首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bordetella pertussis, the causative agent of whooping cough, produces a complex hetero-oligomeric exotoxin, named pertussis toxin (PTX), which is responsible for several of the clinical manifestations associated with whooping cough. The toxin is composed of five dissimilar subunits, named S1 through S5 and arranged in a hexameric structure with a 1S1:1S2:1S3:2S4:1S5 stoichiometry. Although S2 and S3 share 70% amino acid identity, these two subunits were previously thought not to be able to substitute for each other in toxin assembly/secretion and the biological activities of PTX. Here, we show that toxin analogues containing two S3 subunits and lacking S2 (PTXdeltaS2), or containing two S2 subunits and lacking S3 (PTXdeltaS3), can be produced, assembled and secreted by B. pertussis strains, in which the S2-encoding cistron or the S3-coding cistrons have been inactivated by internal in-frame deletions that avoid downstream effects. In fact, PTXdeltaS3 was produced in higher amounts in the bacterial culture supernatants than natural PTX, whereas PTXdeltaS2 was produced in lower amounts than PTX. The action of the toxin analogues on the clustering of Chinese Hamster Ovary cells was also affected differentially by the S2-S3 substitution. These toxin analogues constitute thus interesting probes for the study of cellular functions, in particular immune cell functions, for which natural PTX has already shown its usefulness.  相似文献   

2.
The subunit S1 is important for pertussis toxin secretion   总被引:14,自引:0,他引:14  
Pertussis toxin is a protein containing five noncovalently linked subunits which are assembled into the monomer A (containing the subunit S1) and the oligomer B (containing subunits S2, S3, S4, and S5 in a 1:1:2:1 ratio). Each of the five subunits is synthesized as a precursor containing a secretory leader peptide and is secreted into the periplasm of Bordetella pertussis where the five subunits are assembled into the oligomeric structure and then released into the culture medium. In the absence of subunit S3 the remaining subunits are not secreted into the medium, thus suggesting that the assembled structure is necessary for the release of the toxin into the supernatant. In this study we describe four B. pertussis mutants which secrete into the medium low amounts of the B oligomer of pertussis toxin. These mutants have single or multiple changes in the gene encoding the S1 subunit and synthesize S1 proteins with altered conformation which are not assembled into the holotoxin and are apparently degraded in the periplasm. These data indicate that while the B oligomer alone has the structural information necessary for the extracellular export of pertussis toxin, the S1 subunit is required for its efficient release into the medium.  相似文献   

3.
Pertussis (whooping cough) is a serious infectious disease caused by the bacterium Bordetella pertussis. One of the major virulence factors is a protein known as pertussis toxin, which is composed of six subunits, with a total molecular weight of 106,000. Enzymatic transfer of ADP-ribose from NAD to a family of GTP-binding proteins is effected by the largest subunit (S1 or the A monomer), while binding of host cells and entry of S1 to the interior is a function of the other subunits (the B oligomer). The holotoxin crystallizes in the orthorhombic space group P2(1)2(1)2(1), with unit cell dimensions a = 98.4 A, b = 164.2 A and c = 195.2 A. The crystals are suitable for high-resolution X-ray diffraction analysis.  相似文献   

4.
Pertussis toxin and target eukaryotic cells: binding, entry, and activation.   总被引:20,自引:0,他引:20  
H R Kaslow  D L Burns 《FASEB journal》1992,6(9):2684-2690
Pertussis toxin, a protein virulence factor produced by Bordetella pertussis, is composed of an A protomer and a B oligomer. The A protomer consists of a single polypeptide, termed the S1 subunit, which disrupts transmembrane signaling by ADP-ribosylating eukaryotic G-proteins. The B oligomer, containing five polypeptides, binds to cell receptors (most likely containing carbohydrate) and delivers the S1 subunit. Current knowledge suggests that expression of ADP-ribosyltransferase activity in target eukaryotic cells arises after 1) nucleotides and membrane lipids allosterically promote the release of the S1 subunit; and 2) the single disulfide bond in the S1 subunit is reduced by reductants such as glutathione. This model suggests conditions for the proper use of the toxin as an experimental reagent.  相似文献   

5.
Molecular cloning of pertussis toxin genes.   总被引:24,自引:0,他引:24       下载免费PDF全文
We have cloned a 4.5 kb EcoRI/BamHI DNA fragment from Bordetella pertussis which contains at least two genes responsible for expression of pertussis toxin. The S4 subunit of the toxin was isolated by high pressure liquid chromatography and the NH2-terminal amino acid sequence determined. Using a mixed synthetic oligonucleotide probe designed by reverse translation of a portion of the protein sequence, a cloned DNA fragment was identified which contains the coding information for at least the S4 structural subunit of the toxin. Sequence analyses indicate that the mature protein is derived by proteolytic cleavage of a precursor molecule. Southern blot analyses of Tn5-induced B. pertussis toxin-deficient mutants show that the Tn5 DNA is inserted 1.3 kb downstream from the S4 subunit gene. This second gene could code for another subunit required for assembly of the mature toxin or a non-structural transport protein, possibly in the same polycistronic operon. The molecular cloning of pertussis toxin genes provides the basis for development of a safer recombinant "new generation" vaccine for whooping cough.  相似文献   

6.
Molecular aspects of Bordetella pertussis pathogenesis.   总被引:3,自引:0,他引:3  
The molecular mechanisms of Bordetella virulence are now well understood, and many virulence factors have been identified and characterized at the molecular level. These virulence factors can be grouped into two major categories: adhesins, such as filamentous hemagglutinin, pertactin and fimbriae, and toxins, such as pertussis toxin, adenylate cyclase, dermonecrotic toxin and tracheal cytotoxin. The production of most virulence factors is coordinately regulated by a two-component signal transduction system composed of the regulator BvgA and the sensor protein BvgS. The adhesins and toxins act in concert to establish infection. Some adhesins exert their effects synergically or are redundant functioning only in the absence of another adhesin, illustrating the importance of adhesion in infection. Most virulence factors are secreted into the culture supernatant or exposed at the surface of the bacterial cell. A notable exception is dermonecrotic toxin, which remains in the cytoplasmic compartment of bacterial cells. Most virulence factors are produced by all of the three major Bordetella species, B. pertussis, B. parapertussis and B. bronchiseptica. However, some, such as pertussis toxin and the tracheal colonization factor, are only produced by B. pertussis. Our understanding of Bordetella virulence at the molecular level has led to the development of new acellular vaccines against whooping cough, and of genetically attenuated B. pertussis strains to be used as recombinant live bacterial vaccine vectors for homologous and heterologous protection.  相似文献   

7.
The currently used pertussis vaccines are highly efficacious; however, neonates are susceptible to whooping cough up to the sixth month. In agreement, DTP-immunized neonate mice were not protected against intracerebral challenge with Bordetella pertussis. Neonate mice immunized with either DTP or a recombinant-BCG strain expressing the genetically detoxified S1 subunit of pertussis toxin do not show a humoral immune response against PT. On the other hand, rBCG-Pertussis induces higher PT-specific IFN-gamma production and an increase in both IFN-gamma(+) and TNF-alpha(+)-CD4(+)-T cells than the whole cell pertussis vaccine and confers protection against a lethal intracerebral challenge with B. pertussis.  相似文献   

8.
Structural relationship between the S1 and S4 subunits of pertussis toxin   总被引:1,自引:0,他引:1  
Abstract Pertussis toxin, the most important protective antigen of Bordetella pertussis , is a 106-kDa hexameric protein composed of an A-promoter (subunit S1) and a pentameric B-oligomer (S2 + S3 + 2S4 + S5). The most potent mouse-protective monoclonal antibodies against both respiratory and intracerebral infections were specified for either S1 or S4 and competed with each other in binding to epitopes of native pertussis toxin captuted by haptoglobin or in solution, although they did not compete on unfolded pertussin toxin. These data suggest that the protective epitope(s) of S1 and S4 are very closely correlated; they are probably close] together sterically. Non-protective anti-S1 and anti-S4 monoclonal antibodies recognized inner antigenic determinants which are not exposed on the surface o native pertussis toxin and interfered with association of the A-protomer and the B-oligomer. These data suggest that the A-protomer and the S4 subunit of the B-oligomer may be closely associated in the native hexameric pertussis toxin molecule.  相似文献   

9.
Structure-activity analysis of the activation of pertussis toxin   总被引:7,自引:0,他引:7  
Bordetella pertussis, the causative agent of whooping cough, releases pertussis toxin in an inactive form. The toxin consists of an A protomer containing one S1 peptide subunit and a B oligomer containing several other peptide subunits. The toxin binds to cells via the B oligomer, and the S1 subunit is activated and expresses ADP-ribosyltransferase and NAD glycohydrolase activities. Treatment of purified toxin with dithiothreitol (DTT) in vitro increases both activities. ATP and the detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) synergistically reduce the A0.5 (activation constant) for DTT from greater than 100 mM to 200 microM. We studied the structure-activity relationships of activators of the toxin. In the presence of CHAPS (1%) and DTT (10 mM) the following compounds increased the NAD glycohydrolase activity of the toxin with the following A0.5's in microM and fraction of the ATP effect in parentheses: ATP, 0.2 (1.0); ADP, 6 (0.8); UTP, 15 (0.7); GTP, 35 (0.6); pyrophosphate, 45 (0.7); triphosphate, 60 (0.6); tetraphosphate, greater than or equal to 170 (greater than or equal to 0.4). Thus, the polyphosphate moiety is sufficient to stimulate the toxin, and the adenosine moiety confers upon ATP its extraordinary affinity for the toxin. Phospholipid and detergents could substitute for CHAPS in the activation of the toxin. Glutathione substituted for DTT with an A0.5 of 2 mM, a concentration within the range found in eucaryotic cells. Thus, membrane lipids and cellular concentrations of glutathione and ATP are sufficient to activate pertussis toxin without the need for a eucaryotic enzymatic process.  相似文献   

10.
Kurushima J  Kuwae A  Abe A 《PloS one》2012,7(6):e38925
Bordetella bronchiseptica is closely related with B. pertussis and B. parapertussis, the causative agents of whooping cough. These pathogenic species share a number of virulence genes, including the gene locus for the type III secretion system (T3SS) that delivers effector proteins. To identify unknown type III effectors in Bordetella, secreted proteins in the bacterial culture supernatants of wild-type B. bronchiseptica and an isogenic T3SS-deficient mutant were compared with iTRAQ-based, quantitative proteomic analysis method. BB1639, annotated as a hypothetical protein, was identified as a novel type III secreted protein and was designated BspR (Bordetella secreted protein regulator). The virulence of a BspR mutant (ΔbspR) in B. bronchiseptica was significantly attenuated in a mouse infection model. BspR was also highly conserved in B. pertussis and B. parapertussis, suggesting that BspR is an essential virulence factor in these three Bordetella species. Interestingly, the BspR-deficient strain showed hyper-secretion of T3SS-related proteins. Furthermore, T3SS-dependent host cell cytotoxicity and hemolytic activity were also enhanced in the absence of BspR. By contrast, the expression of filamentous hemagglutinin, pertactin, and adenylate cyclase toxin was completely abolished in the BspR-deficient strain. Finally, we demonstrated that BspR is involved in the iron-responsive regulation of T3SS. Thus, Bordetella virulence factors are coordinately but inversely controlled by BspR, which functions as a regulator in response to iron starvation.  相似文献   

11.
The in vitro response of human B- and T-lymphocytes to the acellular vaccines JNIH-6 (containing pertussis toxoid and filamentous hemagglutinin), and JNIH-7 (containing pertussis toxoid), and to the purified components JNIH-4 (filamentous hemagglutinin) and JNIH-5 (pertussis toxin) was investigated. Pertussis toxoid and filamentous hemagglutinin induced specific Ig synthesis in vitro in lymphocytes obtained from convalescent pertussis patients as target cells. The antigen-dependent Ig production was demonstrated in lymphocyte culture supernatants by ELISA techniques and by a chinese hamster ovary cell toxin neutralization assay. Particularly with JNIH-4, -6 and -7, high antibody titers were obtained. At optimal antigen concentrations a marked lymphocyte blast transformation was found in lymphocyte cultures from whooping cough patients, but not in cultures of lymphocytes obtained from healthy volunteers. At high concentrations native pertussis toxin as well as the B oligomer (S2-5) of the toxin induced a strong proliferation of patient as well as control lymphocytes, indicating non-specific mitogenic activity. At lower concentrations lymphocyte blast transformation was seen in patient cultures only, which indicates an antigen-specific T-cell response. The A protomer (S1), dimer 1 (S2 + 4) and dimer 2 (S3 + 4) induced proliferation of patient lymphocytes, which demonstrates the presence of T-cell epitopes on these peptides. The in vitro B-cell response and the lymphocyte blast transformation assay are both useful tools for estimating the potency of acellular pertussis vaccines in man. Spontaneously acquired and vaccine induced immunity to Bordetella pertussis can be investigated at the level of B- and T-lymphocytes.  相似文献   

12.
Bordetella pertussis, the pathogen responsible for whooping cough, produces a calmodulin-sensitive adenylate cyclase. Several investigators have shown that the partially purified adenylate cyclase is capable of entering animal cells and elevating intracellular cAMP levels (Confer and Eaton: Science 217:948-950, 1982; Shattuck and Storm: Biochemistry 24:6323-6328, 1985). However, the mechanism for entry of the catalytic subunit of this adenylate cyclase into animal cells is unknown. It has been reported that the B. pertussis adenylate cyclase extracted from bacterial cells with urea does not enter animal cells by receptor-mediated endocytosis. There is, in addition to the cell associated form of the B. pertussis adenylate cyclase, a cell-invasive form of the enzyme secreted into the bacterial culture media. The properties of the cell-associated and secreted enzymes are significantly different (Masure and Storm: Biochemistry 28:438-442, 1989). In this study, we report evidence that the secreted form of the B. pertussis adenylate cyclase enters animal cells by a mechanism distinct from receptor-mediated endocytosis.  相似文献   

13.
B. pertussis is a causative agent of whooping cough (pertussis) in humans. Despite wide-scale vaccination in many countries, there is serious concern about pertussis as a re-emerging disease. Re-emergence of pertussis may be explained by several factors: the short duration of protection by the currently available acellular pertussis vaccine, an increase in asymptomatic adult carriers and expansion of strains with certain antigenic variations which are not covered by currently available vaccines. To develop safer and more efficacious vaccines which confer more prolonged protection, researchers are focusing on identification and characterization of new virulence factors. One candidate for protective antigens is the type III secretion system and its secreted proteins.  相似文献   

14.
Pertussis toxin of Bordetella pertussis is secreted by a type IV secretion system comprised of the products of the nine ptl (pertussis toxin liberation) genes. These proteins are believed to form a complex spanning both the inner and outer membranes and passing through the peptidoglycan layer. Peptidoglycan acts as a barrier for transport through the periplasm of large folded molecules. Assembled pertussis toxin and the secretion component proteins PtlC through PtlH are too large to diffuse through intact peptidoglycan. Therefore, we hypothesized that the Ptl system contains a peptidoglycanase activity. The PtlE protein was found to exhibit a sequence match to the active site of glycohydrolase enzymes. An N-terminally polyhistidine-tagged PtlE fusion protein, constructed and expressed in Escherichia coli and in B. pertussis, exhibited peptidoglycanase activity on activity gels. A fusion protein with alanine substitutions at the putative active site residues (aspartic acid at position 53 and glutamic acid at position 62) lacked peptidoglycanase activity. B. pertussis strains with the amino acid substitutions were deficient for pertussis toxin secretion. Based on these results, we concluded that PtlE is a peptidoglycanase responsible for the local removal or rearrangement of the peptidoglycan layer during Ptl secretion complex assembly.  相似文献   

15.
A general procedure for purifying biologically active pertussis toxin from Bordetella pertussis fermentation broth using affinity chromatography on heat-treated fetuin-Sepharose CL-4B is described. Diethanolamine is used as eluent in this single-step purification to prepare endotoxin-free pertussis toxin in good yield (70%) and high purity (greater than 95%). This one-step affinity chromatography procedure can be easily applied for large-scale preparation of pertussis toxin S1 subunit and its B-component. The affinity-purified S1 subunit is devoid of any of the histamine-sensitizing activity normally associated with pertussis toxin. The chromatographically purified pertussis toxin and its subunits retained their immunogenicity and could induce high levels of anti-toxin neutralizing antibodies.  相似文献   

16.
The B subunit of cholera toxin, a protein which binds specifically to ganglioside GM1 on the cell surface, stimulates DNA synthesis in quiescent Swiss 3T3 fibroblasts as measured by an increase in [3H]thymidine incorporation. Pertussis toxin pretreatment markedly inhibits B subunit-induced DNA synthesis. The inhibitory effects of pertussis toxin were observed even in the presence of insulin which greatly potentiates the mitogenic response to the B subunit. Treatment with either pertussis toxin or insulin did not alter the binding of the B subunit to the cells. The dose-response for pertussis toxin-induced inhibition of DNA synthesis correlated closely with the dose-response for ADP-ribosylation of a 41-kDa membrane protein, suggesting the involvement of a GTP-binding protein that is a substrate for pertussis toxin (Gi) in mitogenesis induced via cross-linking of endogenous gangliosides. Pertussis toxin, in a similar concentration-dependent manner, also inhibited the mitogenic response to unfractionated fetal calf serum and to bombesin in the absence or presence of insulin. The inhibitory effect of pertussis toxin was clearly unrelated to any effects on known G proteins coupled to adenylate cyclase or phospholipase C. In addition, pertussis toxin did not impair the early increase in cytosolic free Ca2+ induced by the B subunit or bombesin. Pertussis toxin-induced inhibition of DNA synthesis could still be observed even when the toxin was added as late as 6 h after addition of the growth-promoting agents. This suggests the involvement of a GTP-binding protein in a late step of the B subunit- and bombesin-mediated pathways of mitogenesis. The possibility that other growth factors bypass this pathway is shown by their lack of sensitivity to pertussis toxin.  相似文献   

17.
Pertussis toxin (PT) comprises an active subunit (S1), which ADP-ribosylates the alpha subunit of several mammalian G proteins, and the B oligomer (S2–S5), which binds glycoconjugate receptors on cells. In a previous report, expression of S1 in Cos cells resulted in no observable cytotoxicity, and it was hypothesized that either S1 failed to locate its target proteins or the B oligomer was also necessary for cytotoxicity. To address this, we stably transfected S1 with and without a signal peptide into mammalian cells. Immunofluorescence analysis confirmed the function of the signal peptide. Surprisingly, we found that S1 was active in both transfectants, as determined by clustering of transfected Chinese hamster ovary (CHO) cells and ADP-ribosylation of G proteins. Constructs with a cysteine-to-serine change at residue 201 or a truncated S1 (residues 1–181) were also active when transfected into cells. Constructs with an inactive mutant S1 had no activity, confirming that the observed results were due to the activity of the toxin subunit. We conclude that S1 is active when expressed in mammalian cells without the B oligomer, that secretion into the endoplasmic reticulum does not prevent this activity and that the C-terminal portion of S1 is not required for its activity in cells.  相似文献   

18.
By the kar1-mediated cytoduction, linear double-stranded DNA plasmids pGKL1 and pGKL2, encoding killer toxin complex, have been successfully transferred to the recipient strains with about 30% frequency. The killer toxin was found to be secreted through the normal yeast secretory pathway by introducing pGKL plasmids into the several Saccharomyces cerevisiae sec mutants and examining the secretion of killer toxin. S. cerevisiae cells, harboring newly isolated deletion plasmid pGKL1D, expressed only the 28K protein among three killer subunits, and secreted the 28K subunit at a level of zero to 20% efficiency of the cells containing intact pGKL1 plasmid. These data indicated that subunit interaction (cosecretion) of killer proteins is required for the efficient secretion of 28K subunit. The 28K precursor protein was found to translocate across the canine pancreatic endoplasmic reticulum membrane under the direction of its own signal peptide in vitro without any other subunits. From kex2 mutant cells harboring pGKL1 plasmid, the 97K subunit, and its precursor 128K protein were not secreted, however, the 28K subunit was secreted in the same amount as that secreted from KEX2 cells. These lines of evidence suggest that the final assembly of killer toxin complex after KEX2 site of Golgi apparatus is not essential for the secretion of 28K subunit, and therefore, that putative interaction between 128K protein and 28K subunit for the transport between endoplasmic reticulum and Golgi apparatus may be required for the efficient secretion of 28K subunit.  相似文献   

19.
The immunogenicity and reactogenicity of Bordetella pertussis vaccine are mediated in part by the S1 subunit of pertussis toxin (PT). To identify the immune epitopes in the S1 subunit of PT, synthetic peptides were prepared and tested for their capacity to induce antibodies in mice with different MHC genotypes. In BALB/c mice, peptides corresponding to sequences 1-17, 70-82 and 189-199 generate T cell proliferative responses, induce the production of antibodies capable of neutralization of the toxin in the Chinese hamster ovary-cell assay, and protect mice from a shock-like syndrome caused by alternate injections of BSA and PT. Protection and neutralization correlated with the ability of these peptides to elicit high anti-PT titers. Different B cell epitopes were detected in other inbred mouse strains. The antibody reactivity against synthetic peptides from two infants vaccinated with pertussis vaccine was tested. These infants had antibodies reactive to a variety of epitopes in the S1 subunit, including peptides 1-17, 70-82, 99-112, 135-145, and 189-199. Thus, it appears that there are multiple T and B cell epitopes in the S1 subunit of PT.  相似文献   

20.
The study is based on assumption that B. pertussis strains harbouring different allele variants of genes encoding subunit S1 of pertussis toxin and pertactin might be eliminated with different efficiency from lung tissue of mice which were immunized with whole-cell and acellular pertussis vaccines. It has been assumed that strains containing combinations of genes alleles which were not prevalent since 1990-ties are consisting of mutated strains in respect to pertussis toxin subunit S1 and pertactin, and are capable to decrease efficiency of pertussis vaccines. Experiments performed in vivo dealt with activity of tested vaccines against B. pertussis strains of different combinations of ptxS1/prn. The study indicated for lowered efficiency of whole-cell and acellular pertussis vaccines in elimination of mutated strains of B. pertussis from animal lung tissue in comparison with strains currently used for vaccine production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号