首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
目的:评价新型冠状病毒(SARS-CoV-2)重组S1蛋白和S蛋白疫苗对SARS-CoV-2的免疫保护效果。方法:将SARS-CoV-2重组S1蛋白和S蛋白分别联合氢氧化铝佐剂以0.1 μg/只、1 μg/只、5 μg/只、10 μg/只不同剂量接种6~8周BALB/c纯系健康雌性小鼠。第二次免疫后采血通过酶联免疫吸附试验(ELISA)检测血清中IgG抗体效价,通过假病毒中和试验比较免疫小鼠血清对SARS-CoV-2野生型株(WT)、英国株(B.1.1.7)、巴西株(P.1)、印度株(B.1.617.2)、Mu毒株(B.1.621)和南非株(501Y.V2-1)六种假病毒毒株中和活性效价,取脾细胞通过酶联免疫斑点技术(ELISpot)检测免疫小鼠的细胞免疫水平。结果:SARS-CoV-2重组S和S1蛋白都能诱导小鼠产生较强的IgG抗体水平。免疫S1蛋白的小鼠血清对SARS-CoV-2野生型株、英国株、巴西株有明显的中和活性,免疫S蛋白的小鼠血清除了对SARS-CoV-2野生型株、英国株、巴西株有明显中和活性之外,对印度株也有明显的中和活性,两种蛋白质免疫的小鼠血清均对野生型株中和效果最强。S蛋白免疫的小鼠脾细胞能够显著诱导出γ干扰素(IFN-γ)和白介素-4(IL-4)的产生。S蛋白诱导产生的IgG抗体、中和抗体、细胞免疫水平均高于S1。结论:SARS-CoV-2重组S蛋白疫苗能够诱导产生较强的保护性免疫应答。  相似文献   

2.
The spike (S) protein of severe acute respiratory syndrome (SARS) coronavirus (CoV), a type I transmembrane envelope glycoprotein, consists of S1 and S2 domains responsible for virus binding and fusion, respectively. The S1 contains a receptor-binding domain (RBD) that can specifically bind to angiotensin-converting enzyme 2 (ACE2), the receptor on target cells. Here we show that a recombinant fusion protein (designated RBD-Fc) containing 193-amino acid RBD (residues 318-510) and a human IgG1 Fc fragment can induce highly potent antibody responses in the immunized rabbits. The antibodies recognized RBD on S1 domain and completely inhibited SARS-CoV infection at a serum dilution of 1:10,240. Rabbit antisera effectively blocked binding of S1, which contains RBD, to ACE2. This suggests that RBD can induce highly potent neutralizing antibody responses and has potential to be developed as an effective and safe subunit vaccine for prevention of SARS.  相似文献   

3.
In response to SARS-CoV infection, neutralizing antibodies are generated against the Spike (S) protein. Determination of the active regions that allow viral escape from neutralization would enable the use of these antibodies for future passive immunotherapy. We immunized mice with UV-inactivated SARS-CoV to generate three anti-S monoclonal antibodies, and established several neutralization escape mutants with S protein. We identified several amino acid substitutions, including Y442F and V601G in the S1 domain and D757N and A834V in the S2 region. In the presence of each neutralizing antibody, double mutants with substitutions in both domains exhibited a greater growth advantage than those with only one substitution. Importantly, combining two monoclonal antibodies that target different epitopes effected almost complete suppression of wild type virus replication. Thus, for effective passive immunotherapy, it is important to use neutralizing antibodies that recognize both the S1 and S2 regions.  相似文献   

4.
Human monoclonal antibodies (MAbs) were selected from semisynthetic antibody phage display libraries by using whole irradiated severe acute respiratory syndrome (SARS) coronavirus (CoV) virions as target. We identified eight human MAbs binding to virus and infected cells, six of which could be mapped to two SARS-CoV structural proteins: the nucleocapsid (N) and spike (S) proteins. Two MAbs reacted with N protein. One of the N protein MAbs recognized a linear epitope conserved between all published human and animal SARS-CoV isolates, and the other bound to a nonlinear N epitope. These two N MAbs did not compete for binding to SARS-CoV. Four MAbs reacted with the S glycoprotein, and three of these MAbs neutralized SARS-CoV in vitro. All three neutralizing anti-S MAbs bound a recombinant S1 fragment comprising residues 318 to 510, a region previously identified as the SARS-CoV S receptor binding domain; the nonneutralizing MAb did not. Two strongly neutralizing anti-S1 MAbs blocked the binding of a recombinant S fragment (residues 1 to 565) to SARS-CoV-susceptible Vero cells completely, whereas a poorly neutralizing S1 MAb blocked binding only partially. The MAb ability to block S1-receptor binding and the level of neutralization of the two strongly neutralizing S1 MAbs correlated with the binding affinity to the S1 domain. Finally, epitope mapping, using recombinant S fragments (residues 318 to 510) containing naturally occurring mutations, revealed the importance of residue N479 for the binding of the most potent neutralizing MAb, CR3014. The complete set of SARS-CoV MAbs described here may be useful for diagnosis, chemoprophylaxis, and therapy of SARS-CoV infection and disease.  相似文献   

5.
Zhang H  Wang G  Li J  Nie Y  Shi X  Lian G  Wang W  Yin X  Zhao Y  Qu X  Ding M  Deng H 《Journal of virology》2004,78(13):6938-6945
Severe acute respiratory syndrome (SARS) is a life-threatening disease caused by a newly identified coronavirus (CoV), SARS-CoV. The spike (S) glycoprotein of CoV is the major structural protein responsible for induction of host immune response and virus neutralization by antibodies. Hence, knowledge of neutralization determinants on the S protein is helpful for designing protective vaccines. To analyze the antigenic structure of the SARS-CoV S2 domain, the carboxyl-terminal half of the S protein, we first used sera from convalescent SARS patients to test the antigenicity of 12 overlapping fragments spanning the entire S2 and identified two antigenic determinants (Leu 803 to Ala 828 and Pro 1061 to Ser 1093). To determine whether neutralizing antibodies can be elicited by these two determinants, we immunized animals and found that both of them could induce the S2-specific antisera. In some animals, however, only one determinant (Leu 803 to Ala 828) was able to induce the antisera with the binding ability to the native S protein and the neutralizing activity to the SARS-CoV pseudovirus. This determinant is highly conserved across different SARS-CoV isolates. Identification of a conserved antigenic determinant on the S2 domain of the SARS-CoV S protein, which has the potential for inducing neutralizing antibodies, has implications in the development of effective vaccines against SARS-CoV.  相似文献   

6.
Previously, we showed that IFN-gamma elicited by mouse mammary tumor virus (MMTV) infection in I/LnJ mice stimulated production of virus-neutralizing Abs, mostly of the IgG2a isotype. These Abs coated virions secreted by infected I/LnJ cells, and thus completely prevented virus transmission to offspring. However, the mechanism of virus neutralization by isotype-specific Abs remained unknown. Ab coating is capable of blocking virus infection by interfering with receptor-virus binding, by virus opsonization, by complement activation, and via FcgammaR-mediated effector mechanisms. The aim of the studies described in this work was to uncover the cellular basis of anti-virus Ab production, to evaluate the importance of the IgG2a subclass of IgGs in virus neutralization, and to investigate which of the blocking mechanisms plays a role in virus neutralization. We showed that I/LnJ-derived bone marrow cells, specifically IFN-gamma-producing CD4+ T cells, were key cells conferring resistance to MMTV infection in susceptible mice upon transfer. We also established that a unique bias in the subclass selection toward the IgG2a isotype in infected I/LnJ mice was not due to their potent neutralizing ability, as anti-virus Abs of other isotypes were also able to neutralize the virus, but were a product of virally induced IFN-gamma. Finally, we demonstrated that F(ab')2 of anti-MMTV IgGs neutralized the virus as efficiently as total IgGs, suggesting that Ab-mediated interference with viral entry is the sole factor inhibiting virus replication in I/LnJ mice. We propose and discuss possible mechanisms by which infected I/LnJ mice eradicate retrovirus.  相似文献   

7.
The spike (S) protein of severe acute respiratory syndrome associated coronavirus (SARS-CoV) is a major antigenic determinant capable of inducing protective immunity. Recently, a small fragment on the SARS-CoV S protein (residues 318-510) was characterized as a minimal receptor-binding domain (RBD), which mediates virus binding to angiotensin-converting enzyme 2, the functional receptor on susceptible cells. In this study, we demonstrated that a fusion protein containing RBD linked to human IgG1 Fc fragment (designated RBD-Fc) induced high titer of RBD-specific Abs in the immunized mice. The mouse antisera effectively neutralized infection by both SARS-CoV and SARS pseudovirus with mean 50% neutralization titers of 1/15,360 and 1/24,737, respectively. The neutralization determinants on the RBD of S protein were characterized by a panel of 27 mAbs isolated from the immunized mice. Six groups of conformation-dependent epitopes, designated as Conf I-VI, and two adjacent linear epitopes were identified by ELISA and binding competition assays. The Conf IV and Conf V mAbs significantly blocked RBD-Fc binding to angiotensin-converting enzyme 2, suggesting that their epitopes overlap with the receptor-binding sites in the S protein. Most of the mAbs (23 of 25) that recognized the conformational epitopes possessed potent neutralizing activities against SARS pseudovirus with 50% neutralizing dose ranging from 0.005 to 6.569 microg/ml. Therefore, the RBD of SARS S protein contains multiple conformational epitopes capable of inducing potent neutralizing Ab responses, and is an important target site for developing vaccines and immunotherapeutics.  相似文献   

8.
A comparative study was made of the neutralizing activities of IgG subclasses IgG1 and IgG2, fractionated from guinea pig antisera against Sendai virus. The yields of IgG2 from the antisera were about 16 times as much as those of IgG1. The neutralizing activity of IgG2 per unit weight was four times as high as that of IgG1. This neutralizing activity of both IgG subclasses was enhanced about 10 times by addition of antibodies to the L-chain of guinea pig immunoglobulin. It is suggested that, in the complement-dependent neutralization of the virus, IgG1 and IgG2 activate the complement through the alternative and the classical pathway, respectively.  相似文献   

9.
Guo Y  Sun S  Wang K  Zhang S  Zhu W  Chen Z 《DNA and cell biology》2005,24(8):510-515
The S2 domain of the severe acute respiratory syndrome coronavirus (SARS-CoV) spike (S) protein is responsible for fusion between virus and target cell membranes, and is expected to be immungenic. In this study, we investigated the immune responses against the S2 subunit in BALB/c mice, which were vaccinated either with plasmid DNA encoding the S2 domain (residues 681-1120), the recombinant S2 fragment (residues 681-980) in incomplete Freund's adjuvant, or with inactivated SARS-CoV. The increased number of specific cytotoxic cells (CTLs) and the high titer of specific antibody showed stimulation of both arms of the immune system in these groups. The shift in cytokines suggested that Th1-polarized immune response was induced by plasmid pCoVS2, meanwhile the Th2-dominant response was induced by recombinant S2 fragment and inactivated vaccine. However, the titer of neutralizing antibodies was only detectable in mice immunized with inactivated virus, but not with pCoVS2 plasmid. Taken together, the S2 domain could induce specific cellular immune response and a high level of total IgG but little neutralizing antibodies against infection by SARSCoV.  相似文献   

10.
The biologically active form of the human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein is oligomeric. We previously described a soluble HIV-1 IIIB Env protein, gp140, with a stable oligomeric structure composed of uncleaved gp120 linked to the ectodomain of gp41 (P. L. Earl, C. C. Broder, D. Long, S. A. Lee, J. Peterson, S. Chakrabarti, R. W. Doms, and B. Moss, J. Virol. 68:3015-3026, 1994). Here we compared the antibody responses of rabbits to gp120 and gp140 that had been produced and purified in an identical manner. The gp140 antisera exhibited enhanced cross-reactivity with heterologous Env proteins as well as greater neutralization of HIV-1 compared to the gp120 antisera. To examine both immunogenicity and protective efficacy, we immunized rhesus macaques with oligomeric gp140. Strong neutralizing antibodies against a homologous virus and modest neutralization of heterologous laboratory-adapted isolates were elicited. No neutralization of primary isolates was observed. However, a substantial fraction of the neutralizing activity could not be blocked by a V3 loop peptide. After intravenous challenge with simian-HIV virus SHIV-HXB2, three of the four vaccinated macaques exhibited no evidence of virus replication.  相似文献   

11.
The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) has two major functions: interacting with the receptor to mediate virus entry and inducing protective immunity. Coincidently, the receptor-binding domain (RBD, residues 318-510) of SAR-CoV S protein is a major antigenic site to induce neutralizing antibodies. Here, we used RBD-Fc, a fusion protein containing the RBD and human IgG1 Fc, as a model in the studies and found that a single amino acid substitution in the RBD (R441A) could abolish the immunogenicity of RBD to induce neutralizing antibodies in immunized mice and rabbits. With a panel of anti-RBD mAbs as probes, we observed that R441A substitution was able to disrupt the majority of neutralizing epitopes in the RBD, suggesting that this residue is critical for the antigenic structure responsible for inducing protective immune responses. We also demonstrated that the RBD-Fc bearing R441A mutation could not bind to soluble and cell-associated angiotensin-converting enzyme 2 (ACE2), the functional receptor for SARS-CoV and failed to block S protein-mediated pseudovirus entry, indicating that this point mutation also disrupted the receptor-binding motif (RBM) in the RBD. Taken together, these data provide direct evidence to show that a single amino acid residue at key position in the RBD can determine the major function of SARS-CoV S protein and imply for designing SARS vaccines and therapeutics.  相似文献   

12.
目的:制备表达绿色荧光蛋白的重组痘苗病毒,并初步探讨其应用。方法:构建制备表达绿色荧光蛋白的重组痘苗病毒RVJ11LacZ-I1LGFP;分别利用药物昔多福韦与抗痘苗病毒高效价免疫血清,建立基于该病毒的荧光生成抑制实验及荧光减数中和实验。结果:荧光生成抑制实验与传统的噬斑生成抑制实验相比,结果一致,但判读更直接快速;重组痘苗病毒RVJ11LacZ-I1LGFP亦可用于体外快速高通量评价正痘病毒疫苗的中和能力。结论:利用表达绿色荧光蛋白的重组痘苗病毒建立了直接简便快速高通量的抗痘病毒药物筛选及体外中和评价技术。  相似文献   

13.
He Y  Li J  Heck S  Lustigman S  Jiang S 《Journal of virology》2006,80(12):5757-5767
The spike (S) glycoprotein of severe acute respiratory syndrome coronavirus (SARS-CoV) mediates the receptor interaction and immune recognition and is considered a major target for vaccine design. However, its antigenic and immunogenic properties remain to be elucidated. In this study, we immunized mice with full-length S protein (FL-S) or its extracellular domain (EC-S) expressed by recombinant baculoviruses in insect cells. We found that the immunized mice developed high titers of anti-S antibodies with potent neutralizing activities against SARS pseudoviruses constructed with the S proteins of Tor2, GD03T13, and SZ3, the representative strains of 2002 to 2003 and 2003 to 2004 human SARS-CoV and palm civet SARS-CoV, respectively. These data suggest that the recombinant baculovirus-expressed S protein vaccines possess excellent immunogenicity, thereby inducing highly potent neutralizing responses against human and animal SARS-CoV variants. The antigenic structure of the S protein was characterized by a panel of 38 monoclonal antibodies (MAbs) isolated from the immunized mice. The epitopes of most anti-S MAbs (32 of 38) were localized within the S1 domain, and those of the remaining 6 MAbs were mapped to the S2 domain. Among the anti-S1 MAbs, 17 MAbs targeted the N-terminal region (amino acids [aa] 12 to 327), 9 MAbs recognized the receptor-binding domain (RBD; aa 318 to 510), and 6 MAbs reacted with the C-terminal region of S1 domain that contains the major immunodominant site (aa 528 to 635). Strikingly, all of the RBD-specific MAbs had potent neutralizing activity, 6 of which efficiently blocked the receptor binding, confirming that the RBD contains the main neutralizing epitopes and that blockage of the receptor association is the major mechanism of SARS-CoV neutralization. Five MAbs specific for the S1 N-terminal region exhibited moderate neutralizing activity, but none of the MAbs reacting with the S2 domain and the major immunodominant site in S1 showed neutralizing activity. All of the neutralizing MAbs recognize conformational epitopes. These data provide important information for understanding the antigenicity and immunogenicity of S protein and for designing SARS vaccines. This panel of anti-S MAbs can be used as tools for studying the structure and function of the SARS-CoV S protein.  相似文献   

14.
F Taguchi 《Journal of virology》1995,69(11):7260-7263
The receptor-binding capacity of the S2 subunit of the murine coronavirus S protein was examined by testing the inhibition of virus-receptor binding. Sp-4 virus and S1N(330), which consists of the N-terminal 330 amino acids of the S1 protein, both of which exhibited receptor-binding capacity, were able to prevent the binding of cl-2 virus to the receptor, while the mutant protein S1N(330)-159, which failed to bind to the receptor protein, and S2TM-, which lacks the transmembrane and cytoplasmic domains normally existing in the S2, were unable to prevent the binding of cl-2. By using cultured DBT cells, it was revealed that the infection of cells by cl-2 virus was significantly inhibited by S1N(330) but not by S2TM-. These results indicate that the S2 protein is not involved in the receptor binding of murine coronaviruses.  相似文献   

15.
以纯化的重组AAV2病毒颗粒为抗原免疫小鼠,获得7株稳定分泌抗AAV2衣壳蛋白的单克隆抗体杂交瘤细胞株,其中B10和G4两株单克隆抗体具有中和活性,抗体亚型分别为IgG1和IgG2a型。对这两株单克隆抗体与rAAV病毒结合的特性进行了研究。单克隆抗体B10和G4对rAAV2病毒颗粒的结合均具有良好的血清型特异性,并且这种特异结合作用不被肝素阻断。这两株抗体都不阻断AAV2病毒与敏感细胞的结合,提示它们与病毒颗粒的结合位点都不处于AAV2病毒与主要受体结合的部位内。Western blotting检测结果显示,B10与AAV2的三种衣壳蛋白VP1、VP2和VP3均能结合,而G4不能与AAV2的这三种衣壳蛋白结合。这说明B10与AAV2结合的位点位于衣壳蛋白VP1、VP2和VP3的重叠部分处并且可能是线性表位,而G4则可能是针对AAV2病毒颗粒构象表位的抗体。这两种结合特性不同的单克隆抗体为研究AAV2病毒颗粒的表面特性和感染特性提供有用的工具。  相似文献   

16.
The existence of very potent, broadly neutralizing antibodies against human immunodeficiency virus type 1 (HIV-1) offers the potential for prophylaxis against HIV-1 infection by passive immunization or gene therapy. Both routes permit the delivery of modified forms of IgGs. Smaller reagents are favored when considering ease of tissue penetration and the limited capacities of gene therapy vectors. Immunoadhesin (single-chain fragment variable [scFv]-Fc) forms of IgGs are one class of relatively small reagent that has been explored for delivery by adeno-associated virus. Here we investigated the neutralization potencies of immunoadhesins compared to those of their parent IgGs. For the antibodies VRC01, PG9, and PG16, the immunoadhesins showed modestly reduced potencies, likely reflecting reduced affinities compared to those of the parent IgG, and the VRC01 immunoadhesin formed dimers and multimers with reduced neutralization potencies. Although scFv forms of neutralizing antibodies may exhibit affinity reductions, they provide a means of building reagents with multiple activities. Attachment of the VRC01 scFv to PG16 IgG yielded a bispecific reagent whose neutralization activity combined activities from both parent antibodies. Although the neutralization activity due to each component was partially reduced, the combined reagent is attractive since fewer strains escaped neutralization.  相似文献   

17.
单克隆抗体S2C4对2型志贺毒素及其亚型毒性的中和作用   总被引:1,自引:0,他引:1  
纯化的2型志贺毒素(Shiga toxin 2,Stx2)经福尔马林脱毒后免疫BALB/c小鼠制备Stx2单克隆抗体,用体外中和试验对具有中和活性的阳性抗体克隆进行初筛,对所获得的中和抗体的重、轻链同种型及结合特异性进行鉴定,其中和保护作用通过体内、体外中和试验加以验证,最后,中和抗体对Stx2亚型Stx2c和Stx2vha的中和谱用体内中和试验验证.结果显示,12株抗Stx2的阳性抗体克隆中,只有1株具有中和活性,命名为S2C4,其重、轻链同种型为G1/κ,其靶分子为Stx2的A亚单位,与Stx2的B亚单位或Stx1不结合.在体外中和试验中S2C4可有效中和Stx2对Vero细胞的杀伤作用,同样,S2C4可中和致死量的Stx2及其亚型Stx2c和Stx2vha对小鼠的毒性作用.该抗体有望成为治疗产志贺毒素大肠杆菌感染的候选分子.  相似文献   

18.
Anti-idiotypic antibodies have been successfully used to identify and isolate the receptor for several cell ligands. To prepare an immunologic probe for identification of the polyomavirus receptor on mouse kidney cells, polyclonal antisera against antipolyomavirus antibodies were prepared in rabbits. Fab fragments of the previously characterized monoclonal antibody E7, which neutralizes polyomavirus infection, were used for immunization (S. J. Marriott and R. A. Consigli, J. Virol. 56:365-372, 1985). Sera containing the greatest anti-idiotype activity were identified by enzyme-linked immunosorbent assay (ELISA) and purified by a series of affinity columns. The anti-idiotypic antibodies recognized the E7 idiotope in an ELISA, and anti-idiotype binding could be inhibited by preincubation of E7 monoclonal antibody with polyomavirus virions. When mixed with anti-idiotype immunoglobulin G (IgG), E7 was no longer capable of binding or immunoprecipitating polyomavirus virions or neutralizing polyomavirus infection. Direct immunofluorescence showed anti-idiotype IgG reactivity with a cell surface component of mouse kidney cells. Anti-idiotype F(ab')2 effectively competed with polyomavirus for binding to mouse kidney cells and displayed binding kinetics similar to those of polyomavirus. Virus infection of mouse kidney cells was blocked in a dose-dependent manner following treatment of the cells with anti-idiotype IgG. The anti-idiotype identified several proteins (95, 50, and 24 to 31 kilodaltons) in an immunoblot of mouse kidney cell membrane proteins but reacted predominantly with a single 50-kilodalton protein in a radioimmunoassay. The anti-idiotype failed to react with virus proteins in three assays, including ELISA, immunoprecipitation, and immunoblotting. The implications of this work for future identification and characterization of the polyomavirus receptor on mouse kidney cells are discussed.  相似文献   

19.
A hybridoma cell line producing a monoclonal antibody (A4) against bovine S100 protein has been produced by fusing mouse myeloma P3X63/Ag8 cells with spleen cells from a BALB/c mouse immunized with bovine S100 protein. A4 is of the IgG2b subclass and was purified by affinity chromatography on a protein A-Sepharose column. Brain extracts from several mammalian and one avian species reacted both with polyclonal rabbit anti-S100 protein antiserum and with A4 in a radioimmunoassay. Brain extract from dog was a notable exception. It reacted with the rabbit antiserum but not with A4. Therefore A4 reacts with a common epitope that is present on S100 proteins from different vertebrate species but is absent on dog S100 protein.  相似文献   

20.
SARS-CoV假病毒中和试验技术的建立及评价   总被引:1,自引:1,他引:0  
为避免传统的SARS病毒中和试验需要操作活毒而存在的生物安全隐患,建立了基于假病毒系统、操作较安全的SARS中和试验技术平台。本研究应用高效表达SARS-CoV S(密码子优化的全长S蛋白,简称S)的真核表达载体(pVRC8304),与HIV慢病毒包装质粒(p CMV△8.2)及转移质粒(pHR′CMV EGFP)3个质粒载体系统共同转染人胚肾细胞293T,包装了SARS假病毒;通过SARS假病毒感染的RD-A细胞中标记基因EGFP表达的分析,确定SARS假病毒能有效进入细胞,建立了可在BSL-2级实验室操作的SARS病毒中和试验技术平台。用该技术平台对不同免疫血清进行了中和抗体分析,并比较了基于假病毒和基于SARS活病毒的中和试验效果。结果显示:SARS假病毒和SARS活病毒两个中和试验系统获得中和抗体滴度变化趋势一致,表明本研究构建的SARS假病毒可替代SARS活病毒用于建立操作上安全的SARS病毒中和试验技术平台。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号