新菌株的筛选鉴定及解磷特性   总被引:2,自引:0,他引:2  
从辽宁省辽中县多年耕种的日光温室番茄根际土壤中筛选出一株解磷真菌,通过菌落形态特征和ITS rDNA序列对比,鉴定该菌株为草酸青霉菌的一株新菌株,将其命名为PSF1.该菌株能利用葡萄糖、蔗糖、乳糖、半乳糖、可溶性淀粉等多种碳源和硫酸铵、氯化铵、硝酸铵、硝酸钾、尿素等多种氮源进行生长代谢并表现出较强的解磷能力,在C/N 10∶1~60∶1、初始pH 7~8的条件下生长情况较好且解磷能力较高.该菌株有很强的产酸能力,在培养过程中培养液pH由7.00~7.50下降至2.06~4.87;在4种磷源培养液中的最高解磷量分别为磷酸三钙(869.62 mg·L^-1)>磷矿粉(233.56 mg·L^-1)>磷酸铝(44.77 mg·L^-1)>磷酸铁(28.42 mg·L^-1).Pearson相关分析表明,菌株在磷酸三钙、磷矿粉和磷酸铁培养液中的解磷量与pH的变化之间呈极显著负相关关系,在磷酸铝培养液中无显著相关关系.菌株PSF1解磷能力强,生长条件广,推测其在土壤中有较强的解磷能力.  相似文献   

11.
不同碳源对三种溶磷真菌溶解磷矿粉能力的影响   总被引:18,自引:0,他引:18  
通过液体培养法 ,对 3种溶磷真菌利用葡萄糖、果糖、蔗糖、麦芽糖、淀粉和纤维素等碳源溶解宜昌产磷矿粉的试验 ,结果表明 ,菌株P2 3在供给葡萄糖时的溶磷能力最高 ,并在一定程度上能够利用长链碳源淀粉和纤维素为营养而溶磷 ;而高效溶磷菌株P6 6和P39溶磷的最佳碳源是果糖和麦芽糖 ,该两菌株利用淀粉和纤维素的溶磷效果很小 ,甚至不溶磷。 3种溶磷真菌培养滤液 pH值、可滴定酸含量与其溶磷量之间的相关性因菌株而异 ,差别很大。菌株P2 3培养滤液pH值、可滴定酸含量与其溶磷量之间相关性很低 ,但菌株P6 6和P39培养滤液pH值、可滴定酸含量与其溶磷量之间相关性却达到极显著水平 (P <0 0 1)。结果表明 ,不同碳源对溶磷菌溶解磷矿粉能力影响很大 ,分析推断 3种菌株产生的有机酸活化磷矿粉能力为P6 6>P39>P2 3。  相似文献   

12.
乔欢  吴小芹  王早 《微生物学通报》2014,41(9):1741-1748
【目的】土壤中磷素供应不足是造成马尾松林地力衰退的原因之一。本研究对前期从马尾松根际土样中分离筛选出的一株解磷能力较强的嗜松青霉JP-NJ4的解无机磷及解有机磷能力进行探讨。【方法】探究嗜松青霉JP-NJ4对4种无机磷源及2种有机磷源的降解能力,并对其分泌的有机酸和酶类进行测定,对其解磷特性进行初步分析。【结果】表明JP-NJ4菌株可在4种不同无机磷源的培养基中生长,其中对磷酸钙[Ca3(PO4)2]的解磷效果最好,对4种磷源的解磷能力大小为:磷酸钙磷酸铝磷酸氢钙磷酸铁;其分泌的有机酸种类主要为葡萄糖酸、草酸及丙二酸;JP-NJ4菌株的磷酸酶活性较高,并具有一定的植酸酶活性;同时对草甘膦具有较好的生物降解功能,降解率达49.6%。【结论】嗜松青霉JP-NJ4解磷能力受磷源的结构组成影响,且解磷能力与发酵液pH值呈负相关关系;该菌株分泌的葡萄糖酸和草酸对磷酸钙及磷酸铝的溶解效果较明显。本研究供试菌株嗜松青霉JP-NJ4具有良好的解磷功能,在作为林业生物菌肥方面具有极大的应用潜力。  相似文献   

13.
一株节杆菌溶解磷矿粉的动态   总被引:2,自引:0,他引:2  
磷矿粉用量明显地影响节杆菌1TCRi7菌株对其溶解,随着磷矿粉用量的增加,溶磷率急剧下降,超过5 g/L,溶磷率不到0.1%,培养液的pH也随磷矿粉用量增加而升高,但菌体生长繁殖几乎不受磷矿粉用量的影响。振荡培养时,第1 d菌体繁殖量就达到高峰,pH也降至最低,同时表现出强烈的溶磷活力,但菌株的溶磷量并不与其生长量吻合,溶磷量第9 d才达到高峰,以后逐渐下降。培养过程中有机酸分泌发生交替变化,主要分泌乙酸和丙二酸。第1 d、第9 d和第15 d出现3个峰值,说明微生物利用了所分泌出来的有机酸,并发生了有机酸代谢的变化。  相似文献   

14.
溶磷菌对4种难溶性磷酸盐溶解能力的初步研究   总被引:45,自引:0,他引:45  
以4种难溶性磷酸盐为培养基,发现供试菌株溶解这些磷酸盐的特性差异很大,真菌溶磷能力普遍比细菌要高得多。以NO3-为氮源时的溶磷量通常高于以NH4+为氮源时的溶磷量,只有2TCiF2对氟磷灰石及4TCiF6对磷酸铝的溶解能力以NH4+为氮源时较高。大多数菌株较易溶解CaP(氟磷灰石和磷矿粉),其次为AlP(AlPO4),而溶解FeP(FePO4·4H2O的能力都比较弱,只有曲霉2TCiF2具有较强的溶解FeP能力,尤其是当供给NO3-时,溶解FeP的活性比供给NH4+时大幅度提高。欧文氏菌4TCRi22和肠杆菌1TCRi15能大量地溶解氟磷灰石,而两株节杆菌对磷矿粉的溶解能力最强。供试菌株的溶磷作用可能是由于分泌的有机酸与金属离子络合或螯合作用所致,欧文氏菌和肠杆菌溶解难溶性磷过程中,非有机酸物质可能在起主要作用。  相似文献   

15.
以磷酸三钙作为唯一磷源,从磷矿区筛选出一株高效浸磷真菌.经过核糖体间隔区(ITS)扩增序列分析,确定该菌株属于黑曲霉.研究不同碳源条件下该菌株对低品住磷矿中磷浸出能力的影响;此外,还利用高效液相色谱法(HPLC)和耦合等离子体-发射光谱仪对溶磷机理进行了初探.结果表明,以可溶性淀粉作为碳源的条件下,真菌对低品位磷矿的磷浸出率最高,可能与其代谢产生的草酸和苹果酸及其有机酸总量有关,同时,磷浸出率与培养介质pH值呈显著负相关.  相似文献   

16.
一株溶磷真菌筛选鉴定及其溶磷促生效果   总被引:4,自引:0,他引:4  
【目的】从高产农田筛选高效溶磷微生物菌株,为溶磷微生物肥料开发提供高效菌种资源。【方法】利用菌株的形态学特性、培养特征和ITS rDNA序列分析方法进行菌株鉴定,结合液体培养和土壤培养方法研究菌株的溶磷能力,进而采用温室盆栽和田间小区试验,明确溶磷菌P83促进作物生长和提高作物产量的作用效果。【结果】溶磷菌株P83鉴定为斜卧青霉菌(Penicillium decumbens)。液体条件下培养10 d,菌株P83表现显著高效的溶磷能力,对Ca3(PO4)2(5g/L)的溶解效果,有效磷达956 mg/L,溶解率为42.68%,对湖南永和磷矿粉的溶液效果,有效磷达到152.8 mg/L;将P83菌株分别接种于施用Ca3(PO4)2、Zn3(PO4)2和磷矿粉(RP)3种磷源的盆栽试验土壤中,结果显示,菌株P83对玉米植株促生效果比对照显著提高,玉米植株鲜重提高9.5%-89.2%、干重增加35%-231%,土壤有效磷提高2.1-40.5 mg/kg。田间小区玉米产量结果显示,溶磷菌P83增产效果最好(P=0.05),玉米子粒产量达9.2t/hm2,比不接种菌剂的对照增加2.4 t/hm2,增产率为35.3%。【结论】获得了一株溶解难溶磷的斜卧青霉菌P83,它能够活化多种难溶磷、显著增加土壤有效磷水平,对玉米生长和增加作物产量具有显著作用,是一株展现良好应用前景的高效溶磷菌种。  相似文献   

17.
解无机磷细菌能够溶解土壤中的难溶性磷酸盐,增加土壤有效磷含量,促进植物生长。以一株杨树根际土壤中筛选得到的解无机磷细菌Mp1-Ha4为研究对象,利用分子生物学的方法对该菌株进行鉴定,测定了其对磷酸钙、磷酸铝和磷酸铁的解磷能力,并对该菌株9 d内的磷酸钙溶解动力学进行了研究。结果表明,解无机磷细菌Mp1-Ha4为一株西地西菌Cedecea sp.,其对磷酸钙的溶解能力远强于对磷酸铝和磷酸铁的溶解能力。在NBRIP液体培养基中,该菌株对磷酸钙的溶解能力达到了497.4 mg/L,在其对磷酸钙解磷过程中,培养基pH及可滴定酸度与解磷量分别呈显著负、正相关。高效液相色谱分析显示,该菌株在解磷过程中分泌了大量有机酸,主要包括α-酮戊二酸,酒石酸和苹果酸。分泌有机酸,降低环境pH可能是解无机磷细菌西地西菌(Cedecea sp.)Mp1-Ha4溶解难溶性磷酸盐的主要机制,同时该菌株对磷酸钙的高效溶解作用使其具有较大的研究和应用前景。  相似文献   

18.
高效溶磷菌的分离、筛选及在土壤中溶磷有效性的研究   总被引:11,自引:0,他引:11  
从采自全国各地130个土样中.分离出1000余菌株,从中筛选出1株代号为Ap-2号的高效溶磷菌.经鉴定为黑曲霉Aspergillus niger.对该菌株的产酸特性以及接种土壤后的溶磷有效性进行了研究.试验表明,该菌株发酵过程产草酸、柠檬酸等多种有机酸,使土壤速效磷含量增加141.94%.其溶磷作用,与土壤pH含水量有密切关系,对温度要求不严,与接种量是一定正相关.并可与磷酸铵、三料、尿素、硫酸铵等化肥混合使用.  相似文献   

19.
两株对花生促生的芽孢杆菌的鉴定及溶磷特性研究   总被引:1,自引:0,他引:1  
土壤中绝大多数的磷以难溶态存在而不能被利用,溶磷微生物可以溶解难溶性磷,提高土壤的速效磷水平,从而促进植物生长。本研究利用盆栽实验测定从茶树根际分离的2株溶磷细菌对花生生长的影响,发现均具有显著促生效应,尤以HP9菌株表现更为明显。通过形态、生理生化试验及分子生物学方法进行鉴定,将HP9、HP10菌株分别鉴定为贝莱斯芽孢杆菌(Bacillus velezensis)和坚强芽孢杆菌(Bacillus firmus)。研究2个菌株在不同碳氮源条件下的溶磷性,结果显示HP9菌株具有更强的溶磷能力,2个菌株溶磷的最优碳源均为葡萄糖,最优氮源则有明显差异,HP9菌株优先利用硝酸钾,而HP10菌株则以硫酸铵为氮源时溶磷量更高;进一步研究菌株的溶磷机制,相关性分析显示2个菌株培养液中的可溶磷含量与pH值呈显著负相关,GC-TOF-MS测定表明2个菌株代谢产物中产生的有机酸是其溶磷的重要原因,而产生的有机酸类型和含量的明显不同与菌株溶磷水平的差异有关,研究结果解析了芽孢杆菌属不同种菌株在溶磷机制上存在的多样性。  相似文献   

20.
吕俊  于存 《应用生态学报》2020,31(9):2923-2934
采用标准稀释平板法从马尾松根际土中分离溶磷细菌,利用钼锑抗比色法测定溶磷细菌的溶磷特性;通过分析溶磷菌的溶磷能力与发酵液pH的关系,以及液相色谱-质谱 (HPLC-MS)联用对发酵液中有机酸的测定,探究其溶磷机制;通过对接种溶磷菌马尾松盆栽苗生长、生理、土壤养分和土壤酶活性的测定,明确溶磷菌对马尾松生长和生理的影响。结果表明: 由马尾松根际土壤中共筛选到溶磷细菌16株,其中菌株WJ27溶磷效果最优,液体培养5 d时的溶磷量达411.98 mg·L-1。经过表型观察、生理生化鉴定和系统发育树分析,发现菌株WJ27属于伯克霍尔德菌属;其对不同磷源的溶磷特性存在差异,溶磷能力依次为: Ca3(PO4)2(220.85 mg·L-1)>AlPO4(182.33 mg·L-1)>FePO4·2H2O(129.19 mg·L-1)>CaHPO4·2H2O (115.23 mg·L-1)。胞外有机酸测定结果表明,该菌株通过分泌柠檬酸、丙二酸等有机酸降低发酵液中pH,进而发挥溶磷作用;盆栽试验结果表明,接种菌株WJ27对马尾松幼苗生长、生理、土壤养分和土壤酶活性有积极作用。与对照相比,接种WJ27的马尾松的苗高、主根长、侧根数量、地上部(茎、枝、叶)鲜重、干重和根系鲜重、干重分别增加了14.3%、36.9%、56.1%、44.7%、60.0%、158.3%和100.0%;叶绿素b、总叶绿素、地上部可溶性蛋白和可溶性糖、根系活力和根系可溶性蛋白分别增加了145.8%、45.2%、206.3%、59.4%、80.5%和260.0%;根系超氧化物歧化酶、过氧化物酶和地上部过氧化氢酶的活性分别提高了71.2%、197.5%和36.6%;根际土壤中速效氮、速效钾、速效磷含量和土壤脲酶、过氧化氢酶、磷酸酶活性分别较对照土壤显著增加18.1%、17.0%、11.9%和34.3%、45.5%、62.6%。说明接种WJ27可以改善土壤养分和土壤酶活性,进而促进马尾松幼苗的生长。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号