首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
硒蛋白P的研究进展   总被引:4,自引:0,他引:4  
硒蛋白P(SeP)是从大鼠和人血浆中分离,纯化得到的一种糖蛋白,每个硒蛋白P多肽含有10个硒代半胱氨酸,硒蛋白P中的硒含量占大鼠和人血浆中硒含量的50%以上,在其mRNA开放阅读框架中克隆的cDNA的序列含有10个UGA密码子。硒代半胱氨酸在一个UGA密码子处嵌入蛋白的一级结构,尽管对硒蛋白P功能还没有彻底了解,它的一种非常可能的作用是作为一种胞外抗氧化剂,大鼠血浆中的硒蛋白P在体内实验中对Diquat诱导的脂质过氧化和肝损坏具有保护作用,人血浆中的硒蛋白P在体外实验中显示减少内作为一存活促进因子。  相似文献   

2.
硒蛋白P的研究进展   总被引:2,自引:0,他引:2  
硒蛋白P最初在血浆中发现,占血浆总硒的60%,在其多肽链中有10个硒半胱氨酸。由10个读码框内的UGA编码,而UGA一般是作为终止密码子起作用,故硒蛋白P的生物合成需要多个特异的因子。如特异的tR-NA,延伸因子和mRNA上的特异的二级结构等。硒蛋白P的功能尚不清,初步的研究结果提示可有转运硒,抗氧化,结构重金属和神经营养等作用。  相似文献   

3.
生物合成硒蛋白机制的研究进展   总被引:8,自引:0,他引:8  
作为第 2 1种氨基酸 ,硒代半胱氨酸在翻译阶段由核糖体介导 ,在mRNA编码区的UGA密码子处参入多肽链。研究表明硒代半胱氨酸的参入需要一个顺式作用元件SECIS和 4个基因产物 :SelA、SelB、SelC、SelD。原核生物和真核生物的SECIS在mRNA中的位置和结构特征差异显著。在利用Escherichiacoli硒代半胱氨酸的参入机制合成硒蛋白方面 ,研究人员进行了有益的探索。  相似文献   

4.
硒蛋白含有一种特殊氨基酸--硒代半胱氨酸。在翻译阶段,该氨基酸从硒蛋白mRNA编码区的UGA密码子处掺入多肽链。已证明它由丝氨酸和活性硒供体分子合成。一种独特的tRNA、某些特殊蛋白质因子以及硒蛋白mRNA的特殊二级结构是UGA解读为硒代半胱氨酸所必需的。  相似文献   

5.
硒蛋白合成的特殊机制   总被引:1,自引:0,他引:1  
硒蛋白含有一种特殊氨基酸-硒代半胱氨酸。在翻译阶段,该氨基酸从硒蛋白mRNA编码区的UGA密码子处掺入多肽链。已证明它由丝氨酸和活性硒供体分子合成。一种独特的tRNA,某些特殊蛋白质因子以及硒蛋白mRNA的特殊二级结构是UGA解读为硒代半胱氨酸所必需的。  相似文献   

6.
硒蛋白的分子生物学研究进展   总被引:18,自引:0,他引:18  
已有35种硒蛋白被分离和表征,但许多硒蛋白及其功能仍未完全阐明.硒半胱氨酸(Sec)作为参入蛋白质的第21种氨基酸,由硒蛋白mRNA上的UGA编码.在原核生物,Sec参入硒蛋白的复杂机制已经较为明确,需要四种基因产物(SELA、SELB、SELC和SELD)和一个存在于硒蛋白mRNA上的被称为Sec插入序列(SECIS)的茎环(stem loop)样二级结构.在真核生物,硒蛋白生物合成途径可能在SECIS的结构和位置、特异的延伸因子及其他RNA-RNA或RNA-蛋白质因子之间的相互作用等方面与原核生物不同.另外,哺乳动物硒蛋白mRNA上的UGA翻译为Sec的过程低效,特定位点的UGA密码子不同功能(终止密码和Sec密码)的调控可能是硒蛋白表达低效的关键.  相似文献   

7.
硒蛋白P的研究进展   总被引:3,自引:0,他引:3  
微量元素硒 (Se)作为许多具有重要生物功能的硒酶的活性中心 ,不但与机体的免疫应答及抗氧化作用等生理功能密切相关 ,而且能够降低癌症的发生率[1,2 ] 。在流行病学和临床研究中 ,常用血浆或全血中Se浓度作为衡量Se状态的指标 ,而且血浆浓度能比全血浓度更迅速地反映Se状态的变化。在哺乳动物血浆中 ,Se主要结合在 3种蛋白质中 :硒蛋白P、胞外谷胱甘肽过氧化物酶和清蛋白。其中硒蛋白P所含Se大约占血浆中全部Se浓度的 5 0 %。硒蛋白P不同于目前所鉴定的所有其他硒蛋白 ,因为它含有 10~ 12个硒代半胱氨酸 (SeCys)残…  相似文献   

8.
硒蛋白的生物合成与调控   总被引:4,自引:0,他引:4  
硒蛋白是硒以硒半胱氨酸(Sec)形式参入形成的蛋白质。Sec作为参入蛋白质的第21种氨基酸,由硒蛋白mRNA上的UGA编码。在原核生物中,Sec参入硒蛋白的相关因子及其参入机制已基本阐明,Sec在SELA、SELB、SELC、SELD及Sec插入序列(SECIS)等的共同作用下参入到蛋白质中。在真核生物中,Sec参入硒蛋白的可能途径是:Ser-tRNA‘^[Ser]Sec。通过磷酸丝氨酰-tRNA^[Ser]Sec。最终转变为Sec-tRNA^[Ser]Sec,并在延伸因子及相关蛋白质因子的作用下参入到硒蛋白中。硒蛋白的合成在翻译前水平、mRNA水平、供硒水平等都受到相应的调控。  相似文献   

9.
已知所有的氨基酸中,只有遗传密码表内的20种基本氨基酸才能在核糖体中直接掺入肽链;但最近发现于原核、真核生物中的含硒酶里的硒代半胱氨酸(Se-Cys)似亦有此特点。生化、遗传实验均表明Se-Cys对应于终止密码子UGA;相应的tRNA(95bp)基因已经找到。但其转录产物上所携的Se-Cys很可能由原先携带着的Ser经O-磷酰Ser而来。上述发现显示了UGA作为有义密码子的保守性:也许它正处于从有义密码子变为无义密码子的进化过程中。  相似文献   

10.
硒是人体必需的一种微量元素,参与合成硒代半胱氨酸、硒代甲硫氨酸以及多种硒代蛋白(酶),具有抗肿瘤、抗氧化、增强人体免疫等多种生物学活性,与人体的健康有着密切关系.硒以不同的形式存在于自然界中,大致可分为无机硒和有机硒两种,其生物活性与毒性也各有不同.富硒酵母作为补充硒元素的主要形式之一,具有生物利用度高、食用安全、毒性低等优点.研究富硒酵母中的硒的赋态,对合理摄取硒元素,促进人体健康具有重要意义,因此成为近年来研究的热点.  相似文献   

11.
Selenoprotein P: properties, functions, and regulation   总被引:8,自引:0,他引:8  
  相似文献   

12.
Selenoprotein P protects low-density lipoprotein against oxidation   总被引:4,自引:0,他引:4  
Selenoprotein P (SeP) is an extracellular glycoprotein with 8-10 selenocysteines per molecule, containing approximately 50% of total selenium in human serum. An antioxidant function of SeP has been postulated. In the present study, we show that SeP protects low-density lipoproteins (LDL) against oxidation in a cell-free in-vitro system. LDL were isolated from human blood plasma and oxidized with CuCl2, 2,2'-azobis(2-amidinopropane) (AAPH) or peroxynitrite in the presence or absence of SeP, using the formation of conjugated dienes as parameter for lipid peroxidation. SeP delayed the CuCl2- and AAPH-induced LDL oxidation significantly and more efficiently than bovine serum albumin used as control. In contrast, SeP was not capable of inhibiting peroxynitrite-induced LDL oxidation. The protection of LDL against CuCl2- and AAPH-induced oxidation provides evidence for the antioxidant capacity of SeP. Because SeP associates with endothelial membranes, it may act in vivo as a protective factor inhibiting the oxidation of LDL by reactive oxygen species.  相似文献   

13.
A major fraction of the essential trace element selenium circulating in human blood plasma is present as selenoprotein P (SeP). As SeP associates with endothelial membranes, the participation of SeP in selenium-mediated protection against oxidative damage was investigated, using the human endothelial cell line Ea.hy926 as a model system. Hepatocyte-derived SeP prevented tert-butylhydroperoxide (t-BHP)-induced oxidative cell death of Ea.hy926 cells in a similar manner as did sodium selenite, counteracting a t-BHP-induced loss of cellular membrane integrity. Protection was detected after at least 10 h of SeP supplementation and it peaked at 24 h. SeP time-dependently stimulated the expression of cytosolic glutathione peroxidase (cGPx) and increased the enzymatic activities of glutathione peroxidase (GPx) and thioredoxin reductase (TR). The cGPx inhibitor mercaptosuccinate as well as the γ-glutamylcysteine synthetase inhibitor buthionine sulfoximine counteracted the SeP-mediated protection, while the TR inhibitors cisplatin and auranofin had no effect. The presented data suggest that selenium supplementation by SeP prevents oxidative damage of human endothelial cells by restoring expression and enzymatic activity of GPx.  相似文献   

14.
15.
Selenoprotein P (SeP) is a highly glycosylated, selenium-rich plasma protein. Aside from its role as selenium carrier protein, an antioxidative function of SeP has been suggested. Astrocytes, which detoxify reactive oxygen species in the brain, were described as potential target cells of SeP. We investigated the expression of SeP in human astrocytes and its involvement in the protection of these cells against tert-butyl hydroperoxide (t-BHP)-induced oxidative damage. We show that primary human astrocytes and the human astrocytoma cell line MOG-G-CCM express SeP as an unglycosylated protein, which is not secreted. SeP expression in astrocytes is constitutive. Preincubation of astrocytes with hepatocyte-derived SeP mimicks the protective effect of low-molecular-weight selenocompounds such as sodium selenite or selenomethionine against oxidative damage, shielding astrocytes from t-BHP-induced cytotoxicity. Selenium supplementation of astrocytes counteracts oxidative stress via an increase in expression and activity of the selenoenzyme cytosolic glutathione peroxidase (cGPx). Furthermore, specific downregulation of SeP expression by small interfering RNA decreases cell viability of human astrocytes and makes them more susceptible to t-BHP-induced cytotoxicity. Our results implicate an antioxidant activity of constitutively expressed SeP in selenium-deficient astrocytes, while during adequate selenium supply the enhanced protection against oxidative stress is exerted by cGPx.  相似文献   

16.
The opal termination codon UGA is used in both prokaryotic and eukaryotic species to direct the specific insertion of selenocysteine into certain selenium-dependent enzymes. So far a formate dehydrogenase (hydrogenase-linked) of Escherichia coli and glutathione peroxidases of murine, human and rat origin have been identified as enzymes containing selenocysteine residues encoded by UGA. A novel seryl-tRNA, anticodon UCA, that specifically recognizes the UGA codon is required for selenocysteine incorporation into formate dehydrogenase. A eukaryotic UGA suppressor tRNA with UCA anticodon that accepts serine and is phosphorylated to O-phosphoseryl-tRNA may have a corresponding function in glutathione peroxidase synthesis. Other factors required for the unusual usage of the in-frame UGA codons to specify selenocysteine incorporation and the biochemical mechanism involved in distinguishing these from normal UGA termination codons are discussed.  相似文献   

17.
18.
A major fraction of the essential trace element selenium circulating in human blood plasma is present as selenoprotein P (SeP). As SeP associates with endothelial membranes, the participation of SeP in selenium-mediated protection against oxidative damage was investigated, using the human endothelial cell line Ea.hy926 as a model system. Hepatocyte-derived SeP prevented tert-butylhydroperoxide (t-BHP)-induced oxidative cell death of Ea.hy926 cells in a similar manner as did sodium selenite, counteracting a t-BHP-induced loss of cellular membrane integrity. Protection was detected after at least 10 h of SeP supplementation and it peaked at 24 h. SeP time-dependently stimulated the expression of cytosolic glutathione peroxidase (cGPx) and increased the enzymatic activities of glutathione peroxidase (GPx) and thioredoxin reductase (TR). The cGPx inhibitor mercaptosuccinate as well as the gamma-glutamylcysteine synthetase inhibitor buthionine sulfoximine counteracted the SeP-mediated protection, while the TR inhibitors cisplatin and auranofin had no effect. The presented data suggest that selenium supplementation by SeP prevents oxidative damage of human endothelial cells by restoring expression and enzymatic activity of GPx.  相似文献   

19.
20.
In mammals, most of the selenium contained in the body is present as an unusual amino acid, selenocysteine (Sec), whose codon is UGA. Because the UGA codon is typically recognized as a translation stop signal, it is intriguing how a cell recognizes and distinguishes a UGA Sec codon from a UGA stop codon. For eukaryotic selenoprotein mRNAs, it has been proposed that a conserved stem-loop structure designated the Sec insertion sequence (SECIS) in the 3'-untranslated (3'-UTR) region is required for recognition of UGA as a Sec codon. Some proteins which bind to SECIS (SBP) have been reported. However, it is not clear how the SECIS element in the 3'-UTR can mediate Sec insertion far at the in-frame UGA Sec codons. The idea that there must be a signal near the UGA Sec codon is still considered. Therefore, we searched for a protein which binds to an RNA sequence surrounding the UGA Sec codon on human glutathione peroxidase (GPx) mRNA. We found a protein which strongly bound to the RNA fragment upstream of the UGA Sec codon. However, this protein did not bind to the RNA sequence downstream of the UGA codon. This protein also bound to the SECIS sequence in the 3'-UTR of human GPx, and this binding to SECIS was competed with the RNA fragment upstream of the UGA Sec codon. Comparison of the RNA fragment with the SECIS fragment identified the conserved regions, which appeared in the region upstream of the in-frame UGA Sec codon of Se-protein mRNAs. Thus, this study proposes a novel model to understand the mechanisms of Sec incorporation at the UGA Sec codon, especially the regions upstream of the UGA codon of mRNAs of mammalian selenoproteins. This model explains that the stem-loop structure covering the UGA codon is recognized by SBP and how the UGA Sec codon escapes from attack by eRF of the peptide releasing factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号