首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Emergence of multidrug resistant bacteria has made the search for novel bioactive compounds from natural and unexplored habitats a necessity. Actinobacteria have important bioactive substances. The present study investigated antimicrobial activity of Actinobacteria isolated from soil samples of Egypt. One hundred samples were collected from agricultural farming soil of different governorates. Twelve isolates have produced activity against the tested microorganisms (S. aureus, Bacillus cereus, E. coli, K. pneumoniae, P. aeruginosa, S. Typhi, C. albicans, A. niger and A. flavus). By VITEK 2 system version: 07.01 the 12 isolates were identified as Kocuria kristinae, Kocuria rosea, Streptomyces griseus, Streptomyces flaveolus and Actinobacteria. Using ethyl acetate extraction method the isolates culture’s supernatants were tested by diffusion method against indicator microorganisms. These results indicate that Actinobacteria isolated from Egypt farms could be sources of antimicrobial bioactive substances.  相似文献   

2.
Novel 3-elongated arylalkoxybenzamide derivatives were designed, synthesized and evaluated for their cell division inhibitory activity and antibacterial activity. Among them, the subseries of 3-alkyloxybenzamide derivatives exhibited greatly improved on-target activity against Bacillus subtilis and Staphylococcus aureus, and remarkably increased antibacterial activity against B. subtilis ATCC9372, penicillin-susceptible S. aureus ATCC25923, methicillin-resistant S. aureus ATCC29213 (MRSA) and penicillin-resistant S. aureus PR compared with 3-methoxybenzamide. In contrast, the subseries of 3-phenoxyaklyloxybenzamide, 3-heteroarylalkyloxybenzamide and 3-heteroarylthioalkyloxybenzamide derivatives only showed a significant improvement in on-target activity and antibacterial activity against B. subtilis ATCC9372.  相似文献   

3.
Limited knowledge currently exists regarding species diversity and antimicrobial activity of endophytic isolates of Preussia within Australia. This report describes endophytic Preussia species that were identified through molecular analysis of the internal transcribed spacer region. Screening for antimicrobial secondary metabolites was determined by testing crude ethyl acetate (EtOAc) extracts derived from fungal mycelia against a panel of ATCC type strains which included Bacillus cereus, Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa, Serratia marcescens, methicillin-resistant Staphylococcus aureus (MRSA) and the opportunist yeast pathogen Candida albicans. Subsequently, high-performance liquid chromatography generated fractions of bioactive EtOAc extracts which were subject to confirmatory testing using the Clinical and Laboratory Standards Institute reference microdilution antimicrobial activity assay. A total of 18 Preussia were isolated from nine host plants with 6/18 having a <97 % sequence similarity to other known species in Genbank, suggesting that they are new species. In preliminary screening, 13/18 Preussia isolates revealed antimicrobial activity against at least one of the microbes tested, whilst 6/18 isolates, including 4/6 putative new species showed specific antimicrobial activity against MRSA and C. albicans. These results highlight the antimicrobial potential of Australian Preussia spp. and also the importance of Australian dry rainforests as an untapped repository of potentially significant bioactive compounds.  相似文献   

4.
Hinokitiol is a natural component isolated from Chamacyparis taiwanensis. It has anti-microbial activity, and has been used in oral care products. The minimal inhibitory concentration (MIC) and minimal microbicidal concentration (MMC) of hinokitiol against MRSA, Aggregatibacter actinomycetemcomitans, Streptococcus mutans, and Candida albicans were determined by the agar and broth dilution method (MIC: 40–110 μM; MMC: 50–130 μM); the paradoxical inhibition phenomenon (PIP) was observed in A. actinomycetemcomitans and S. mutans. The PIP can be described as microbial growth occurring in the presence of both high and low concentrations of a compound, between which microbial growth is inhibited. The PIP was confirmed using a kinetic microplate and inhibition zone methods. The PIP was also observed in MRSA. The low autolysin activity somehow correlated to the PIP positive. The cell diameter was increased in all the pathogens, and the transition was inhibited in C. albicans following hinokitiol treatment. Hinokitiol is also a potential anticancer drug. The 200 μM of hinokitiol has significant antimicrobial and cytotoxic activities against oral pathogens and oral squamous cell carcinoma cell lines, respectively, and lower cytotoxic effects for normal human oral keratinocytes, indicating that hinokitiol displays a high potential for safe and effective applications in oral health care.  相似文献   

5.
The need for more effective antimicrobial agent and propitious application of nanotechnology in therapeutics and diagnostics has prompted the research on ecofriendly synthesis of silver nanoparticles. The objective of present study was to investigate the antibacterial and antifungal activity of biologically synthesized silver nanoparticles. The silver nanoparticles were synthesized by extracellular method, using soil bacteria Kocuria rosea. The synthesized silver nanoparticles were characterized by UV-Visible spectroscopy, X-ray diffractometry (XRD), transmission electron microscopy (TEM) and fourier transformation infrared spectroscopy (FTIR). On the basis of TEM analysis, the synthesized nanoparticles were found to be spherical with an average size of 30–50 nm. The biologically synthesized silver nanoparticles showed significant antimicrobial activity against pathogens.  相似文献   

6.
Polycrystalline alumina ceramic orthodontic brackets were coated with anatase TiO2 film via a sol-gel dip-coating method. The surface structure morphology and composition of the films were evaluated via scanning electron microscopy, atomic force microscopy, and X-ray diffraction. The antimicrobial activity of the ceramic brackets was assessed against two oral pathogens, S. mutans and C. albicans. The results demonstrated that TiO2-coated brackets exposed to low energy UV-A illumination efficiently reduced the populations of test microorganisms relative to the uncoated brackets. The reduction efficiencies were 98% for S. mutans ATCC 10449 and 93% for C. albicans ATCC 60193.  相似文献   

7.
Twenty-five Campylobacter isolates were screened for production of antimicrobial substances using a deferred antagonism assay. Sixteen isolates showed activity against either Staphylococcus aureus, Salmonella enterica serovar Enteritidis or Candida albicans. The inhibitory activity was sensitive to treatment with pronase E, trypsin and pepsin, suggesting that the antimicrobial compound(s) are proteinaceous. Activity spectra of isolates included S. aureus, Micrococcus luteus, Streptococcus sp., Bacillus subtilis, a drug-resistant clinical isolate of S. aureus and one isolate of C. albicans. Producing isolates showed cross-immunity and inhibitory activity was only observed on solid media. The findings of this study suggest that Campylobacter produces proteinaceous inhibitory substances.  相似文献   

8.
This study investigated the potential antimicrobial activity of ten Bacillus licheniformis strains isolated from retail infant milk formulae against a range of indicator (Lactococcus lactis, Lactobacillus bulgaricus and Listeria innocua) and clinically relevant (Listeria monocytogenes, Staphylococcus aureus, Streptococcus agalactiae, Salmonella Typhimurium and Escherichia coli) microorganisms. Deferred antagonism assays confirmed that all B. licheniformis isolates show antimicrobial activity against the Gram-positive target organisms. PCR and matrix-assisted laser desorption ionization time-of-flight mass spectrometry analyses indicated that four of the B. licheniformis isolates produce the bacteriocin lichenicidin. The remaining six isolates demonstrated a higher antimicrobial potency than lichenicidin-producing strains. Further analyses identified a peptide of ~1,422 Da as the most likely bioactive responsible for the antibacterial activity of these six isolates. N-terminal sequencing of the ~1,422 Da peptide from one strain identified it as ILPEITXIFHD. This peptide shows a high homology to the non-ribosomal peptides bacitracin and subpeptin, known to be produced by Bacillus spp. Subsequent PCR analyses demonstrated that the six B. licheniformis isolates may harbor the genetic machinery needed for the synthesis of a non-ribosomal peptide synthetase similar to those involved in production of subpeptin and bacitracin, which suggests that the ~1,422 Da peptide might be a variant of subpeptin and bacitracin.  相似文献   

9.
A series of 8,9-disubstituted adenines (4, 5, 8), 6-substituted aminopurines (10–13) and 9-(p-fluorobenzyl/cyclopentyl)-6-substituted aminopurines (16, 17, 19–30) have been prepared and the antimicrobial activities of these compounds against Staphylococcus aureus, methicillin-resistant S. aureus (MRSA, standard and clinical isolate), Bacillus subtilis, Escherichia coli and Candida albicans were evaluated. 6-[(N-phenylaminoethyl)amino]-9H-purine (12) which has no substitution at N-9 position and 9-cyclopentyl-6-[(4-fluorobenzyl)amino]-9H-purine (24) exhibited excellent activity against C. albicans with MIC 3.12 μg/mL. These compounds displayed better antifungal activity than that of standard oxiconazole. Furthermore, compound 22 carrying 4-chlorobenzylamino group at the 6-position of the purine moiety exhibited comparable antibacterial activity with that of the standard ciprofloxacin against both of the drug-resistant bacteria (MRSA, standard and clinical isolate).  相似文献   

10.
Rhodomyrtone [6,8-dihydroxy-2,2,4,4-tetramethyl-7-(3-methyl-1-oxobutyl)-9-(2-methylpropyl)-4,9-dihydro-1H-xanthene-1,3(2H)-di-one] from Rhodomyrtus tomentosa (Aiton) Hassk. displayed significant antibacterial activities against Gram-positive bacteria including Bacillus cereus, Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Staphylococcus epidermidis, Streptococcus gordonii, Streptococcus mutans, Streptococcus pneumoniae, Streptococcus pyogenes, and Streptococcus salivarius. Especially noteworthy was the activity against MRSA with a minimum inhibitory concentration (MIC) and a minimum bactericidal concentration (MBC) ranging from 0.39 to 0.78 μg/ml. As shown for S. pyogenes, no surviving cells were detected within 5 and 6 h after treatment with the compound at 8MBC and 4MBC concentrations, respectively. Rhodomyrtone displays no bacteriolytic activity, as determined by measurement of the optical density at 620 nm. A rhodomyrtone killing test with S. mutans using phase contrast microscopy showed that this compound caused a few morphological changes as the treated cells were slightly changed in color and bigger than the control when they were killed. Taken together, the results support the view that rhodomyrtone has a strong bactericidal activity on Gram-positive bacteria, including major pathogens.  相似文献   

11.
Lepidium sativum (garden cress) seed oil was examined for its antimicrobial, antioxidant, and anti-inflammatory activities. The oil was obtained by hydrodistillation, where gas chromatography coupled with mass spectrometry that utilized to study its chemical composition. Microdilution method was used to test the antimicrobial effect of oil against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica, Klebsiella pneumoniae, and Candida albicans. The antioxidant activity was assessed by radical scavenging activity assay using 2,2-diphenyl-1-picrylhydrazyl radical. The major constituents found in the oil were 7,10-hexadecadienoic acid, 11-octadecenoic acid, 7,10,13-hexadecatrienoic acid, and behenic acid. The minimum inhibitory concentration (MIC) against all pathogens was 47.5 mg/ml, except for Salmonella enterica, which showed MIC of 90 mg/ml. The oil demonstrated antioxidant activity in a dose dependent pattern, with a half maximal inhibitory concentration (IC50) value of 40 mg/ml, and exerted anti-inflammatory activity, wherein 21% protection was shown at a concentration of 300 μg/ml. Thus, L. sativum seed oil shows antimicrobial, antioxidant, and anti-inflammatory properties.  相似文献   

12.
Nisin is a bacteriocin widely utilized in more than 50 countries as a safe and natural antibacterial food preservative. It is the most extensively studied bacteriocin, having undergone decades of bioengineering with a view to improving function and physicochemical properties. The discovery of novel nisin variants with enhanced activity against clinical and foodborne pathogens has recently been described. We screened a randomized bank of nisin A producers and identified a variant with a serine to glycine change at position 29 (S29G), with enhanced efficacy against S. aureus SA113. Using a site-saturation mutagenesis approach we generated three more derivatives (S29A, S29D and S29E) with enhanced activity against a range of Gram positive drug resistant clinical, veterinary and food pathogens. In addition, a number of the nisin S29 derivatives displayed superior antimicrobial activity to nisin A when assessed against a range of Gram negative food-associated pathogens, including E. coli, Salmonella enterica serovar Typhimurium and Cronobacter sakazakii. This is the first report of derivatives of nisin, or indeed any lantibiotic, with enhanced antimicrobial activity against both Gram positive and Gram negative bacteria.  相似文献   

13.
The development and world-wide spread of multidrug-resistant (MDR) bacteria have a high concern in the medicine, especially the extended-spectrum of beta-lactamase (ESBL) producing Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA). There are currently very limited effective antibiotics to treat infections caused by MDR bacteria. Peat-soil is a unique environment in which bacteria have to compete each other to survive, for instance, by producing antimicrobial substances. This study aimed to isolate bacteria from peat soils from South Kalimantan Indonesia, which capable of inhibiting the growth of Gram-positive and Gram-negative bacteria. Isolates from peat soil were grown and identified phenotypically. The cell-free supernatant was obtained from broth culture by centrifugation and was tested by agar well-diffusion technique against non ESBL-producing E. coli ATCC 25922, ESBL-producing E. coli ATCC 35218, methicillin susceptible Staphylococcus aureus (MSSA) ATCC 29,213 and MRSA ATCC 43300. Putative antimicrobial compounds were separated using SDS-PAGE electrophoresis and purified using electroelution method. Antimicrobial properties of the purified compounds were confirmed by measuring the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). In total 28 isolated colonies were recovered; three (25PS, 26PS, and 27PS) isolates produced proteins with strong antimicrobial activities against both reference strains. The substance of proteins from three isolates exerted strong antimicrobial activity against ESBL-producing E. coli ATCC 35,218 (MIC = 2,80 µg/mL (25PS), 3,76 µg/mL (26PS), and 2,41 µg/mL (27PS), and MRSA ATCC 43,300 (MIC = 4,20 µg/mL (25PS), 5,65 µg/mL (26PS), and 3,62 µg/mL (27PS), and also had the ability bactericidal properties against the reference strains. There were isolates from Indonesian peat which were potentials sources of new antimicrobials.  相似文献   

14.
《Mycoscience》2014,55(2):127-133
Infectious disease caused by antibiotic resistant microorganisms is a global public health problem. There is a need to search for new bioactive compounds from new sources. In this study, we focused on invertebrate-pathogenic fungi infecting spiders. One hundred and sixty-five crude extracts from Akanthomyces (n = 45) and Gibellula (n = 10) were screened for their antimicrobial activity against nine human pathogens. Twenty-one extracts out of 165 (12.73%) from 16 (29.09%) isolates exhibited antimicrobial activity against at least one test strain. The most activity was against Staphylococcus aureus American Type Culture Collection (ATCC 25923) (8.48%) followed by Cryptococcus neoformans ATCC 90112 (3.03%), C. neoformans ATCC 90113 (2.42%), methicillin-resistant Staphylococcus aureus (MRSA) SK-1 (2.42%), Penicillium marneffei (2.42%), Microsporum gypseum (1.21%), Candida albicans ATCC 90028 (1.21%), Pseudomonas aeruginosa ATCC 27853 (0.61%) and Escherichia coli ATCC 25922 (0.61%), respectively. The ethyl acetate extract of mycelia from Gibellula pulchra EPF083 had the strongest broad spectrum antimicrobial activity with a minimum inhibitory concentration (MIC) value of 16 μg/ml against S. aureus ATCC 25923, MRSA SK-1, C. neoformans (ATCC 90112 and ATCC 90113) and P. marneffei and exhibited fungicidal activity against C. neoformans ATCC 90112 and P. marneffei with minimum fungicidal concentration (MFC) values of 16 and 32 μg/ml, respectively. These preliminary data show that invertebrate-pathogenic fungi could be a potential source of antimicrobial agents.  相似文献   

15.
This study investigated the potential antibacterial activity of three series of compounds synthesized from 12 linear and branched polyamines with 2–8 amino groups, which were substituted to produce the corresponding guanides, biguanides, or phenylguanides, against Acinetobacter baumannii, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Antibacterial activity was measured for each compound by determining the minimum inhibitory concentration against the bacteria, and the toxicity towards mammalian cells was determined. The most effective compound, THAM trisphenylguanide, was studied in time-to-kill and cytoplasmic leakage assays against methicillin-resistant Staphylococcus aureus (MRSA, USA300) in comparison to chlorhexidine. Preliminary toxicity and MRSA challenge studies in mice were also conducted on this compound. THAM trisphenylguanide showed significant antibacterial activity (MIC ∼1 mg/L) and selectivity against MRSA relative to all the other bacteria examined. In time-to-kill assays it showed increased antimicrobial activity against MRSA versus chlorhexidine. It induced leakage of cytoplasmic content at concentrations that did not reduce cell viability, suggesting the mechanism of action may involve membrane disruption. Using an intraperitoneal mouse model of invasive MRSA disease, THAM trisphenylguanide reduced bacterial burden locally and in deeper tissues. This study has identified a novel guanide compound with selective microbicidal activity against Staphylococcus aureus, including a methicillin-resistant (MRSA) strain.  相似文献   

16.
Symbiotic bacteria play vital roles in the survival and health of marine sponges. Sponges harbor rich, diverse and species-specific microbial communities. Symbiotic marine bacteria have increasingly been reported as promising source of bioactive compounds. A culturomics-based study was undertaken to study the diversity of bacteria from marine sponges and their antimicrobial potential. We have collected three sponge samples i.e. Acanthaster carteri, Rhytisma fulvum (soft coral) and Haliclona caerulea from north region (Obhur) of Red Sea, Jeddah Saudi Arabia. Total of 144 bacterial strains were isolated from three marine sponges using culture dependent method. Screening of isolated strains showed only 37 (26%) isolates as antagonists against oomycetes pathogens (P. ultimum and P. capsici). Among 37 antagonistic bacteria, only 19 bacterial strains exhibited antibacterial activity against human pathogens (Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 8739, Enterococcus faecalis ATCC 29212). Four major classes of bacteria i.e γ-Proteobacteria, α-Proteobacteria, Firmicutes and Actinobacteria were recorded from three marine sponges where γ-Proteobacteria was dominant class. One potential bacterial strain Halomonas sp. EA423 was selected for identification of bioactive metabolites using GC and LC-MS analyses. Bioactive compounds Sulfamerazine, Metronidazole-OH and Ibuprofen are detected from culture extract of strain Halomonas sp. EA423. Overall, this study gives insight into composition and diversity of antagonistic bacterial community of marine sponges and coral from Red Sea and presence of active metabolites from potential strain. Our results showed that these diverse and potential bacterial communities further need to be studied to exploit their biotechnological significance.  相似文献   

17.
Green silver nanoparticle (AgNP) biosynthesis is facilitated by the enzyme mediated reduction of Ag ions by plants, fungi and bacteria. The antimicrobial activity of green AgNPs is useful to overcome the challenge of antimicrobial resistance. Antimicrobial properties of biosynthesized AgNPs depend on multiple factors including culture conditions and the microbial source. The antimicrobial activity of AgNPs biosynthesized by Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923 and Acinetobacter baumannii (confirmed clinical isolate) were investigated in this study. Biosynthesis conditions (AgNO3 concentration, pH, incubation temperature and incubation time) were optimized to obtain the maximum AgNP yield. Presence of AgNPs was confirmed by observing a characteristic UV–Visible absorbance peak in 420–435 nm range. AgNP biosynthesis was optimal at 0.4 g/L AgNO3 concentration under alkaline conditions at 60–70 °C. The biosynthesized AgNPs showed higher stability compared to chemogenized AgNPs in the presence of electrolytes. AgNPs synthesized by P. aeruginosa were the most stable while NPs of S. aureus were the least stable. AgNPs synthesized by P. aeruginosa and S. aureus showed good antimicrobial potential against E. coli, P. aeruginosa, S. aureus, MRSA and Candida albicans. AgNPs synthesized by S. aureus had greater antimicrobial activity. The antimicrobial activity of NPs may vary depending on the size and the morphology of NPs.  相似文献   

18.
Thein vitro antimicrobial activity of the marine green algaeUlva lactuca was examined against gram-positive bacteria, gram-negative bacteria, and a fungus. The ethyl-ether extract of algae exhibited a broad-spectrum of antibacterial activity. but not antifungal activity againstCandida albicans. In particular, theU. lactuca extract showed strong activity aganst the bacterium methicillin-resistantStaphylococcus aureus (MRSA). This result confirms the potential use of seaweed extracts as a source of antibacterial compounds or as a health-promoting food for aquaculture.  相似文献   

19.
Due to the endless emergence of drug resistant pathogens, there is a constant need for new therapeutic agents for clinical use. The identification of active components in natural products and determining the efficacy of these active components has become the current focus of pharmacological research. The present study aimed to evaluate the anthelmintic and antimicrobial activities of Indigofera oblongifolia leaf extract (ILE) against the earthworm Allolobophora caliginosa, the gram-positive bacteria (Bacillus cereus, Streptococcus pneumoniae, and Staphylococcus aureus), the gram-negative bacteria (Klebsiella pneumoniae, Pseudomonas aeruginosa and Escherichia coli) and the yeast Candida albicans. Methanolic extract of I. oblongifolia leaf was obtained and the total phenolics and flavonoids in ILE were determined. The anthelmintic study was carried out to determine the time to paralysis and time to death of worms using three doses (100, 200, and 300 mg/mL) of ILE. Also, Kirby-Bauer disk diffusion susceptibility method was used to determine the antimicrobial activity of ILE. The results showed that ILE induces paralysis and death of A. caliginosa at all concentration tested faster than the reference drug, Albendazole. Additionally, ILE exhibited prominent antimicrobial activity against all gram-positive bacteria tested but almost no significant activity against the gram-negative bacteria, except K. pneumoniae. ILE showed close similarity to the spectrum of chloramphenicol and cefoxitin activities. Furthermore, C. albicans was highly susceptible to the leaf extracts. Our results showed that ILE is an effective anthelmintic and antimicrobial agent.  相似文献   

20.
Aims: Enhancing production and characterization of a low‐molecular‐weight bacteriocin from Bacillus licheniformis MKU3. Methods and Results: The culture supernatant of B. licheniformis MKU3 exhibited bacteriocin‐like activity against Gram‐positive and ‐negative bacteria and different fungi and yeast. SDS–PAGE analysis of the extracellular proteins of B. licheniformis MKU3 revealed a bacteriocin‐like protein with a molecular mass of 1·5 kDa. This bacteriocin activity was found to be stable under a pH range of 3·0–10·0 and at temperatures up to 100°C for 60 min, but inactivated by proteinase K, trypsin or pronase E. An experimental fractional factorial design for optimization of production medium resulted in a maximum activity of bacteriocin (11 000 AU ml?1) by B. licheniformis MKU3. Conclusions: A low‐molecular‐weight bacteriocin‐like protein from B. licheniformis MKU3 exhibited a wide spectrum of antimicrobial activity against several Grampositive bacteria, several fungi and yeast. A 3·6‐fold increase in the production of bacteriocin was achieved using the culture medium optimized through a fractional factorial design. Significance and Impact of the Study: A bacteriocin with wide spectrum of activity against Gram‐positive bacterial pathogens, filamentous fungi and yeast suggested its potential clinical use. Statistical method facilitated optimization of cultural medium for the improved production of bacteriocin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号