首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 703 毫秒
1.
不同刈牧强度对冷蒿生长与资源分配的影响   总被引:15,自引:0,他引:15  
利用野外实验与盆栽实验,对不同刈牧强度下冷蒿生长与资源分配影响的研究结果表明,按比例刈割冷篙的再生生长大于留茬高度刈割,在生长季前期,不刈割冷蒿净生长高于刈割处理,而进入生长季中后期(8月中旬以后),轻度刈割净生长高于不刈割处理,冷篙种群生物量分配的总体格局是根>叶>茎,刈牧明显影响冷蒿生物量分配格局,尤其是叶和花的分配,3/4刈割或留茬4cm刈割叶生物量分配显著高于其它各处理,而花的生物量及其分配显著低于其它处理,根、茎生物量分配各处理间差异不显著.冷蒿有性生殖分配随刈牧强度的增加而降低,繁殖方式发生了改变,优先将光合产物分配给再生茎以及繁殖方式转向营养繁殖,通过克隆生长维持和扩大种群是冷蒿对强度放牧的生态适应对策。  相似文献   

2.
生物量分配模式影响着植物个体生长和繁殖到整个群落的质量和能量流动等所有层次的功能, 揭示高寒灌丛的生物量分配模式不仅可以掌握植物的生活史策略, 而且对理解灌丛碳汇不确定性具有重要意义。该研究以甘肃南部高山-亚高山区的常绿灌丛——杜鹃(Rhododendron spp.)灌丛的7个典型种为对象, 采用全株收获法研究了不同物种个体水平上各器官生物量的分配比例和异速生长关系。结果表明: 7种高寒杜鹃根、茎、叶生物量的分配平均比例为35.57%、45.61%和18.83%, 各器官生物量分配比例的物种差异显著; 7种高寒杜鹃的叶与茎、叶与根、茎与根以及地上生物量与地下生物量之间既有异速生长关系, 也有等速生长关系, 异速生长指数不完全支持生态代谢理论和小个体等速生长理论的参考值; 各器官异速生长关系的物种差异显著。结合最优分配理论和异速生长理论能更好地解释陇南山地7种高寒杜鹃生物量的变异及适应机制。  相似文献   

3.
密度对尖头叶藜生物量分配格局及异速生长的影响   总被引:4,自引:0,他引:4  
植物器官指示植物不同的功能,而植物器官生物量分配比例的变化表征了植物对资源获取能力的调整。在植物生长发育过程中,植物各器官呈一种明显的异速生长规律。利用异速生长分析方法,通过模拟不同密度(16、44.4、100、400株/m~2)下尖头叶藜(Chenopodium acuminatum)的生长特性,研究密度对尖头叶藜器官生物量分配格局及异速生长的影响。结果表明,随密度增加,尖头叶藜地上和地下器官都存在不同程度的竞争:其中,根和主茎生物量分配增加,茎和地上生物量分配减少,而叶和繁殖生物量分配不随密度变化而变化。研究发现,尖头叶藜各器官间具有显著的异速生长关系:其中叶∶主茎、根∶地上部分、根∶茎、根∶主茎、繁殖器官∶地上部分及繁殖器官∶根生物量间的异速生长不随密度变化而变化,属于表观可塑性;而叶∶地上部分、叶∶根、叶∶茎、茎∶地上部分、主茎∶地上部分、繁殖器官∶茎、繁殖器官∶主茎生物量间具有极显著的异速生长关系,异速指数和个体大小显著受密度变化影响,属于真正可塑性,这表明密度能够影响尖头叶藜各器官的生长变化。尖头叶藜叶∶主茎、叶∶根及主茎∶地上部分生物量间的异速指数在D4-密度时与3/4差异不显著(P0.05),符合生态代谢理论,而在D1—D3密度时与3/4差异显著(P0.05),表明充分竞争的植株更符合代谢理论,而竞争不激烈的植株对资源的投入具有物种特异性。  相似文献   

4.
种群密度对大果虫实形态特征与异速生长的影响   总被引:1,自引:0,他引:1  
为揭示种群密度与植物形态特征、器官生物量间的异速生长关系,阐明植物在退化土地恢复过程中的适应策略,以大果虫实为材料,通过异速生长分析方法,研究种群密度对其形态特征、生物量分配与异速生长的影响。结果表明,种群密度对大果虫实的株型构建产生了显著地影响。随着密度增大,大果虫实株高呈减小趋势,其分枝数及分枝长度明显减小。大果虫实各器官生物量随密度增大而显著减小。随密度增大,茎和繁殖器官生物量分配呈减小趋势,根和叶片生物量分配呈增大趋势。这与最优化分配理论中水分、营养物质及光资源受限时的情况一致。密度对大果虫实株高:根生物量间异速生长具有显著影响,且对株高与器官生物量间异速指数和个体大小产生了极显著影响。密度对根:地上部分、叶片:根、繁殖器官:根生物量间的影响属于表观可塑性,而对根:茎、茎:地上部分、叶:其他器官及繁殖器官:其他器官生物量间的影响属于真正可塑性,说明密度改变了大果虫实的株型发育系统,并影响各器官间的异速生长,进而权衡器官生物量分配以完成生活史。  相似文献   

5.
为明确不同刈割处理对黄顶菊生长和生理特性的影响,本研究在田间条件下,对黄顶菊在生长季内不同时间进行刈割处理。结果表明,刈割降低了黄顶菊植株各部分的生物量积累,其中以刈割3次效果最为显著,使黄顶菊总生物量、根生物量、茎生物量、叶生物量分别较对照下降82.57%、44.53%、80.04%、91.76%;植株的高度和花序数随刈割次数的增加显著降低,其中刈割3次的花序数为0;刈割1次植株分枝数最大,出现超补偿现象,刈割3次分枝数显著低于其他处理;叶绿素含量除了刈割2次出现增高趋势外,随刈割次数的增加,叶绿素含量逐渐降低;刈割处理使黄顶菊净光合速率(Pn)、气孔导度(Cond)和蒸腾速率(Tr)均显著升高;刈割3次的PSⅡ的最大光化学效率(Fv/Fm)和PSⅡ的潜在活性(Fv/F0)显著低于其它各处理,而初始荧光(F0)则显著增加;生长指标的可塑性指数大于生理指标可塑性指数,表明前者在黄顶菊对刈割处理等物理措施适应方面起到了更为重要的作用。总之,刈割3次处理黄顶菊的各项生长和生理指标所受影响最大,对黄顶菊植株的再生和开花结实抑制效果最为理想。  相似文献   

6.
香根草(Vetiveria zizanioides)是一种良好的矿业废弃地生态修复物种,研究其生物量分配和异速生长关系,有助于深入了解香根草在矿区的生存策略与生态功能。该研究以贵州省六盘水市大河煤矿煤矸石山种植年限为4、5、8和15 a的香根草为对象,采用挖掘法和称重法对不同种植年限香根草的器官生物量、分配比例及异速生长关系进行了对比分析。结果表明:(1)随种植年限的增加,根、茎、叶生物量均呈现先增加后减少的趋势,且均在种植年限为5 a时最大,15 a时最小。(2)茎生物量分配比在种植年限15 a时最大(37.3%),叶生物量分配比在种植年限5 a时最大(36.1%),根生物量分配比不随种植年限的增加而发生变化,基本保持在30%左右。(3)种植年限为4、5、8 a时,地上部总生物量与根生物量、叶生物量呈异速生长关系;种植年限为5 a时,叶面积与根、叶生物量呈异速生长关系,与茎生物量呈等速生长关系。不同种植年限间的生物量分配及异速生长关系虽然没有一致规律,但体现了香根草在煤矸石基质中生物量分配的特点,且显示了其特别的生长方式和资源分配策略,为今后香根草在煤矸石山生态治理方面提供了参考依据。  相似文献   

7.
外来克隆植物关节酢浆草被大量应用到中国园林绿化中,并出现逃逸和归化现象.关节酢浆草地下块茎的克隆储存可能对其潜在入侵性发挥了重要作用.本文基于盆栽试验并模拟园林除草措施进行人工刈割,比较植物各器官生物量、生物量分配,以及根、茎、叶主要功能性状等指标的差异,研究关节酢浆草的克隆储存策略对人工刈割的响应,从克隆储存角度分析植物的入侵机制.结果表明: 刈割强度、刈割频度以及它们的交互作用显著影响了叶、根的部分生长指标,但地下茎生物量、总生物量在不同刈割条件下没有显著变化,且高频度刈割显著增加了植株对地下茎的生物量分配.关节酢浆草地下块茎的克隆储存功能,能够在一定程度上增强关节酢浆草对环境干扰的适应能力,从而促进其潜在的入侵性.  相似文献   

8.
土地盐碱化和过度放牧是制约松嫩平原畜牧业发展的两大因素,羊草是松嫩平原上的优势种,被认为具有较强的耐牧及耐盐碱能力.本文通过田间原位试验,以叶面涂抹标记15N-尿素的方法,研究了不同盐碱条件下刈割干扰对羊草的氮素分配策略及补偿生长的影响.结果表明: 总体上叶面新吸收的氮60%以上保留在地上部分.与不施盐碱无刈割处理的对照相比,单纯的盐碱胁迫使新吸收的氮在细根中的分配率显著增加了5.1%;而盐碱胁迫下,中度刈割使叶面新吸收的氮在地上部分的分配率增加了11.6%,地上及总生物量发生超补偿生长,但是重度刈割使叶面新吸收的氮在茎基部的分配率显著增加了9.5%,地上、细根及总生物量均表现为欠补偿生长.上述结果表明盐碱胁迫下,中度刈割干扰时羊草采取积极的再生策略,促进其超补偿生长,但在重度刈割时羊草会采取增加氮素在茎基部存储的相对保守的氮素分配和生长策略.  相似文献   

9.
王雪梅  闫帮国  史亮涛  刘刚才 《生态学报》2020,40(21):7767-7776
水分是干热河谷植物生长过程中最主要的限制因子,种植密度增加也会引起植物生长的资源限制,两者交互作用下植物生长性状及种内关系的变化特征还不清楚。以干热河谷优势植物——车桑子为研究对象,根据元谋干热河谷年均生长季降雨量设置3种水分梯度:高水分、中水分和低水分,同时在各水分梯度下设置4个种植密度:1、2、4、9株/盆,探究水分、种植密度及其交互作用对车桑子生长性状、生物量分配及种内相互作用的影响。结果表明:(1)低水分条件下,车桑子生长和水分生理受到抑制,但车桑子在较低的叶水势下依然能够保持较高的相对含水量;(2)干旱胁迫显著降低了车桑子总生物量和单株生物量,显著增加了枯叶生物量比例,低水分和中水分条件下,增加种植密度对总生物无显著影响;而高水分条件下,增加种植密度显著提高了车桑子总生物量;(3)低水分显著增加了茎、叶生物量的异速生长指数,将更多生物量分配到叶,而种植密度增加显著降低了茎、叶生物量的异速生长指数,增加了茎的生物量分配;(4)通过相对邻体效应的计算,各处理条件下,车桑子种内关系均表现为竞争作用,并且,这种竞争作用的强度随水分的减少和密度的增加而增加。在高密度条件下(9棵/盆),增加水分不会减轻种内竞争作用。综上,水分和种植密度均会对车桑子个体的生理生长产生影响,在植被恢复过程中,应考虑水分和种植密度对车桑子个体产生的资源限制作用。  相似文献   

10.
檵木生物量分配特征   总被引:2,自引:0,他引:2       下载免费PDF全文
生物量是生态系统最基本的数量特征,其在各器官间的分配反映了植物适应环境的生长策略,是物种进化、生物多样性保护和生态系统碳循环研究的核心问题。檵木(Loropetalum chinense)灌丛是中国亚热带灌丛生态系统最具优势的一种灌丛类型。该研究以该灌丛建群种檵木为研究对象,采用整株收获法在个体水平上研究了器官间的异速生长、生物量在各器官间的分配以及与个体大小、灌丛更新起源和生境因子之间的关系。研究发现:檵木地上-地下相对生长关系符合等速生长规律,但随径级增大其等速生长关系可能发生变化;较小径级檵木叶-茎、叶-根为等速生长,随径级增大转换为异速生长。不同灌丛起源间,檵木叶-茎、叶-根相对生长存在显著差异。器官间相对生长的尺度系数与生境因子无显著相关关系,灌木层盖度和坡度通过影响檵木生长初期器官间的相对生长影响其生物量在器官间的分配。檵木平均叶质比为0.11,茎质比为0.55,根质比为0.34,根冠比为0.65。随径级的增大,茎质比(0.50–0.64)逐渐增大,叶质比(0.12–0.08)、根质比(0.38–0.28)和根冠比(0.91–0.43)逐渐减小。在次生灌丛中,檵木叶质比为0.12,根质比为0.33;在原生灌丛中,檵木叶质比为0.07,根质比为0.36。生物量向地上部分的分配与灌木层盖度正相关,叶质比与坡度负相关,根质比与年平均气温正相关。研究结果表明:随个体增大,檵木器官间的相对生长关系由等速生长转换为异速生长,生物量向地上部分的分配增加,地上生物量更多地分配到茎干中;干扰通过影响器官间的相对生长影响生物量在各器官间的分配,干扰导致生物量向叶的分配增加,向根的分配减少;光照减少促进生物量向地上部分的分配,坡度增加导致生物量向叶的分配减少,年平均气温升高促进生物量向根系的分配,年降水量的变化对生物量分配无显著影响。檵木生物量分配策略在一定程度上支持了最优分配假说。  相似文献   

11.
J Xie  L Tang  Z Wang  G Xu  Y Li 《PloS one》2012,7(7):e41502
In resource-poor environments, adjustment in plant biomass allocation implies a complex interplay between environmental signals and plant development rather than a delay in plant development alone. To understand how environmental factors influence biomass allocation or the developing phenotype, it is necessary to distinguish the biomass allocations resulting from environmental gradients or ontogenetic drift. Here, we compared the development trajectories of cotton plants (Gossypium herbaceum L.), which were grown in two contrasting soil textures during a 60-d period. Those results distinguished the biomass allocation pattern resulting from ontogenetic drift and the response to soil texture. The soil texture significantly changed the biomass allocation to leaves and roots, but not to stems. Soil texture also significantly changed the development trajectories of leaf and root traits, but did not change the scaling relationship between basal stem diameter and plant height. Results of nested ANOVAs of consecutive plant-size categories in both soil textures showed that soil gradients explained an average of 63.64-70.49% of the variation of biomass allocation to leaves and roots. Ontogenetic drift explained 77.47% of the variation in biomass allocation to stems. The results suggested that the environmental factors governed the biomass allocation to roots and leaves, and ontogenetic drift governed the biomass allocation to stems. The results demonstrated that biomass allocation to metabolically active organs (e.g., roots and leaves) was mainly governed by environmental factors, and that biomass allocation to metabolically non-active organs (e.g., stems) was mainly governed by ontogenetic drift. We concluded that differentiating the causes of development trajectories of plant traits was important to the understanding of plant response to environmental gradients.  相似文献   

12.
Herbivory tolerance can offset the negative effects of herbivory on plants and plays an important role in both immigration and population establishment. Biomass reallocation is an important potential mechanism of herbivory tolerance. To understand how biomass allocation affects plant herbivory tolerance, it is necessary to distinguish the biomass allocations resulting from environmental gradients or plant growth. There is generally a tight balance between the amounts of biomass invested in different organs, which must be analyzed by means of an allometric model. The allometric exponent is not affected by individual growth and can reflect the changes in biomass allocation patterns of different parts. Therefore, the allometric exponent was chosen to study the relationship between biomass allocation pattern and herbivory tolerance. We selected four species (Wedelia chinensis, Wedelia trilobata, Merremia hederacea, and Mikania micrantha), two of which are invasive species and two of which are accompanying native species, and established three herbivory levels (0%, 25% and 50%) to compare differences in allometry. The biomass allocation in stems was negatively correlated with herbivory tolerance, while that in leaves was positively correlated with herbivory tolerance. Furthermore, the stability of the allometric exponent was related to tolerance, indicating that plants with the ability to maintain their biomass allocation patterns are more tolerant than those without this ability, and the tendency to allocate biomass to leaves rather than to stems or roots helps increase this tolerance. The allometric exponent was used to remove the effects of individual development on allocation pattern, allowing the relationship between biomass allocation and herbivory tolerance to be more accurately explored. This research used an allometric model to fit the nonlinear process of biomass partitioning during the growth and development of plants and provides a new understanding of the relationship between biomass allocation and herbivory tolerance.  相似文献   

13.
Using a conceptual model, I predicted the direction of biomass allocation and geometric responses to several environmental variables for Laportea canadensis, a clonal forb dominating the herbaceous stratum of many North American floodplain and mesic forests. Laportea stems and plants, especially dominant ones, generally (60%) respond as predicted to canopy opening, conspecific leaf area and density, and poor drainage, but are merely reduced in growth when growing on sandier soils. However, allometric relationships explain most of the variation in geometry and allocation. Still, variation in geometry and allocation (as great as among 21 species of herbs studied by Givnish [1982]), helps explain the success of Laportea in a range of microenvironments. In upland forests, stems in canopy gaps are tallest but allocate relatively less biomass to leaves than shaded stems, suggesting that interherb competition is the major problem faced under canopy gaps. Leaf morphology also changes with increasing canopy opening—individual leaves are larger, heavier, and thicker and are displayed on more steeply ascending petioles. Floodplain plants respond to light gaps mainly with changes in leaf morphology and display. With increasing conspecific density and leaf production, Laportea stems in both uplands and floodplains grow taller, allocate relatively more biomass to stems, and display leaves higher on the stem. The allocation and geometry of taller stems are more independent of density, and more closely affected by tree-canopy opening, than are small stems. Intermediate soil textures in floodplains promote maximum Laportea production; variations in other factors are less important. Poorly drained soils in floodplains (heavy-textured soils at low elevations) cause decreased Laportea height and absolute leaf weight, but increase relative allocation to leaves and roots, as predicted. On the other hand, Laportea appears poorly adapted to sandier soils. Rather than responding to sandier soils as predicted, Laportea's overall growth is reduced. Geometric responses of Laportea to environment are mediated by allometric realities: an increase in height favored in productive environments produces a concomitant decrease in relative leaf allocation. Although predicted (presumably adaptive) shifts are significant when plant size is accounted for, most of the variation in allocation and geometry is due to allometry.  相似文献   

14.
Mathematical relations that use easily measured variables to predict difficult-to-measure variables are important to resource managers. In this paper we develop allometric relations to predict total aboveground biomass and individual components of biomass (e.g., leaves, stems, branches) for three species of mangroves for Everglades National Park, Florida, USA. The Greater Everglades Ecosystem is currently the subject of a 7.8-billion-dollar restoration program sponsored by federal, state, and local agencies. Biomass and production of mangroves are being used as a measure of restoration success. A technique for rapid determination of biomass over large areas is required. We felled 32 mangrove trees and separated each plant into leaves, stems, branches, and for Rhizophora mangle L., prop roots. Wet weights were measured in the field and subsamples returned to the laboratory for determination of wet-to-dry weight conversion factors. The diameter at breast height (DBH) and stem height were also measured. Allometric equations were developed for each species for total biomass and components of biomass. We compared our equations with those from the same, or similar, species from elsewhere in the world. Our equations explained ≥93% of the variance in total dry weight using DBH. DBH is a better predictor of dry weight than is stem height and DBH is much easier to measure. Furthermore, our results indicate that there are biogeographic differences in allometric relations between regions. For a given DBH, stems of all three species have less mass in Florida than stems from elsewhere in the world.  相似文献   

15.
A central goal of comparative life-history theory is to derive the general rules governing growth, metabolic allocation, and biomass partitioning. Here, we use allometric theory to predict the relationships among annual leaf, stem, and root growth rates (GL, GS, and GR, respectively) across a broad spectrum of seed plant species. Our model predicts isometric scaling relationships among all three organ growth rates: GL is proportional to GS is proportional to GR. It also provides a conceptual basis for understanding the differences in the absolute amounts of biomass allocated to construct the three organ types. Analyses of a large compendium of biomass production rates across diverse seed plant species provide strong statistical support for the predictions of the theory and indicate that reproductive investments may scale isometrically with respect to vegetative organ growth rates. The general rules governing biomass allocation as indexed by the scaling exponents for organ growth rates are remarkably indifferent to plant size and taxonomic affiliation. However, the allometric "constants" for these relationships differ numerically as a function of phenotypic features and local environmental conditions. Nonetheless, at the level of both inter- and intraspecific comparisons, the same proportional biomass allocation pattern holds across extant seed plant species.  相似文献   

16.
We investigated allocation to roots, stems and leaves of 27 species of herbaceous clonal plants grown at two nutrient levels. Allocation was analyzed as biomass ratios and also allometrically. As in other studies, the fraction of biomass in stems and, to a lesser extent, in leaves, was usually higher in the high-nutrient treatment than in the low-nutrient treatment, and the fraction of biomass in roots was usually higher under low-nutrient conditions. The relationship between the biomass of plant structures fits the general allometric equation, with an exponent 1 in most of the species. The different biomass ratios under the two nutrient conditions represented points on simple allometric trajectories, indicating that natural selection has resulted in allometric strategies rather than plastic responses to nutrient level. In other words, in most of the species that changed allocation in response to the nutrient treatment, these changes were largely a consequence of plant size. Our data suggest that some allocation patterns that have been interpreted as plastic responses to different resource availabilities may be more parsimoniously explained as allometric strategies.  相似文献   

17.
This study compared the effectiveness of ratio and allometric scaling for normalizing speed, power, and strength in elite male rugby union players. Thirty rugby players (body mass [BM] 107.1 ± 10.1 kg, body height [BH] 187.8 ± 7.1 cm) were assessed for sprinting speed, peak power during countermovement jumps and squat jumps, and horizontal jumping distance. One-repetition maximum strength was assessed during a bench press, chin-up, and back squat. Performance was normalized using ratio and allometric scaling (Y/X), where Y is the performance, X, the body size variable (i.e., BM or BH), and b is the power exponent. An exponent of 1.0 was used during ratio scaling. Allometric scaling was applied using proposed exponents and derived exponents for each data set. The BM and BH variables were significantly related, or close to, performance during the speed, power and/or strength tests (p < 0.001-0.066). Ratio scaling and allometric scaling using proposed exponents were effective in normalizing performance (i.e., no significant correlations) for some of these tests. Allometric scaling with derived exponents normalized performance across all the tests undertaken, thereby removing the confounding effects of BM and BH. In terms of practical applications, allometric scaling with derived exponents may be used to normalize performance between larger rugby forwards and smaller rugby backs, and could provide additional information on rugby players of similar body size. Ratio scaling may provide the best predictive measure of performance (i.e., strongest correlations).  相似文献   

18.
《植物生态学报》2017,41(1):105
Aims Biomass is the most fundamental quantitative character of an ecosystem. Biomass allocation patterns reflect the strategies of plants to adapt various habitat conditions and play a vital role in evolution, biodiversity conservation and global carbon cycle. Loropetalum chinense shrub is one of the most dominant shrub types in subtropical China. The objectives of this study were to quantify the allometric relationships and the biomass allocation pattern among organs, and to investigate the effects of body size, shrub regeneration origin and site factors on allometry and biomass allocation.
Methods Individual samples of L. chinense were harvested from shrublands in subtropical China and were further divided into leaves, stems and roots. The allometric relationships between different organs were modeled with standard major axis (SMA) regression and the biomass allocation to different organs was quantified. The effects of body size, shrub regeneration origin and other habitat factors on allometry and allocation were examined using Pearson’s correlation analysis and multiple linear regressions.
Important findings The isometric scaling relationships between shoot and root changed to allometric relationships with increasing basal diameter. The scaling relationships between leaf and stem and between leaf and root were isometric for smaller diameter classes, while for larger diameter classes they were allometric. These relationships were significantly different among shrub regeneration origin types. The scaling relationships between different organs were not affected by habitat factors; while the coverage of shrub layer and slope affected biomass allocation due to their influences on the allometric relationships between different organs at the initial stage of growth. The mean dry mass ratios of leaf, stem, root and the mean root to shoot ratio were 0.11, 0.55, 0.34 and 0.65, respectively. With the increase of basal diameter class, stem mass ratio (0.50-0.64) increased, while leaf mass ratio (0.12-0.08) and root mass ratio (0.38-0.28) decreased, and consequently root to shoot ratio (0.91-0.43) also decreased. In secondary shrublands, the leaf mass ratio was 0.12 and the root mass ratio was 0.33, while these values were 0.07 and 0.36 respectively in natural shrublands. The ratio of aboveground allocation was significantly correlated to shrub layer coverage (r = 0.44, p < 0.05). Leaf mass ratio was significantly correlated to slope (r = -0.36, p < 0.05) and root mass ratio was significantly correlated to mean annual temperature (r = 0.34, p < 0.05). Results showed that with the increase of body size, the scaling relationships between different organs of L. chinense changed from isometric to allometric, and more biomass was allocated to aboveground part, and concretely, to stems. Human disturbance affected biomass allocation by its influences on the allometric relationships between different organs, and by increasing biomass allocation to leaves and decreasing allocation to roots. Reduced light resource promoted the biomass allocation to aboveground part, and higher slope resulted in decreased biomass allocation to leaves, while higher mean annual temperature promoted biomass allocation to roots. The variation in annual precipitation had no significant influences on biomass allocation. The biomass allocation strategies of L. chinense partially support the optimal partitioning theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号