首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rain‐fed lowland rice weed Rhamphicarpa fistulosa (Rice Vampireweed) is a facultative root parasitic plant. Growth and reproduction of R. fistulosa benefit considerably from parasitism, but how this affects the host plant is not well established. We determined accumulation and partitioning of rice–parasite biomass in two pot experiments. First, rice (cv. IR64) was grown under eight R. fistulosa densities (15–1000 seeds per pot) with two sampling times. Next, 2 parasite densities (6 and 13 plants per pot) were combined with 9 destructive samplings. Infection increased host root: shoot ratios and decreased host plant height, leaf area and tiller number. Reductions in light interception were followed by reductions in light use efficiency, causing 22–71% losses in host plant biomass and 78–100% losses in host kernel production. Parasitism eventually caused a complete standstill of host plant growth, while the parasite managed to gradually increase its share in total host plant–parasite biomass up to 50–82%. This implies that ultimately the host plant was producing solely for the sake of the parasite. Due to its facultative nature, R. fistulosa may incorrectly be perceived as relatively harmless. Upon infection this Rice Vampireweed, however, turns into a genuine slave master, whereby it completely dominates its host.  相似文献   

2.
Strigolactones (SLs) trigger germination of parasitic plant seeds and hyphal branching of symbiotic arbuscular mycorrhizal (AM) fungi. There is extensive structural variation in SLs and plants usually produce blends of different SLs. The structural variation among natural SLs has been shown to impact their biological activity as hyphal branching and parasitic plant seed germination stimulants. In this study, rice root exudates were fractioned by HPLC. The resulting fractions were analyzed by MRM-LC-MS to investigate the presence of SLs and tested using bioassays to assess their Striga hermonthica seed germination and Gigaspora rosea hyphal branching stimulatory activities. A substantial number of active fractions were revealed often with very different effect on seed germination and hyphal branching. Fractions containing (−)−orobanchol and ent-2''-epi-5-deoxystrigol contributed little to the induction of S. hermonthica seed germination but strongly stimulated AM fungal hyphal branching. Three SLs in one fraction, putative methoxy-5-deoxystrigol isomers, had moderate seed germination and hyphal branching inducing activity. Two fractions contained strong germination stimulants but displayed only modest hyphal branching activity. We provide evidence that these stimulants are likely SLs although no SL-representative masses could be detected using MRM-LC-MS. Our results show that seed germination and hyphal branching are induced to very different extents by the various SLs (or other stimulants) present in rice root exudates. We propose that the development of rice varieties with different SL composition is a promising strategy to reduce parasitic plant infestation while maintaining symbiosis with AM fungi.  相似文献   

3.
Root colonization by arbuscular mycorrhizal (AM) fungi reduces stimulation of seed germination of the plant parasite Striga (Orobanchaceae). This reduction can affect not only host plants for Striga, resulting in a lower parasite incidence, but also false hosts or trap crops, which induce suicidal Striga seed germination, thereby diminishing their effectiveness. In order to better understand these AM-induced effects, we tested the influence of root colonization by different AM fungi on the seed-germination activity of root exudates of the Striga hermonthica nonhost plants cowpea and cotton on S. hermonthica. We also tested the effect of AM fungi on the seed-germination activity of the Striga gesnerioides host plant cowpea on S. gesnerioides. Moreover, we studied whether mycorrhization affects the transport of seed-germination activity to above-ground plant parts. Mycorrhization not only resulted in a lower seed germination of S. gesnerioides in the presence of root exudates of the S. gesnerioides host cowpea but also seed germination of S. hermonthica was also lower in the presence of root exudates of the S. hermonthica nonhosts cowpea and cotton. Downregulation of the Striga seed-germination activity occurs not only in root exudates upon root colonization by different AM fungi but also in the compounds produced by stems. The lowered seed-germination activity does not appear to depend on the presence of seed germination inhibitors in the root exudates of mycorrhizal plants. The implication for Striga control in the field is discussed.  相似文献   

4.
A series of pot and laboratory experiments was carried out to assess the effects of N status of sorghum roots and timing of N application (as NH4NO3) on the germination of Striga hermonthica seeds. Root N concentrations varied from 10 to 26 mg N g?1. The cut root and the root exudates technique used in assaying S. hermonthica seed germination gave similar results. However, the cut root technique was easier to handle and more discriminating at low germination levels. S. hermonthica seed germination per unit sorghum root mass followed a broken‐stick model. It decreased with increasing root N concentrations, reaching lowest levels at a root N concentration of 19.5 mg N g?1, after which no further reduction occurred. It was not possible to reduce S. hermonthica seed germination to a zero level. Timing of N application influenced the time a higher N concentration is reached, not the S. hermonthica seed germination. Both timing and rate of N application are important in maintaining root N concentrations above 19.5 mg N g?1, thereby potentially reducing S. hermonthica germination in the field. Translation of results to reductions in infection levels and yield losses is hampered by density‐dependent relations after the S. hermonthica germination stage.  相似文献   

5.
The root parasitic plant, Striga hermonthica, constrains the production of several agronomically important poaceous crops in the arid and semiarid tropical regions of Sub-Saharan Africa. The parasite is incompatible with the model legume, Lotus japonicus. Studies at the molecular and metabolic levels have revealed that expression of the genes involved in the biosynthesis of vestitol, a legume-specific phytoalexin, was highly up-regulated in L. japonicus roots challenged with S. hermonthica. High-performance liquid chromatography and mass spectroscopy confirmed the presence of vestitol in the exudate released from L. japonicus roots inoculated with S. hermonthica seedlings. Fluorescence, similar to that emitted by authentic vestitol, was displayed on the surface of L. japonicus roots to which successful attachment of S. hermonthica had been achieved. Vestitol exerted a limited inhibitory effect on S. hermonthica germination, but it significantly inhibited seedling growth. These results indicate that vestitol biosynthesis in L. japonicus was induced by S. hermonthica attachment and that vestitol contributed, at least in part, to the host’s defence mechanism and acted as a chemical barrier against the intrusion of the parasite.  相似文献   

6.
The strigolactones are internal and rhizosphere signalling molecules in plants that are biosynthesised through carotenoid cleavage. They are secreted by host roots into the rhizosphere where they signal host-presence to the symbiotic arbuscular mycrorrhizal (AM) fungi and the parasitic plants of the Orobanche, Phelipanche and Striga genera. The seeds of these parasitic plants germinate after perceiving these signalling molecules. After attachment to the host root, the parasite negatively affects the host plant by withdrawing water, nutrients and assimilates through a direct connection with the host xylem. In many areas of the world these parasites are a threat to agriculture but so far very limited success has been achieved to minimize losses due to these parasitic weeds. Considering the carotenoid origin of the strigolactones, in the present study we investigated the possibilities to reduce strigolactone production in the roots of plants by blocking carotenoid biosynthesis using carotenoid inhibitors. Hereto the carotenoid inhibitors fluridone, norflurazon, clomazone and amitrole were applied to rice either through irrigation or through foliar spray. Irrigation application of all carotenoid inhibitors and spray application of amitrole significantly decreased strigolactone production, Striga hermonthica germination and Striga infection, also in concentrations too low to affect growth and development of the host plant. Hence, we demonstrate that the application of carotenoid inhibitors to plants can affect S. hermonthica germination and attachment indirectly by reducing the strigolactone concentration in the rhizosphere. This finding is useful for further studies on the relevance of the strigolactones in rhizosphere signalling. Since these inhibitors are available and accessible, they may represent an efficient technology for farmers, including poor subsistence farmers in the African continent, to control these harmful parasitic weeds.  相似文献   

7.
  • The facultative root hemi‐parasite Rhinanthus minor is often used in grassland habitat restoration projects to regulate ecosystem structure and function. Its impact on community productivity and diversity as a function of resource supply, sward composition and management has been widely investigated. However, there is a lack of information about the possible influence of seed quality on the efficacy of the hemi‐parasite.
  • Ten seed lots from commercial sources were sown in the field and their germination characteristics investigated in the laboratory. Seeds from four lots were also germinated and sown in pots alongside plants of two host species, Lotus corniculatus and Holcus lanatus. Plant establishment, height and flowering density were evaluated for the hemi‐parasite, while plant biomass was measured for both R. minor and its host.
  • Two aspects of seed quality influenced the field emergence of seed lots of R. minor, the radicle emergence (%) and the length of the lag period from the beginning of imbibition to germination (mean germination time), which indicates seed vigour. A longer lag period (lower vigour) was associated with higher levels of seedling mortality and lower plant vigour, in terms of plant height and biomass accumulation and was also reflected in the parasitic impact of the seed lots.
  • Seed quality, specifically germination and vigour, can influence the establishment, survival, subsequent plant productivity and parasitic impact of R. minor in vegetation restoration projects. Seed quality is discussed as a key factor to consider when predicting the impact of the hemi‐parasite on community productivity and diversity.
  相似文献   

8.
Striga hermonthica is a root parasitic plant that infests cereals, decimating yields, particularly in sub‐Saharan Africa. For germination, Striga seeds require host‐released strigolactones that are perceived by the family of HYPOSENSITIVE to LIGHT (ShHTL) receptors. Inhibiting seed germination would thus be a promising approach for combating Striga. However, there are currently no strigolactone antagonists that specifically block ShHTLs and do not bind to DWARF14, the homologous strigolactone receptor of the host. Here, we show that the octyl phenol ethoxylate Triton X‐100 inhibits S. hermonthica seed germination without affecting host plants. High‐resolution X‐ray structures reveal that Triton X‐100 specifically plugs the catalytic pocket of ShHTL7. ShHTL7‐specific inhibition by Triton X‐100 demonstrates the dominant role of this particular ShHTL receptor for Striga germination. Our structural analysis provides a rationale for the broad specificity and high sensitivity of ShHTL7, and reveals that strigolactones trigger structural changes in ShHTL7 that are required for downstream signaling. Our findings identify Triton and the related 2‐[4‐(2,4,4‐trimethylpentan‐2‐yl)phenoxy]acetic acid as promising lead compounds for the rational design of efficient Striga‐specific herbicides.  相似文献   

9.
Two sorghum cultivars: the Striga-tolerant S-35 and the Striga-sensitive CK60-B were grown with or without arbuscular mycorrhizal (AM) fungi, and with or without phosphorus addition. At 24 and 45 days after sowing (DAS) of sorghum, root exudates were collected and tested for effects on germination of preconditioned Striga hermonthica seeds. Root exudates from AM sorghum plants induced lower germination of S. hermonthica seeds than exudates from non-mycorrhizal sorghum. The magnitude of this effect depended on the cultivar and harvest time. A significantly (88–97%) lower germination of S. hermonthica seeds upon exposure to root exudates from AM S-35 plants was observed at both harvest times whereas for AM inoculated CK60-B plants a significantly (41%) lower germination was observed only at 45 DAS. The number of S. hermonthica seedlings attached to and emerged on both sorghum cultivars were also lower in mycorrhizal than in non-mycorrhizal plants. Again, this reduction was more pronounced with S-35 than with CK60-B plants. There was no effect of phosphorus addition on Striga seed germination, attachment or emergence. We hypothesize that the negative effect of mycorrhizal colonization on Striga germination and on subsequent attachment and emergence is mediated through the production of signaling molecules (strigolactones) for AM fungi and parasitic plants.Key Words: arbuscular mycorrhiza, root exudate, sorghum, striga, strigolactones, germination  相似文献   

10.
Abstract Growth and gas exchange measurements are used in conjunction with a carbon balance model to describe the millet (Pennisetum typhoides)–witchweed (Striga hermonthica) host—parasite association. Striga hermonthica reduces the growth of millet by 28% and radically alters the architecture of infected plants. Whilst grain yield and stem dry weight are reduced (by 80 and 53%, respectively), leaf and root growth are stimulated (by 41 and 86%, respectively). The difference in production between infected and uninfected millet plants can be accounted for by two processes: first, export of carbon to the parasite (accounting for 16% of the dry weight not gained); and second, parasite-induced reductions in host photosynthesis (accounting for 84% of the dry weight not gained). Striga hermonthica is dependent on carbon exported from the host, since the plant has low rates of photosynthesis coupled with high rates of respiration. The carbon balance model suggests that in mature S. hermonthica plants parasitic on millet, 85% of the carbon is host-derived. Carbon fluxes are also estimated using δ13C measurements, since S. hermonthica is a C3 plant parasitizing a C4 host. In conjunction with gas exchange measurements, these suggest that in root, stem and leaf of S. hermonthica, 87, 70 and 49% of carbon is hostderived, respectively.  相似文献   

11.
The germination stimulants produced by Arabidopsis thaliana, a host of root parasitic plants Orobanche spp. but not of arbuscular mycorrhizal (AM) fungi were examined. Root exudates from the hydroponically grown A. thaliana plants were subjected to reverse phase high performance liquid chromatography (HPLC) and retention times of germination stimulants inducing O. aegyptiaca seed germination were compared with those of strigolactone standards. In addition, the root exudates were analyzed by using HPLC linked with tandem mass spectrometry (LC/MS/MS). A. thaliana was found to exude at least three different germination stimulants of which one was identified as orobanchol. This is the first report of strigolactone production by a non-mycotrophic plant. These results together with recent knowledge imply that strigolactones have other unrevealed functions in plant growth and development.  相似文献   

12.
Role of Ethylene in the Germination of the Hemiparasite Striga hermonthica   总被引:3,自引:0,他引:3  
Logan DC  Stewart GR 《Plant physiology》1991,97(4):1435-1438
Seed germination of the hemiparasitic angiosperm Striga hermonthica (Del.) Benth is elicited by compounds present in the root exudates of the host plant. Although a variety of compounds can substitute for the host-derived signal, the mechanism through which these act is unknown. In the present study, an inhibitor of ethylene biosynthesis, aminoethoxyvinyl glycine, was found to inhibit germination. Addition of an intermediate in ethylene biosynthesis, 1-aminocyclopropane-1-carboxylic acid, was found to override this inhibition and to act as a substitute for the host-derived signal. 2,5-Norbornadiene, an inhibitor of ethylene action, was also found to inhibit germination. Ethylene is rapidly produced by Striga seeds after treatment with host root exudates. These results are consistent with a model for Striga seed germination in which host-derived signals and other compounds act by eliciting the synthesis of ethylene and in which ethylene itself initiates the biochemical changes leading to germination.  相似文献   

13.
Summary The haustorial structure of three African parasitic members of the family Scrophulariaceae (Buchnera hispida, Rhamphicarpa fistulosa, andStriga hermonthica) has been studied with regard to the interface between haustoria and the invaded host roots. Immunocytochemical observations at the light and electron microscopical level were carried out with monoclonal antibodies against pectin. JIM5, JIM7, and hydroxyproline-rich glycoprotein (HRGP), LM1. Lignins have been visualized by phloroglucinolhydrochloric acid staining. At the margin of the lateral interface (contact area of host root cortex and parasite cells), JIM5- and JIM7-labelled substances accumulate between parasite papillae and the host root surface indicating that pectins are implicated in sealing the parasite to the attacked host organ. The lateral interface is characterized by the presence of compressed, necrotic host cells, whereas the central interface (contact area between host stele and parasite cells) is generally devoid of host cell remnants. Phenolic substances and/or lignins can be found at the site of penetration of the haustorium into the host root. These observations and the fact that HRGPs accumulate at the host side of the interface support the view of, at least, a partial defense reaction in the invaded host root tissues. Within haustoria, HRGPs were restricted to differentiating xylem elements, implying a spatio-temporal regulation of HRGPs in developmental processes.Abbreviations BSA bovine serum albumin - FITC fluorescein isothiocyanate - HRGP hydroxyproline-rich glycoprotein - LM light microscopy - MAb monoclonal antibody - TBSB Tris-buffered saline with bovine serum albumin - TBSB-T Tris-buffered saline with bovine serum albumin and Tween 20 - TEM transmission electron microscopy  相似文献   

14.
The hemiparasite Striga hermonthica is a major constraint to smallholder farmer livelihoods and food security in sub‐Saharan Africa. A better understanding of its life‐cycle can help developing more effective management strategies. Here, we studied density dependence in S. hermonthica on Sorghum bicolor. We exposed two genotypes of S. bicolor that differed in the level of tolerance and resistance to S. hermonthica to a range of seed densities of the parasite. We evaluated multiple host and parasite performance parameters through periodic, destructive harvests and related these to the initial seed density using model selection. Initially, the probability for attachment was positively density‐dependent, suggesting facilitation of new infections. However, at host maturity, S. hermonthica infection probability showed strong negative density dependence, indicating severe competition, in particular in the early developmental stages. Although parasite shoot dry weight showed a strong negative density dependence at host maturity, flower production per parasite exhibited positive density dependence again, suggesting compensation. The two host genotypes had similar responses to increased parasite densities, indicating differences between the genotypes in tolerance but not resistance. Consequently, despite density dependence in life‐cycle components, the per capita reproductive output of S. hermonthica, R0 (flowers seed?1) was density‐independent. Apparently, management of the hemiparasite can neither benefit from a negatively density‐dependent bottleneck, nor from a positively density‐dependent Allee effect. The most promising suggestion to obtain S. hermonthica population decline (R0 < 1) and long‐term control is to increase host shading by growing a vigorous, competitive crop.  相似文献   

15.
Strigolactones released from plant roots induce hyphal branching of symbiotic arbuscular mycorrhizal (AM) fungi and germination of root parasitic weeds, Striga and Orobanche spp. We already demonstrated that, in red clover plants (Trifolium pratense L.), a host for both AM fungi and the root holoparasitic plant Orobanche minor Sm., reduced supply of phosphorus (P) but not of other elements examined (N, K, Ca, Mg) in the culture medium significantly promoted the secretion of a strigolactone, orobanchol, by the roots of this plant. Here we show that in the case of sorghum [Sorghum bicolor (L.) Moench], a host of both the root hemiparasitic plant Striga hermonthica and AM fungi, N deficiency as well as P deficiency markedly enhanced the secretion of a strigolactone, 5-deoxystrigol. The 5-deoxystrigol content in sorghum root tissues also increased under both N deficiency and P deficiency, comparable to the increase in the root exudates. These results suggest that strigolactones may be rapidly released after their production in the roots. Unlike the situation in the roots, neither N nor P deficiency affected the low content of 5-deoxystrigol in sorghum shoot tissues.  相似文献   

16.
The facultative hemiparasitic plant Rhamphicarpa fistulosa (Orobanchaceae) thrives in seasonally wet soils in sub-Saharan Africa, mainly in marginal lowland rice growing environments where weeds are already a major constraint for rice production. Because lowland rice production is increasing in tropical Africa, it is important to ascertain the influence of R. fistulosa on weed plant communities in these rice-growing habitats. We investigated weed plant community richness and composition at four different levels of R. fistulosa infestation across two years of surveys from lowland rice fields in northern Togo (West Africa). Despite a lack of significant differences in community richness among sites with different R. fistulosa infestation levels, there were significant differences in community composition, both when estimated from presence-absence data and from relative abundance data, after controlling statistically for geographic proximity among sites. Rhamphicarpa fistulosa infestation, therefore, may influence the competitive balance between rice and its weeds and shape weed community structure. However, experimental studies are required to elucidate the weed host range of R. fistulosa and the direct and indirect effects of this hemiparasite in rice fields in order to predict its net impact on rice and its weed species.  相似文献   

17.
Tillering in cereals is a complex process in the regulation of which also signals from the roots in the form of strigolactones play an important role. The strigolactones are signalling molecules that are secreted into the rhizosphere where they act as germination stimulants for root parasitic plants and hyphal branching factors for arbuscular mycorrhizal fungi. On the other hand, they are also transported from the roots to the shoot where they inhibit tillering or branching. In the present study, the genetic variation in strigolactone production and tillering phenotype was studied in twenty rice varieties collected from all over the world and correlated with S. hermonthica infection. Rice cultivars like IAC 165, IAC 1246, Gangweondo and Kinko produced high amounts of the strigolactones orobanchol, 2′-epi-5-deoxystrigol and three methoxy-5-deoxystrigol isomers and displayed low amounts of tillers. These varieties induced high S. hermonthica germination, attachment, emergence as well as dry biomass. In contrast, rice cultivars such as Super Basmati, TN 1, Anakila and Agee displayed high tillering in combination with low production of the aforementioned strigolactones. These varieties induced only low S. hermonthica germination, attachment, emergence and dry biomass. Statistical analysis across all the varieties confirmed a positive correlation between strigolactone production and S. hermonthica infection and a negative relationship with tillering. These results show that genetic variation in tillering capacity is the result of genetic variation in strigolactone production and hence could be a helpful tool in selecting rice cultivars that are less susceptible to S. hermonthica infection.  相似文献   

18.
19.
Parasitic plants infect other plants by forming haustoria, specialized multicellular organs consisting of several cell types, each of which has unique morphological features and physiological roles associated with parasitism. Understanding the spatial organization of cell types is, therefore, of great importance in elucidating the functions of haustoria. Here, we report a three-dimensional (3-D) reconstruction of haustoria from two Orobanchaceae species, the obligate parasite Striga hermonthica infecting rice (Oryza sativa) and the facultative parasite Phtheirospermum japonicum infecting Arabidopsis (Arabidopsis thaliana). In addition, field-emission scanning electron microscopy observation revealed the presence of various cell types in haustoria. Our images reveal the spatial arrangements of multiple cell types inside haustoria and their interaction with host roots. The 3-D internal structures of haustoria highlight differences between the two parasites, particularly at the xylem connection site with the host. Our study provides cellular and structural insights into haustoria of S. hermonthica and P. japonicum and lays the foundation for understanding haustorium function.

Three-dimensional image reconstruction visualized the spatial organization of cell types in the haustoria of the Orobanchaceae parasitic plants Striga hermonthica and Phtheirospermum japonicum.  相似文献   

20.
The gas exchange of the upper fully expanded leaf of the root parasite Striga hermonthica and of its host Sorghum bicolor was measured under wet and dry conditions to identify the mechanisms of the devastating effects of the parasite on its hosts under drought. The short-term water stress severely reduced photosynthetic rate in infected sorghum, but less in S. hermonthica. Soil water stress did not affect leaf respiration rate in either S. hermonthica or infected sorghum. This suggests that under dry conditions both infected sorghum and S. hermonthica decreased autotrophic carbon gain. The transpiration rate of S. hermonthica, a major driving force for assimilate uptake from the host, was higher and less affected by water stress than that of infected sorghum. Stomatal density on the abaxial surfaces of the leaves was higher in S. hermonthica than in sorghum. Both S. hermonthica infection and water stress decreased stomatal conductance of the sorghum leaves. S. hermonthica, irrespective of soil water status, had greater stomatal aperture on the adaxial and abaxial surfaces of its leaves than infected sorghum. These results indicate that the higher transpiration rate of S. hermonthica even under water stress, achieved through higher stomatal density on the abaxial surfaces of the leaves and greater stomatal aperture on both surfaces of the leaves, may induce the maintenance of water and solute transfers from the host to the parasite leading to severe damage to the host under drought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号