首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
While a role has been ascribed to the gamma-carboxyglutamate (Gla) residues in vitamin K-dependent coagulation proteins and the enzyme catalyzing this posttranslational modification has been identified and partially characterized, both the functional significance of a second posttranslationally synthesized amino acid found in these proteins, beta-hydroxyaspartate (Hya), and the aspartyl beta-hydroxylating enzyme remain to be determined. We now report that inhibitors of 2-ketoglutarate-dependent dioxygenases, such as dipyridyl, o-phenanthroline, and pyridine 2,4-dicarboxylate, block hydroxylation of Asp64 in recombinant factor IX molecules produced in three different mammalian expression systems. This hydroxylation was not inhibited by the specific copper chelators 2,9-dimethylphenanthroline or D-penicillamine. The Gla levels in these proteins were unaffected by these compounds and demonstrate that carboxylation proceeds independently of hydroxylation. Using these Hya-deficient recombinant factor IX molecules we demonstrate that this residue does not play a significant role in factor IX binding to endothelial cells under equilibrium conditions. From additional binding studies we have concluded that the Gla domain of factor IX is a major cell binding domain of factor IX. Furthermore, in contrast to studies demonstrating a marked loss of one-stage clotting activity in recombinant factors IX following site-directed mutations of Asp64 to neutral or basic residues (Rees, D. J. G., Jones, I. M., Handford, P. A., Walter, S. J., Esnouf, M. P., Smith, K. J., and Brownlee, G. J. (1988) EMBO J. 7, 2053-2061), we have not found a decrease of one-stage clotting activity with Hya-deficient factor IX. Hya-deficient proteins produced in this manner may prove to be more appropriate to elucidate the function of Hya than those produced by site-directed mutagenesis.  相似文献   

2.
The blood coagulation factor IX(a) binds specifically to a site on endothelial cells with a Kd of 2.0-3.0 nM. A number of previous studies have attempted to define the region(s) of factor IX(a) that mediate this interaction. These studies suggested that there are two regions of factor IX(a), the gamma-carboxyglutamic acid (Gla) domain and the epidermal growth factor like (EGF-like) domains, that mediate high-affinity binding to endothelial cells. Recently, however, the participation of the EGF1 domain has been excluded from the interaction. This indicated that if there was an EGF component of factor IX contributing to the binding affinity, then it must be in the second EGF-like domain. In order to further evaluate this relationship, we performed competitive binding experiments between 125I plasma factor IX and a set of six chimeric proteins composed of portions of factor VII and factor IX. Our data suggest that the high-affinity interaction between factor IX and the endothelial cell binding site is mediated by the factor IX Gla domain and that the factor IX EGF domains are not involved in binding specificity.  相似文献   

3.
During hemostasis, factor IX is activated to factor IXabeta by factor VIIa and factor XIa. The glutamic acid-rich gamma-carboxyglutamic acid (Gla) domain of factor IX is involved in phospholipid binding and is required for activation by factor VIIa. In contrast, activation by factor XIa is not phospholipid-dependent, raising questions about the importance of the Gla for this reaction. We examined binding of factors IX and IXabeta to factor XIa by surface plasmon resonance. Plasma factors IX and IXabeta bind to factor XIa with K(d) values of 120 +/- 11 nm and 110 +/- 8 nm, respectively. Recombinant factor IX bound to factor XIa with a K(d) of 107 nm, whereas factor IX with a factor VII Gla domain (rFIX/VII-Gla) and factor IX expressed in the presence of warfarin (rFIX-desgamma) did not bind. An anti-factor IX Gla monoclonal antibody was a potent inhibitor of factor IX binding to factor XIa (K(i) 34 nm) and activation by factor XIa (K(i) 33 nm). In activated partial thromboplastin time clotting assays, the specific activities of plasma and recombinant factor IX were comparable (200 and 150 units/mg), whereas rFIX/VII-Gla activity was low (<2 units/mg). In contrast, recombinant factor IXabeta and activated rFIX/VIIa-Gla had similar activities (80 and 60% of plasma factor IXabeta), indicating that both proteases activate factor X and that the poor activity of zymogen rFIX/VII-Gla was caused by a specific defect in activation by factor XIa. The data demonstrate that factor XIa binds with comparable affinity to factors IX and IXabeta and that the interactions are dependent on the factor IX Gla domain.  相似文献   

4.
The binding of factor IX to cultured bovine endothelial cells was characterized using isolated domains of bovine factor IX. An NH2-terminal fragment that consists of the gamma-carboxyglutamic acid (Gla) region linked to the two epidermal growth factor (EGF)-like domains bound to the endothelial cells with the same affinity as intact factor IX, indicating that the serine protease part of factor IX is not involved in binding. This fragment also inhibited the factor IXa beta'-induced clotting of plasma at a concentration that would suggest a competition for phospholipid binding sites. However, after proteolytic removal of the Gla region from the fragment, the two EGF-like domains inhibited clotting almost as effectively, suggesting a direct interaction between this part of the molecule and the cofactor, factor VIIIa. Using affinity-purified Fab fragments against the Gla region, the EGF-like domains, and the serine protease part, it was observed that the serine protease part of the molecule undergoes a large conformational change upon activation, whereas the Gla region and the EGF-like domains appear to be unaffected. All three classes of Fab fragments were equally efficient as inhibitors of the factor IXa beta'-induced clotting reaction. Part of factor Va and factor VIIIa have significant sequence homology to a lectin. We therefore investigated the effect on in vitro clotting of the recently identified unique disaccharide Xyl alpha 1-3Glc, that is O-linked to a serine residue in the NH2-terminal EGF-like domain of human factor IX (Hase, S., Nishimura, H., Kawabata, S.-I., Iwanaga, S., and Ikenaka, T. (1990) J. Biol. Chem. 265, 1858-1861). However, no effect on blood clotting was observed in the assay system used. Our results are compatible with a model in which the serine protease part provides the specificity of the binding of factor IXa to factor VIIIa-phospholipid, but that the EGF-like domain(s) also contributes to the interaction of the enzyme with its cofactor.  相似文献   

5.
The binding of Factor IX to membranes during blood coagulation is mediated by the N-terminal gamma-carboxyglutamic acid-rich (Gla) domain, a membrane-anchoring domain found on vitamin K-dependent blood coagulation and regulatory proteins. Conformation-specific anti-Factor IX antibodies are directed at the calcium-stabilized Gla domain and interfere with Factor IX-membrane interaction. One such antibody, 10C12, recognizes the calcium-stabilized form of the Gla domain of Factor IX. We prepared the fully carboxylated Gla domain of Factor IX by solid phase peptide synthesis and crystallized Factor IX-(1-47) in complex with Fab fragments of the 10C12 antibody. The overall structure of the Gla domain in the Factor IX-(1-47)-antibody complex at 2.2 A is similar to the structure of the Factor IX Gla domain in the presence of calcium ions as determined by NMR spectroscopy (Freedman, S. J., Furie, B. C., Furie, B., and Baleja, J. D. (1995) Biochemistry 34, 12126-12137) and by x-ray crystallography (Shikamoto, Y., Morita, T., Fujimoto, Z., and Mizuno, H. (2003) J. Biol. Chem. 278, 24090-24094). The complex structure shows that the complementarity determining region loops of the 10C12 antibody form a hydrophobic pocket to accommodate the hydrophobic patch of the Gla domain consisting of Leu-6, Phe-9, and Val-10. Polar interactions also play an important role in the antibody-antigen recognition. Furthermore, the calcium coordination network of the Factor IX Gla domain is different than in Gla domain structures of other vitamin K-dependent proteins. We conclude that this antibody is directed at the membrane binding site in the omega loop of Factor IX and blocks Factor IX function by inhibiting its interaction with membranes.  相似文献   

6.
A murine monoclonal antibody (designated VII-M31) directed against bovine factor VII was prepared and characterized. Antibody VII-M31 inhibited the activations of both factors IX and X catalyzed by factor VIIa in the presence of tissue factor, phospholipids, and Ca2+. It possessed a strong affinity for factor VII in the presence of 5 mM Ca2+ (Kd = 1.12 x 10(-10)M). The immunoblotting test of other bovine proteins with the antibody, such as prothrombin, factor X, factor IX, protein C, protein S, and protein Z, in addition to human factor VII, revealed that it recognizes only a Ca2(+)-dependent epitope in bovine factor VII. Furthermore, this antibody VII-M31 covalently coupled with Affi-Gel allowed a simple and rapid purification of bovine factor VII. To localize the antigenic site in factor VII, various segments including a gamma-carboxyglutamic acid (Gla)-domainless protein, a Gla-domain peptide and the fragments isolated from the lysyl endopeptidase digest, were prepared. Among them, the isolated Gla-domain peptide and Gla-domainless factor VII were no longer recognized by antibody VII-M31, indicating that the sequence around the cleavage site by a-chymotrypsin is required for the interaction between the antibody and factor VII. In accordance with this result, the antibody bound specifically to a Gla-containing peptide corresponding to the NH2-terminal 23-50 residues of factor VII, which contains the chymotryptic cleavage site. These results suggest that the specific epitope of this antibody is localized in the carboxy-terminal 28 residues of the Gla-domain constituting the amino-terminal portion of bovine factor VII.  相似文献   

7.
A solution structure for the complete zymogen form of human coagulation protein C is modeled. The initial core structure is based on the x-ray crystallographic structure of the gamma-carboxyglutamic acid (Gla)-domainless activated form. The Gla domain (residues 1-48) is modeled from the x-ray crystal coordinates of the factor VII(a)/tissue factor complex and oriented with the epidermal growth factor-1 domain to yield an initial orientation consistent with the x-ray crystal structure of porcine factor IX(a). The missing C-terminal residues in the light chain (residues 147-157) and the activation peptide residues 158-169 were introduced using homology modeling so that the activation peptide residues directly interact with the residues in the calcium binding loop. Molecular dynamics simulations (Amber-particle-mesh-Ewald) are used to obtain the complete calcium-complexed solution structure. The individual domain structures of protein C in solution are largely unaffected by solvation, whereas the Gla-epidermal growth factor-1 orientation evolves to a form different from both factors VII(a) and IX(a). The solution structure of the zymogen protein C is compared with the crystal structures of the existing zymogen serine proteases: chymotrypsinogen, proproteinase, and prethrombin-2. Calculated electrostatic potential surfaces support the involvement of the serine protease calcium ion binding loop in providing a suitable electrostatic environment around the scissile bond for II(a)/thrombomodulin interaction.  相似文献   

8.
Binding of short chain phosphatidylserine (C6PS) enhances the proteolytic activity of factor X(a) by 60-fold (Koppaka, V., Wang, J., Banerjee, M., and Lentz, B. R. (1996) Biochemistry 35, 7482-7491). In the present study, we locate three C6PS binding sites to different domains of factor X(a) using a combination of activity, circular dichroism, fluorescence, and equilibrium dialysis measurements on proteolytic and biosynthetic fragments of factor X(a). Our results demonstrate that the structural responses of human and bovine factor X(a) to C6PS binding are somewhat different. Despite this difference, data obtained with fragments from both human and bovine factor X(a) are consistent with a common hypothesis for the location of C6PS binding sites to different structural domains. First, the gamma-carboxyglutamic acid (Gla) domain binds C6PS only in the absence of Ca(2+) (k(d) approximately 1 mm), although this PS site does not influence the functional response of factor X(a). Second, a Ca(2+)-dependent binding site is in the epidermal growth factor domains (EGF(NC)) that are linked by Ca(2+) and C6PS binding to the Gla domain. This site appears to be the lipid regulatory site of factor X(a). Third, a Ca(2+)-requiring site seems to be in the EGF(C)-catalytic domain. This site appears not to be a lipid regulatory site but rather to share residues with the substrate recognition site. Finally, the full functional response to C6PS requires linkage of the Gla, EGF(NC), and catalytic domains in the presence of Ca(2+), meaning that PS regulation of factor X(a) involves linkage between widely separated parts of the protein.  相似文献   

9.
Novel monoclonal antibodies that specifically recognize gamma-carboxyglutamyl (Gla) residues in proteins and peptides have been produced. As demonstrated by Western blot and time-resolved immunofluorescence assays the antibodies are pan-specific for most or all of the Gla-containing proteins tested (factors VII, IX, and X, prothrombin, protein C, protein S, growth arrest-specific protein 6, bone Gla protein, conantokin G from a cone snail, and factor Xa-like proteins from snake venom). Only the Gla-containing light chain of the two-chain proteins was bound. Decarboxylation destroyed the epitope(s) on prothrombin fragment 1, and Ca(2+) strongly inhibited binding to prothrombin. In Western blot, immunofluorescence, and surface plasmon resonance assays the antibodies bound peptides conjugated to bovine serum albumin that contained either a single Gla or a tandem pair of Gla residues. Binding was maintained when the sequence surrounding the Gla residue(s) was altered. Replacement of Gla with glutamic acid resulted in a complete loss of the epitope. The utility of the antibodies was demonstrated in immunochemical methods for detecting Gla-containing proteins and in the immunopurification of a factor Xa-like protein from tiger snake venom. The amino acid sequences of the Gla domain and portions of the heavy chain of the snake protein were determined.  相似文献   

10.
Activated human factor IX (factor IXa) was treated under mildly acidic conditions with a mixture of formaldehyde and morpholine. This reagent has been shown to react preferentially with gamma-carboxyglutamyl (Gla) residues and to convert these residues to gamma-methyleneglutamyl residues (Wright, S.F., Bourne, C.D., Hoke, R.A., Koehler, K.A., and Hiskey, R.G. (1984) Anal. Biochem. 139, 82-90). The modified enzyme was evaluated for coagulant activity and calcium-dependent fluorescence quenching. [14C]Formaldehyde was employed to allow quantitation of the modification and to facilitate localization of the modified residues in the primary structure of factor IXa. In the presence of the [14C]formaldehyde/morpholine reagent, factor IXa rapidly lost coagulant activity, which corresponded to incorporation of radiolabel. Examination of the relationship between protein modification (radiolabel incorporation) and the loss of coagulant activity suggested that modification of 1 mol of Gla/mol of factor IXa results in complete loss of factor IXa coagulant activity. Primary structure analysis of the radioactivity labeled factor IXa suggested that modification of any one of 11 Gla residues was responsible for the loss of coagulant activity. In the presence of calcium, modified factor IXa exhibited a smaller Gla-dependent decrease in protein fluorescence than native factor IXa, but the Gla-independent fluorescence change was the same for both proteins. It therefore appears that the Gla domain of factor IXa must be completely intact for the enzyme to undergo a functionally important calcium-dependent conformational change necessary for coagulant activity.  相似文献   

11.
The gamma-carboxyglutamic acid (Gla) domains of the vitamin K-dependent blood coagulation proteins contain 10 highly conserved Gla residues within the first 33 residues, but factor IX is unique in possessing 2 additional Gla residues at positions 36 and 40. To determine their importance, factor IX species lacking these Gla residues were isolated from heterologously expressed human factor IX. Using ion-exchange chromatography, peptide mapping, mass spectrometry, and N-terminal sequencing, we have purified and identified two partially carboxylated recombinant factor IX species; factor IX/gamma 40E is uncarboxylated at residue 40 and factor IX/gamma 36,40E is uncarboxylated at both residues 36 and 40. These species were compared with the fully gamma-carboxylated recombinant factor IX, unfractionated recombinant factor IX, and plasma-derived factor IX. As monitored by anti-factor IX:Ca (II)-specific antibodies and by the quenching of intrinsic fluorescence, all these factor IX species underwent the Ca(II)-induced conformational transition required for phospholipid membrane binding and bound equivalently to phospholipid vesicles composed of phosphatidylserine, phosphatidylcholine, and phosphatidylethanolamine. Endothelial cell binding was also similar in all species, with half-maximal inhibition of the binding of 125I-labeled plasma-derived factor IX at concentrations of 2-6 nM. Functionally, factor IX/gamma 36,40E and factor IX/gamma 40E were similar to fully gamma-carboxylated recombinant factor IX and plasma-derived factor IX in their coagulant activity and in their ability to participate in the activation of factor X in the tenase complex both with synthetic phospholipid vesicles and activated platelets. However, Gla 36 and Gla 40 represent part of the epitope targeted by anti-factor IX:Mg(II)-specific antibodies because these antibodies bound factor IX preferentially to factor IX/gamma 36,40E and factor IX/gamma 40E. These results demonstrate that the gamma-carboxylation of glutamic acid residues 36 and 40 in human factor IX is not required for any function of factor IX examined.  相似文献   

12.
Propeptides of the vitamin K-dependent proteins bind to an exosite on gamma-glutamyl carboxylase; while they are bound, multiple glutamic acids in the gamma-carboxyglutamic acid (Gla) domain are carboxylated. The role of the propeptides has been studied extensively; however, the role of the Gla domain in substrate binding is less well understood. We used kinetic and fluorescence techniques to investigate the interactions of the carboxylase with a substrate containing the propeptide and Gla domain of factor IX (FIXproGla41). In addition, we characterized the effect of the Gla domain and carboxylation on propeptide and substrate binding. For the propeptide of factor IX (proFIX18), FIXproGla41, and carboxylated FIXproGla41, the Kd values were 50, 2.5, and 19.7 nM and the koff values were 273 x 10(-5), 9 x 10(-5), and 37 x 10(-5) s(-1), respectively. The koff of proFIX18 is reduced 3-fold by FLEEL and 9-fold by the Gla domain (residues 1-46) of FIX. The pre-steady state rate constants for carboxylation of FIXproGla41 was 0.02 s(-1) in enzyme excess and 0.016 s(-1) in substrate excess. The steady state rate in substrate excess is 4.5 x 10(-4) s(-1). These results demonstrate the following. 1) The pre-steady state carboxylation rate constant of FIXproGla41 is significantly slower than that of FLEEL. 2) The Gla domain plays an allosteric role in substrate-enzyme interactions. 3) Carboxylation reduces the allosteric effect. 4) The similarity between the steady state carboxylation rate constant and product dissociation rate constant suggests that product release is rate-limiting. 5) The increased dissociation rate after carboxylation contributes to the release of product.  相似文献   

13.
Vitamin-K-dependent plasma proteins contain a highly conserved propeptide sequence located between the classical hydrophobic leader sequence and the N-terminus of the mature protein. This acts as a recognition sequence for the vitamin-K-dependent carboxylase which catalyses the conversion of specific glutamate residues to gamma-carboxyglutamate (Gla) residues in the adjacent Gla domain. Protein engineering of the 18 residue propeptide from human factor IX has highlighted the importance of residues -16Phe and -10Ala with respect to carboxylase recognition. In addition, studies of haemophilia B patients have shown that C-terminal propeptide residues -4Arg and -1Arg are required for proteolysis of the propeptide from the mature protein. To extend these previous studies we have introduced two novel mutations into the propeptide of human factor IX at positions -17(Val----Asp) and -6(Leu----AsP), and studied the effect of these changes on gamma-carboxylation and proteolytic processing. Both mutations reduce the expression of a calcium-dependent epitope in the Gla domain; however, only -6Leu----Asp shows reduced binding to barium sulphate. In addition, this latter mutation prevents proteolytic processing of the propeptide. These data support the current hypothesis that the propeptide contains two recognition elements: one for carboxylase recognition located towards the N-terminus, and one for propeptidase recognition located near the C-terminus.  相似文献   

14.
Uniquely amongst vitamin K-dependent coagulation proteins, protein C interacts via its Gla domain both with a receptor, the endothelial cell protein C receptor (EPCR), and with phospholipids. We have studied naturally occurring and recombinant protein C Gla domain variants for soluble (s)EPCR binding, cell surface activation to activated protein C (APC) by the thrombin-thrombomodulin complex, and phospholipid dependent factor Va (FVa) inactivation by APC, to establish if these functions are concordant. Wild-type protein C binding to sEPCR was characterized with surface plasmon resonance to have an association rate constant of 5.23 x 10(5) m(-1).s(-1), a dissociation rate constant of 7.61 x 10(-2) s(-1) and equilibrium binding constant (K(D)) of 147 nm. It was activated by thrombin over endothelial cells with a K(m) of 213 nm and once activated to APC, rapidly inactivated FVa. Each of these interactions was dramatically reduced for variants causing gross Gla domain misfolding (R-1L, R-1C, E16D and E26K). Recombinant variants Q32A, V34A and D35A had essentially normal functions. However, R9H and H10Q/S11G/S12N/D23S/Q32E/N33D/H44Y (QGNSEDY) variants had slightly reduced (< twofold) binding to sEPCR, arising from an increased rate of dissociation, and increased K(m) (358 nm for QGNSEDY) for endothelial cell surface activation by thrombin. Interestingly, these variants had greatly reduced (R9H) or greatly enhanced (QGNSEDY) ability to inactivate FVa. Therefore, protein C binding to sEPCR and phospholipids is broadly dependent on correct Gla domain folding, but can be selectively influenced by judicious mutation.  相似文献   

15.
The three-dimensional structure of activated factor IX comprises multiple contacts between the two epidermal growth factor (EGF)-like domains. One of these is a salt bridge between Glu(78) and Arg(94), which is essential for binding of factor IXa to its cofactor factor VIII and for factor VIII-dependent factor X activation (Christophe, O. D., Lenting, P. J., Kolkman, J. A., Brownlee, G. G., and Mertens, K. (1998) J. Biol. Chem. 273, 222-227). We now addressed the putative hydrophobic contact at the interface between the EGF-like domains. Recombinant factor IX chimeras were constructed in which hydrophobic regions Phe(75)-Phe(77) and Lys(106)-Val(108) were replaced by the corresponding sites of factor X and factor VII. Activated factor IX/factor X chimeras were indistinguishable from normal factor IXa with respect to factor IXa enzymatic activity. In contrast, factor IXa(75-77)/factor VII displayed approximately 2-fold increased factor X activation in the presence of factor VIII, suggesting that residues 75-77 contribute to cofactor-dependent factor X activation. Activation of factor X by factor IX(106-108)/factor VII was strongly decreased, both in the absence and presence of factor VIII. Activity could be restored by simultaneous substitution of the hydrophobic sites in both EGF-like domains for factor VII residues. These data suggest that factor IXa enzymatic activity requires hydrophobic contact between the two EGF-like domains.  相似文献   

16.
M Y Wong  J A Gurr  P N Walsh 《Biochemistry》1999,38(28):8948-8960
Factor IXa binding to the activated platelet surface is required for efficient catalysis of factor X activation. Platelets possess a specific binding site for factor IXa, occupancy of which has been correlated with rates of factor X activation. However, the specific regions of the factor IXa molecule that are critical to this interaction have not yet been fully elucidated. To assess the importance of the second epidermal growth factor (EGF2) domain of factor IXa for platelet binding and catalysis, a chimeric protein (factor IXa(Xegf2)) was created by replacement of the EGF2 domain of factor IX with that of factor X. Competition binding experiments showed 2 different binding sites on activated platelets (approximately 250 each/platelet): (1) a specific factor IXa binding site requiring the intact EGF2 domain; and (2) a shared factor IX/IXa binding site mediated by residues G(4)-Q(11) within the Gla domain. In kinetic studies, the decreased V(max) of factor IXa(Xegf2) activation of factor X on the platelet surface (V(max) 2. 90 +/- 0.37 pM/min) versus normal factor IXa (37.6 +/- 0.15 pM/min) was due to its decreased affinity for the platelet surface (K(d) 64.7 +/- 3.9 nM) versus normal factor IXa (K(d) 1.21 +/- 0.07 nM), resulting in less bound enzyme (functional complex) under experimental conditions. The hypothesis that the binding defects of factor IXa(Xegf2) are the cause of the kinetic perturbations is further supported by the normal k(cat) of bound factor IXa(Xegf2) (1701 min(-)(1)) indicating (1) an intact catalytic site and (2) the normal behavior of bound factor IXa(Xegf2). The EGF2 domain is not a cofactor binding site since the mutant shows a normal rate enhancement upon the addition of cofactor. Thus, the intact EGF2 domain of factor IXa is critical for the formation of the factor X activating complex on the surface of activated platelets.  相似文献   

17.
To determine the function and specificity in factor IX of the first epidermal growth factor (EGF)-like domain and the eight-amino acid hydrophobic stack encoded by exon C (residues 39-46), these domains were replaced by the corresponding polypeptide regions of factor X and chimeric proteins were produced in human embryo kidney cells. Both chimeras were activated by factor XIa at a rate similar to plasma factor IX and exhibited calcium-dependent fluorescence quenching similar to plasma factor IX. Both chimeras competed equally for binding to the endothelial cell receptor. Our findings make it unlikely that the first EGF-like domain or the hydrophobic stack of factor IX are responsible for the specific binding of factor IX to its endothelial cell receptor.  相似文献   

18.
Tissue factor (TF) binds the zymogen (VII) and activated (VIIa) forms of coagulation factor VII with high affinity. The structure determined for the sTF-VIIa complex [Banner, D. W., et al. (1996) Nature 380, 41-46] shows that all four domains of VIIa (Gla, EGF-1, EGF-2, and protease) are in contact with TF. Although a structure is not available for the TF-VII complex, the structure determined for free VII [Eigenbrot, C., et al. (2001) Structure 9, 675-682] suggests a significant conformational change for the zymogen to enzyme transition. In particular, the region of the protease domain that must contact TF has a conformation that is altered from that of VIIa, suggesting that the VII protease domain interacts with TF in a manner different from that of VIIa. To test this hypothesis, a panel of 12 single-site sTF mutants, having substitutions of residues observed to contact the proteolytic domain of VIIa, have been evaluated for binding to both zymogen VII and VIIa. Affinities were determined by surface plasmon resonance measurements using a noninterfering anti-TF monoclonal antibody to capture TF on the sensor chip surface. Dissociation constants (K(D)) measured for binding to wild-type sTF are 7.5 +/- 2.4 nM for VII and 5.1 +/- 2.3 nM for VIIa. All of the sTF mutants except S39A and E95A exhibited a significant decrease (>2-fold) in affinity for VIIa. The changes in affinity measured for VII or VIIa binding with substitution in sTF were comparable in magnitude. We conclude that the proteolytic domain of both VII and VIIa interacts with this region of sTF in a nearly identical fashion. Therefore, zymogen VII can readily adopt a VIIa-like conformation required for binding to TF.  相似文献   

19.
We have examined the calcium-binding properties and metal ion-dependent conformational changes of proteolytically modified derivatives of factor IX that lack gamma-carboxyglutamic acid (Gla) residues. Equilibrium dialysis experiments demonstrated that a Gla-domainless factor IX species retained a single high affinity calcium ion-binding site (Kd = 85 +/- 5 microM). Ca2+ binding to this site was accompanied by a decrease in intrinsic fluorescence emission intensity (Kd = 63 +/- 15 microM). These spectral changes were reversed upon the addition of EDTA. Titration with Sr2+ resulted in little change in fluorescence intensity below 1 mM, while titration with Tb3+ caused fluorescence changes similar to those observed with Ca2+. Tb3+ and Ca2+ appear to bind to the same site because tryptophan-dependent terbium emission was reduced by the addition of Ca2+. Similar results were obtained with a Gla-domainless factor IX species lacking the activation peptide. Gla domain-containing factor IX species exhibited fluorescence changes similar to those of the Gla-domainless proteins at low Ca2+, but an additional structural transition was found at higher Ca2+ concentrations (apparent Kd greater than 0.8 mM). Thus, the conformations of factor IX proteins are nucleated and/or stabilized by calcium binding to a high affinity site which does not contain Gla residues. The binding of Ca2+ to lower affinity Gla domain-dependent metal ion-binding sites elicits an additional conformational change. The strong similarities between these results and those obtained with protein C (Johnson, A. E., Esmon, N. L., Laue, T. M. & Esmon, C. T. (1983) J. Biol. Chem. 258, 5554-5560), coupled with the remarkable sequence homologies of the vitamin K-dependent proteins, suggest that the high affinity Gla-independent Ca2+-binding site may be a common feature of vitamin K-dependent proteins.  相似文献   

20.
Grant MA  Baikeev RF  Gilbert GE  Rigby AC 《Biochemistry》2004,43(49):15367-15378
The binding of factor IX to cell membranes requires a structured N-terminal omega-loop conformation that exposes hydrophobic residues for a highly regulated interaction with a phospholipid. We hypothesized that a peptide comprised of amino acids Gly4-Gln11 of factor IX (fIX(G4)(-)(Q11)) and constrained by an engineered disulfide bond would assume the native factor IX omega-loop conformation in the absence of Ca(2+). The small size and freedom from aggregation-inducing calcium interactions would make fIX(G4)(-)(Q11) suitable for structural studies for eliciting details about phospholipid interactions. fIX(G4)(-)(Q11) competes with factor IXa for binding sites on phosphatidylserine-containing membranes with a K(i) of 11 microM and inhibits the activation of factor X by the factor VIIIa-IXa complex with a K(i) of 285 microM. The NMR structure of fIX(G4)(-)(Q11) reveals an omega-loop backbone fold and side chain orientation similar to those found in the calcium-bound factor IX Gla domain, FIX(1-47)-Ca(2+). Dicaproylphosphatidylserine (C(6)PS) induces HN, Halpha backbone, and Hbeta chemical shift perturbations at residues Lys5, Leu6, Phe9, and Val10 of fIX(G4)(-)(Q11), while selectively protecting the NHzeta side chain resonance of Lys5 from solvent exchange. NOEs between the aromatic ring protons of Phe9 and specific acyl chain protons of C(6)PS indicate that these phosphatidylserine protons reside 3-6 A from Phe9. Stabilization of the phosphoserine headgroup and glycerol backbone of C(6)PS identifies that phosphatidylserine is in a protected environment that is spatially juxtaposed with fIX(G4)(-)(Q11). Together, these data demonstrate that Lys5, Leu6, Phe9, and Val10 preferentially interact with C(6)PS and allow us to correlate known hemophilia B mutations of factor IX at Lys5 or Phe9 with impaired phosphatidylserine interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号