首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 561 毫秒
1.
Background, Aim and Scope The Home Appliance Recycling Law (hereunder referred to as the Law) for used cathode ray tube (CRT) TVs, air conditioners, refrigerators and washing machines was enacted in April 2001 in Japan. The Law requires that retailers reclaim, and manufacturers and importers recycle such home appliances. Consumers are required to pay collection and recycling fees incurred in disposing of any of the four home appliances. Home appliances must, as a general rule, be managed in accordance with the Law. In reality, other routes exist, such as via local authorities, scrap processors, illegal dumping and exporting. At about the time the Law was enacted, the refrigerant used for air conditioners and refrigerators was replaced by more environmentally friendly substances such as isobutene. Local authorities had the responsibility of disposing of the appliances of households before the enactment of the Law. It was general practice for local authorities to dispose of home appliances in landfills after breaking them up and recovering valuable resources such as iron, copper and aluminum. Although they made efforts to recover refrigerant fluorocarbons, there were not required to do so. Materials and Methods This study analyzed the material flow resulting from the Law and other processing flows to quantify the global warming effect caused by home appliance recycling using the life cycle assessment (LCA) method. To evaluate the Law and to develop policy planning, the challenges of future efforts will be considered using time series data. For these reasons, we have assessed the Project Scenario, which corresponded to the present reality; the Baseline Scenario, which assumed that measures such as the Law were not implemented after 2000, and the Ideal Scenario, where all used products were recycled as prescribed by the Law. The environmental impacts for each scenario were estimated using value, which was obtained from multiplying the amount of reproduction and waste treatment by each inventory data. Results It is estimated that emission reductions of 4.7E+4 t CO2e, subtracted the Project Scenario from the Baseline Scenario, were reduced for TVs in 2001 through recycling. The impact from recycling glass from cathode ray tube (CRT) televisions is significant. An improvement of 2.3E+4 t CO2e could be anticipated by upgrading to the Ideal Scenario in 2001. It was estimated that there was a reduction of 9.2E+5 t CO2e in 2001 for air conditioners. Although the effect of the recovery for refrigerants contributed greatly, some fluorocarbons that are still discharged have had a considerable impact on greenhouse gas emissions. Hypothetically, a reduction of 3.2E+6 t CO2e could be anticipated with the Ideal Scenario in 2001. A reduction of 2.6E+6 t CO2e was achieved for refrigerators in 2001. Although a further reduction can be anticipated through the Ideal Scenario, there will not be much difference with the Project Scenario by 2010. It was estimated that 3.8E+4 t CO2e were reduced for washing machines in 2001. Only a small improvement can be expected through the Ideal Scenario. Discussion Since many assumptions were used in this study, a sensitivity analysis was carried out in order to grasp their impact. The findings of the sensitivity analysis are that the uncertainties are large, but the number of the greenhouse gas (GHG) reductions is still clear except for the difference between the Project Scenario and the Ideal Scenario for TVs. This analysis gives authenticity to the findings. Conclusions Establishing a system for liquid crystal display and plasma display panel TVs is desirable because the absolute amount of used LCD/PDP TVs will rapidly increase as the usage of CRT TVs rapidly decreases from 2007. With regard to refrigerant recovery from air conditioners, a significant decrease in GHG emissions has been recorded. There is, however, still ample room for improvement. It will be necessary to switch to refrigerants with low global warming potentials (GWPs) or work more on improving the recovery rate in the future. Alternatives and recovery of fluorocarbons from refrigerators contributed greatly to GHG reductions. The GHG emissions from refrigerator recycling will be minimal whether used refrigerator will be processed legally or not because most used refrigerators will contain natural refrigerants in the near future. The improvement for washing machines was low because it was assumed that their main constituent steel has been previously recycled, and that the plastic recycling rate will not change significantly in the future. An improvement in the recycling technology itself is required. This study was carried out on four home appliance products, and it was found that the Home Appliance Recycling Law has brought significant reductions in GHG emissions. There is also room to make GHG reductions through improving the processing methods further. Recommendations and Perspectives The impact on GHG emissions by fluorocarbons of air conditioners and refrigerators is the greatest. Adequate measures are particularly required for air conditioners that may continue to discharge GHGs in the future. ESS-Submission Editor: Dr. Lindita Bushi (lindita.bushi@ghgm.com)  相似文献   

2.
We conducted a decomposition analysis of material flows in a dynamic system, focusing on factors in the generation of waste consumer durables. A methodology for the analysis of consumer durables was developed and applied to three common consumer durables: cathode ray tube TVs, refrigerators, and passenger cars. The methodology decomposed changes in the numbers of waste products into three factors: changes in lifespan distribution, past trends in replacement sales, and past trends in sales for additional purchases. The decomposed equation clearly showed that the number of waste products would not necessarily be reduced by lifespan extension alone. This is because the number of waste products generated is affected not only by current lifespan distribution but also by past trends in sales for replacement and in additional purchases. The results show that changes in past replacement sales influence the current generation of waste, even if current replacement sales are declining. To reduce the generation of waste products on a short‐term basis, lifespan must be extended until the waste‐reducing effect of lifespan extension exceeds the waste‐increasing effect of the other two factors. From a long‐term perspective, controlling current replacement and additional purchases can be used to prevent future waste product generation.  相似文献   

3.
Scope  In this study, a dynamic model was built in which LCA and PBM were integrated to quantitatively assess the total environmental impacts induced by the product population in a society over time. Specifically, a determination was carried out concerning how Japan’s air conditioner population is used (lifetime distribution, number of units, etc.) and an assessment was made concerning the Global Warming Potential (GWP) associated with the air conditioner population. Methods  The proposed dynamic model was applied to air conditioners for analyzing the total GWP caused by the air conditioner population in Japan from 1990 to 2010. To create a trend forecast model for future environmental load, scenarios for air conditioner production up to 2010 were formulated and the total GWP from the air conditioner population was predicted. Conducted also were sensitivity analyses whose parameters were air conditioner performance, lifetime and the rate of refrigerant recovery when retired units are processed. Results and Discussion  Applying the PBM to the air conditioner population in 2000, it was found that 81.5 million units consumed 5.94 x 10p10 kWh in that year, which was a 6.1 % increase in the total annual power consumption in 1990. In both a stationary scenario and a steady growth (1.5% annual increase), it was found that the total GWP would be 27.7% higher than in 1990 under the stationary scenario and 37.8% higher under the steady growth scenario. The improvements in air conditioner performance will have a small effect on reducing the total GWP from that population. Furthermore, in connection with the average lifetime, it was found that the GWP, due to refrigerant releases when units are disposed of, would be relatively large in 2000 and the following years. Conclusions  Thus, shorter product lifetimes will spur a replacement of air conditioners with new units, a situation that will only lead to the reduction of GWP if the recovery rate of refrigerant is to be achieved to more than 50% under the stationary scenario. Recommendations and Outlook  To meet COP3 targets for Japan in 2010 (i.e. to reach the same level as in 1990 for household appliances), our study shows that it will be vital to raise the refrigerant recovery rate. If the number of air conditioners in use remains unchanged, recovery would have to be 45.7%, but under the steady growth scenario it would have to be at least 60.4%. Therefore, it will be difficult to meet COP3 targets unless the refrigerant recovery rate is strongly increased. This method is applicable to assess not only the GWP of air conditioners, but also other environmental impacts caused by a variety of product populations, which will be quite effective for setting targets of products’ performance, policymaking, etc.  相似文献   

4.

Purpose

This paper concerns the Ecodesign Directive (2009/125/EC) and the implementing measures (IM) in which ecodesign requirements are set up for energy-using and energy-related products. Previous studies have found that the requirements have a unilateral focus on energy consumption and the use phase. This is not in line with the scientific understanding of ecodesign, where attention should be put on all life cycle phases and all relevant environmental impact categories. This study focuses on the requirements for televisions (TV). A life cycle assessment (LCA) is carried out on two TVs to analyse if other environmental hotspots and life cycle phases should be included in the requirements in the IM of the Ecodesign Directive besides energy consumption in the use phase analysis.

Methods

The consequential approach is used. The data for the LCA have been gathered from two manufacturers of TVs. In one case, the data were delivered in Excel spreadsheets; in the other case, the authors of this paper together with the manufacturer disassembled a TV and collected the data manually.

Results and discussion

When applying the consequential approach, the production phase has the highest environmental impact, which is in contradiction with the focus area of the IM. The result of the sensitivity analysis is that the source of electricity is a potentially significant contributor of uncertainty. However, even in a coal-based scenario, the contribution from the production phase is approximately 30 %.

Conclusions

Based on these results, it is concluded that for future requirement setting in IM, it is necessary to set up requirements that cover more life cycle phases of the product in order to address the most important impacts.  相似文献   

5.
Part 2 summarises the results of a comparative LCA study of HT stone wool, flax representing crop grown products and paper wool representing recycled products applied for roof insulation, in which an attempt is made to answer the question of whether the biological products flax and paper wool are more environmentally preferable than the mineral product stone wool representing more traditional insulation materials. Of the three products compared, paper wool has, in general, the lowest global and regional environmental impacts and flax insulation the highest, with stone wool falling in between. A notable exception is the total energy use, where stone wool has the lowest consumption, followed by cellulose and flax. The study also addresses occupational health, using an approach similar to that used for risk assessment. Here, the modern less biopersistent stone wool products are seen as the safest alternatives, because of a low potential for exposure, sufficient animal testing and the absence of carcinogenic properties. Overall, the differences between the investigated products are of minor environmental significance compared to that achieved by their use, namely insulation of buildings, which saves energy corresponding to more than 100 times the environmental impacts incurred in their manufacture. The main conclusion is that the quality and fitness for use of an insulation product throughout its useful life span is the most important aspect in the life cycle of insulation materials.  相似文献   

6.
Recycling of neodymium and dysprosium is of great interest because of the rapid growth in their demand and limited supply of new resources. To promote recovery from end‐of‐life (EoL) products, it is desirable to quantify the recycling potentials of neodymium and dysprosium by their end use. This study characterized the substance flows of neodymium and dysprosium associated with neodymium magnets in Japan by conducting a dynamic substance flow analysis. A bottom‐up approach was employed in the analysis to estimate annual consumption by end use. Factors used in the analysis were the amounts of rare earth contents, weight of a magnet used for each product, adoption ratios of neodymium magnet usage in each product, and lifetime of products. It was found that the amount of neodymium entering use was approximately half of the domestic consumption; the balance existing in final products that were exported from Japan. The economic feasibility of recycling neodymium magnets was evaluated for their largest two end uses: driving motors in hybrid electric vehicles (HEVs) and compressors in air conditioners. It was found that recycling the neodymium magnets used in the driving motors has the potential for economic feasibility in Japan. The result showed that lower transportation costs for recovered magnets can make the recycling economically feasible regardless of the content rate and the price of metals. The future increase of EoL HEVs contributes to the feasibility of recycling with a profit in the upcoming years. Strategies for more profitable recycling are concentrating scrap motors or magnets among recycling factories or selecting specific factories that deal with EoL HEVs.  相似文献   

7.
In this study, we used material flow analysis and life cycle assessment to quantify the environmental impacts and impact reductions related to wood consumption in Japan from 1970 to 2013. We then conducted future projections of the impacts and reductions until 2050 based on multiple future scenarios of domestic forestry, wood, and energy use. An impact assessment method involving characterization, damage assessment, and integration with a monetary unit was used, and the results were expressed in Japanese yen (JPY). We found that environmental impacts from paper consumption, such as climate change and urban air pollution, were significant and accounted for 56% to 83% of the total environmental impacts between 1970 and 2013. Therefore, reductions of greenhouse gas, nitrogen oxide, and sulfur oxide emissions from paper production would be an effective measure to reduce the overall environmental impacts. An increase in wood use for building construction, civil engineering, furniture materials, and energy production could lead to reductions of environmental impacts (via carbon storage, material substitution, and fuel substitution) amounting to 357 billion JPY in 2050, which is equivalent to 168% of the 2013 levels. Particularly, substitution of nonwooden materials, such as cement, concrete, and steel, with wood products in building construction could significantly contribute to impact reductions. Although an increase of wood consumption could reduce environmental impacts, such as climate change, resource consumption, and urban air pollution, increased wood consumption would also be associated with land‐use impacts. Therefore, minimizing land transformations from forest to barren land will be important.  相似文献   

8.
In order to realize the projected market potential of nanotechnology, the environmental, health, and safety (EHS) uncertainties posed by a nano‐product (i.e., a nanotechnology‐enabled product) need to be characterized through the identification of risks and opportunities in early stages of product development. We present a methodology to identify risks from nano‐products using a scenario analysis approach that allows for expert elicitation on a set of preidentified use and disposal scenarios and what we have labeled “risk triggers” to obtain scores on their likelihood of occurrence and severity. Use and disposal scenarios describe product life‐cycle stages that could result in risk attributed to the nano‐product, whereas risk triggers are particular to nanoparticle properties. These are potential risks, as the risk assessment community is currently debating the specific risks attributed to nanotechnology. Through such a framework, our goal is to identify which products pose greater risks, where these risks occur in the product life cycle, and the impacts of these environmental risks on society. The comparison of risk triggers across nano‐products allows relative risk ranking on axes of exposure‐ and hazard‐related risk triggers. For the specific case of air fresheners, areas of acute risks resulted from bioavailability of nanoparticles in air release and water entrainment exposure scenarios; catalytic activity of nanoparticles in inhalation and air release exposure scenarios; the harmful effects due to the antibacterial property on useful bacteria particularly in susceptible populations; and, finally, risks from the lack of nanoparticle coating stability in air release scenarios.  相似文献   

9.
Environmental Impacts of Products: A Detailed Review of Studies   总被引:2,自引:0,他引:2  
Environmental effects of economic activities are ultimately driven by consumption, via impacts of the production, use, and waste management phases of products and services ultimately consumed. Integrated product policy (IPP) addressing the life‐cycle impacts of products forms an innovative new generation of environmental policy. Yet this policy requires insight into the final consumption expenditures and related products that have the greatest life‐cycle environmental impacts. This review article brings together the conclusions of 11 studies that analyze the life‐cycle impacts of total societal consumption and the relative importance of different final consumption categories. This review addresses in general studies that were included in the project Environmental Impacts of Products (EIPRO) of the European Union (EU), which form the basis of this special issue. Unlike most studies done in the past 25 years on similar topics, the studies reviewed here covered a broad set of environmental impacts beyond just energy use or carbon dioxide (CO2) emissions. The studies differed greatly in basic approach (extrapolating LCA data to impacts of consumption categories versus approaches based on environmentally extended input‐output (EEIO) tables), geographical region, disaggregation of final demand, data inventory used, and method of impact assessment. Nevertheless, across all studies a limited number of priorities emerged. The three main priorities, housing, transport, and food, are responsible for 70% of the environmental impacts in most categories, although covering only 55% of the final expenditure in the 25 countries that currently make up the EU. At a more detailed level, priorities are car and most probably air travel within transport, meat and dairy within food, and building structures, heating, and (electrical) energy‐using products within housing. Expenditures on clothing, communication, health care, and education are considerably less important. Given the very different approaches followed in each of the sources reviewed, this result hence must be regarded as extremely robust. Recommendations are given to harmonize and improve the methodological approaches of such analyses, for instance, with regard to modeling of imports, inclusion of capital goods, and making an explicit distinction between household and government expenditure.  相似文献   

10.
In the refrigeration and air conditioning industry, technologies to reduce environmental impacts, such as global warming, ozone-layer depletion, and discharging industrial wastes, are getting much attention nowadays. This paper reports the Life Cycle Assessment conducted to comparatively analyze two air conditioner units for residential use. One is a traditional type with HCFC22 being used for its refrigerant and the other is with HFC410A. Because the main focus of this analysis is on the comparison of the refrigerants, data of the refrigerants used are taken from the actual measurements in their production and disposal stages. As a result, the ozone layer depleting effect can be eliminated completely by using HFC410A. On the other hand, the global warming effect doesn’t get reduced extensively by using HFC410A. However, it does so by treating used refrigerants with a proper waste management. Moreover, it can be proved that using HFC410A reduces environmental impacts in all the other impact categories assessed, which are acidification, air pollution, water pollution, and energy consumption. To conclude this case study, replacing HCFC22 with HFC410A for the refrigerant is certainly one of the effective methods for reducing environmental impacts given by air conditioners.  相似文献   

11.
Sustainable use of wood may contribute to coping with energy and material resource challenges. The goal of this study is to increase knowledge of the environmental effects of wood use by analyzing the complete value chain of all wooden goods produced or consumed in Switzerland. We start from a material flow analysis of current wood use in Switzerland. Environmental impacts related to the material flows are evaluated using life cycle assessment–based environmental indicators. Regarding climate change, we find an overall average benefit of 0.5 tonnes carbon dioxide equivalent per cubic meter of wood used. High environmental benefits are often achieved when replacing conventional heat production and energy‐consuming materials in construction and furniture. The environmental performance of wood is, however, highly dependent on its use and environmental indicators. To exploit the mitigation potential of wood, we recommend to (1) apply its use where there are high substitution benefits like the replacement of fossil fuels for energy or energy‐intensive building materials, (2) take appropriate measures to minimize negative effects like particulate matter emissions, and (3) keep a systems perspective to weigh effects like substitution and cascading against each other in a comprehensive manner. The results can provide guidance for further in‐depth studies and prospective analyses of wood‐use scenarios.  相似文献   

12.
This study assesses the policy/legal status of both multistream residues and potential secondary products (“symbiosis products”) and whether there could be environmental benefits associated with the utilization of residues from integrated pulp and paper and carbon steel mills as raw materials for such secondary products. Waste‐related European Union (EU) and Finnish policy and legal instruments were reviewed to identify potential constraints for, and suggested next steps in, the development of potential process industry residue‐based symbiosis products. The products were soil amendment pellets, low‐grade concrete, and mine filler. A global warming potential (GWP) assessment and an exergy analysis were applied to these potential symbiosis products. Some indicative GWP calculations of greenhouse gas emissions associating similar and/or analogous products based on virgin primary raw materials, more energy‐intensive processes, and the alternative treatment of these residues as wastes are also presented. This study addresses GWP, exergy, and legal aspects in a holistic manner to determine the potential environmental benefits of secondary products within the EU legal framework. The GWP assessment and exergy analysis indicate that the utilization of multistream residues causes very low environmental burdens in terms of GWP. The utilization option can have potential environmental benefits in terms of GWP through process replacement and avoided landfilling and waste treatment impacts, as well as potentially through emission reductions from product replacement if suitable and safe applications can be identified. Waste regulation does not define the legal requirements under which utilizing residues in such novel concepts as introduced in this study would be possible, nor how waste status could be removed and product‐based legislation be applied to the potential products instead.  相似文献   

13.

Purpose

The current focus of environmental legislation for energy-using products is an efficient energy consumption in the use stage. However, the production and waste treatment of electronic products are also related to environmental impacts in terms of declining metal resources and growing waste streams. This paper investigates the environmental impacts of life time extension versus energy efficiency for the product group video projector using life cycle assessment (LCA).

Methods

The product under study was an average video projector based on three LCD projectors. The studied systems included two possibilities after a regular first usage period: reconditioning for a second use or replacement by a primary successor with an energy efficiency increase of 5 and 10%. All impacts addressed were accounted using the ReCiPe 2008 method. The impact contribution of projector components was identified at midpoint and endpoint levels, while life cycle impacts were calculated with a focus on three impact categories. Furthermore, the amortization period of production emissions was quantified.

Results and discussion

LCA results showed that the use stage dominates life cycle impacts of the global warming potential and primary energy demand. For the metal depletion potential, the production stage accounts for most of the total life cycle load. The highest shares in production emissions were identified for electronic components, namely printed wired boards and integrated circuits. Reconditioning and reuse of a secondary projector resulted in minor environmental impacts compared to the replacement and use of a primary projector with an energy efficiency increase of 5%. The saving potential of the primary energy demand is higher only in the case of a 10% more efficient device as compared to the secondary projector.

Conclusions

The study concluded that production emissions and their amortization period are relevant factors offsetting any environmentally beneficial measures applied during the use phase. The study suggests that life time extension of video projectors can provide higher environmental improvement potentials, while energy efficiency increase during usage is less beneficial, given that major improvements in energy efficiency do not occur. Recommendations are valid for this particular case study. The study suggests that the current focus of mandatory product requirements for energy-using products on energy efficiency increase should be extended to measures of life time extension in order to serve the intent of an integrated product policy.
  相似文献   

14.
The life cycle environmental profile of energy‐consuming products is dominated by the products’ use stage. Variation in real‐world product use can therefore yield large differences in the results of life cycle assessment (LCA). Adequate characterization of input parameters is paramount for uncertainty quantification and has been a challenge to wider adoption of the LCA method. After emphasis in recent years on methodological development, data development has become the primary focus again. Pervasive sensing presents the opportunity to collect rich data sets and improve profiling of use‐stage parameters. Illustrating a data‐driven approach, we examine energy use in domestic cooling systems, focusing on climate change as the impact category. Specific objectives were to examine: (1) how characterization of the use stage by different probability distributions and (2) how characterizing data aggregated at successively higher granularity affects LCA modeling results and the uncertainty in output. Appliance‐level electricity data were sourced from domestic residences for 3 years. Use‐stage variables were propagated in a stochastic model and analyses simulated by Monte Carlo procedure. Although distribution choice did not necessarily significantly impact the estimated output, there were differences in the estimated uncertainty. Characterization of use‐stage power consumption in the model at successively higher data granularity reduced the output uncertainty with diminishing returns. Results therefore justify the collection of high granularity data sets representing the life cycle use stage of high‐energy products. The availability of such data through proliferation of pervasive sensing presents increasing opportunities to better characterize data and increase confidence in results of LCA.  相似文献   

15.
The life cycle environmental profile of energy‐consuming products, such as air conditioning, is dominated by the products’ use phase. Different user behavior patterns can therefore yield large differences in the results of a cradle‐to‐grave assessment. Although this variation and uncertainty is increasingly recognized, it remains often poorly characterized in life cycle assessment (LCA) studies. Today, pervasive sensing presents the opportunity to collect rich data sets and improve profiling of use‐phase parameters, in turn facilitating quantification and reduction of this uncertainty in LCA. This study examined the case of energy use in building cooling systems, focusing on global warming potential (GWP) as the impact category. In Singapore, building cooling systems or air conditioning consumes up to 37% of national electricity demand. Lack of consideration of variation in use‐phase interaction leads to the oversized designs, wasted energy, and therefore reducible GWP. Using a high‐resolution data set derived from sensor observations, energy use and behavior patterns of single‐office occupants were characterized by probabilistic distributions. The interindividual variability and use‐phase variables were propagated in a stochastic model for the life cycle of air‐conditioning systems and simulated by way of Monte Carlo analysis. Analysis of the generated uncertainties identified plausible reductions in global warming impact through modifying user interaction. Designers concerned about the environmental profile of their products or systems need better representation of the underlying variability in use‐phase data to evaluate the impact. This study suggests that data can be reliably provided and incorporated into the life cycle by proliferation of pervasive sensing, which can only continue to benefit future LCA.  相似文献   

16.
Industrial symbiosis (IS), where different entities collaborate in the management of energy, utilities, materials, or services, has been identified as an approach to improve resource efficiency and circularity in industry. This article assesses the environmental performance of an IS network with firms involved in waste management, soil, surfaces, paper, lumber, and energy. The aim is to highlight the environmental performance of an IS network and pay particular attention to the improved performance for products in the IS network. Life cycle assessment is used to compare the current IS network with a reference scenario and a potential future development. The results suggest that there are significant benefits from the IS network. Large reductions in greenhouse gas (GHG) emissions and abiotic resource depletion were identified. Furthermore, large reductions in local impacts, namely eutrophication and acidification impacts are illustrated. It was shown that all firms in the network benefit from the synergies involved, with a large share of the benefits stemming from the facilitated exchanges with the waste management company. The replacement of conventional products and energy streams with bio‐based counterparts from within the network is of significant importance. Finally, the results point to the importance of the facilitation of by‐product synergies, and the significant value this creates in the region, with large potential to improve the environmental performance of firms and their products.  相似文献   

17.
Life cycle assessment of a multi-material car component   总被引:1,自引:1,他引:0  
Background, Aims and Scope In recent years, the automotive industry has been experiencing an increasing concern with environmental requirements. A particular focus is being given to light-weighting of cars, to reducing fuel consumption and to the use of different recycling materials. Consequently, decisions on product design and development must involve economic and technological as well as environmental considerations. In adequate conditions, the LCA methodology enables one to assist an effective integration of the environmental considerations in the decision-making process [1]. In this paper, a multi-material car component which is part of the current automotive brake system, has been modified by its original manufacturer. Such a modification included the use of a new multi-material injection moulding process and the consumption of recyclable materials. The new and the current component were comparatively assessed throughout their life cycles in order to evaluate their respective environmental impacts and, thus, to verify if the new component offers a lower environmental load. The results described in this paper are part of the outcome of a broader research project involving industrial companies, university, technological centres and research institutes based in Portugal, Spain and Germany. Main Features The car component under focus has four subcomponents whose base materials consist of steel and plastic. The LCA methodology is used to evaluate two scenarios describing the new car component, on the one hand, and the reference scenario, which consists of the existing car component, on the other. The former results from the selection of new subcomponents materials, aiming to use a new production process together with a recycling strategy. Results and Discussion The inventory analysis shows a lower energy consumption in the alternative scenario (4.2 MJ) compared to the reference scenario (6.1 MJ). Most of that energy is still non-renewable, relating in particular to crude consumption in the car use phase and in the production phase (transports and plastics production). The life cycle inventory analysis indicates also that the alternative scenario has lower air emissions of CO2, CO, NOx, SOx, NM VOC and PM10, as well as lower solid wastes and water emissions of oils and BOD5. Otherwise, the water emissions of undissolved substances and COD are higher for the alternative scenario. Most of the energy consumed and the air pollutants inventoried occur as a consequence of the use phase. Otherwise, for most of the life cycle water emissions inventoried and solid wastes, the production phase is the major contributor. The impact assessment, performed with the CML method, allows one to conclude that the alternative scenario exhibits lower results in all the impact categories. Both scenarios have similar environmental profiles, being: (i) the use phase, the major contributor for the abiotic depletion, global warming, photochemical oxidation, acidification and eutrophication; and (ii) the production phase, the main contributor for ozone depletion, human toxicity, fresh water aquatic ecotoxicity, marine aquatic ecotoxicity and terrestrial ecotoxicity. The sensitivity analysis, with respect to the fuel consumption reduction value, the impact assessment method and the final disposal scenario, performed in this study allows one to confirm, as a main conclusion, that the alternative scenario is environmentally preferable to the reference scenario. Conclusion The results obtained through the application of the LCA methodology enable one to conclude that the alternative component has a lower environmental load than the reference component. Recommendations and Perspectives Considering that the time required for the inventory data collection is a critical issue in LCA practise, the insights provided by this particular case study are likely to be useful to product developers in the car component manufacturing industry, particularly to brake system manufacturers supporting the environmental design within the sector.  相似文献   

18.
The global food system is a major energy user and a relevant contributor to climate change. To date, the literature on the energy profile of food systems addresses individual countries and/or food products, and therefore a comparable assessment across regions is still missing. This paper uses a global multi‐regional environmentally extended input–output database in combination with newly constructed net energy‐use accounts to provide a production and consumption‐based stock‐take of energy use in the food system across different world regions for the period 2000–2015. Overall, the ratio between energy use in the food system and the economy is slowly decreasing. Likewise, the absolute values point toward a relative decoupling between energy use and food production, as well as to relevant differences in energy types, users, and consumption patterns across world regions. The use of (inefficient) traditional biomass for cooking substantially reduces the expected gap between per capita figures in high‐ and low‐income countries. The variety of energy profiles and the higher exposure to energy security issues compared to the total economy in some regions suggests that interventions in the system should consider the geographical context. Reducing energy use and decarbonizing the supply chains of food products will require a combination of technological measures and behavioral changes in consumption patterns. Interventions should consider the effects beyond the direct effects on energy use, because changing production and consumption patterns in the food system can lead to positive spillovers in the social and environmental dimensions outlined in the Sustainable Development Goals.  相似文献   

19.

Purpose

A strategic product development tool combining REACH and environmental and financial factors was previously developed for a coatings company. This paper presents results from refining this tool for an office furniture company, using life cycle assessment (LCA)-based environmental information, addressing the research questions: ? Is it possible to combine information from REACH with the LCA approach to provide useful information for a furniture producer in their environmental product development process? ? Does the approach developed for substances in mixtures need to be adapted for articles? ? Is there a correlation between energy consumption and the environmental impacts analysed? ? Will product designers get the same information independent of the environmental impact category used? ?C Will the strategy tool indicate the same ranking of products for all environmental impacts? ?C Does REACH information indicate the same set of priorities as those arising from LCA environmental data alone? (Do they agree, or is there a conflict?) ? Will strategic decisions differ if different environmental indicators are in focus? The strategy tool??s purpose is to analyse company product portfolios, identifying products that need redevelopment or redesign because of issues concerning hazardous substances, or environmental performance.

Methods

The LCA data used is cradle-to-gate data from type III environmental declarations for 11 seating solutions. REACH Complexity, health hazard and environmental class indicators (based on risk phrases) are combined with financial data and LCA-based indicators. Correlations between energy consumption and environmental impact factors for these specific furniture products are investigated. Establishing any such correlations serves to simplify subsequent analysis in the product development process, by effectively reducing the number of indicators that need to be taken into consideration.

Results

Correlations between energy consumption and the environmental impacts global warming, acidification, eutrophication and heavy metals are presented. Strategy tool figures are shown for energy consumption, ozone depletion potential and photochemical oxidation potential. The results for office chairs and conference/visitor chairs are presented separately, as the two types of chairs fulfil different functions.

Conclusions

The correlation between energy consumption and certain environmental impact indicators affords a simplification of the product development process, since energy consumption can be used as a reasonable proxy for these indicators in this specific case. The results support acknowledged principles of Ecodesign. Energy and materials minimization improves environmental performance??higher recycled material content and proportion of renewable energy resources are also beneficial. Designers have to consider multiple aspects in parallel and the strategy tool is useful for this purpose; the furniture producer has gained useful product development insight. The tool is applicable for strategic choice of products for development or redesign that can be useful across many business sectors.  相似文献   

20.
Increasingly, organizations are working to reduce the environmental footprint of their supply chains. The use of environmentally preferable purchasing criteria is one strategy organizations use to address this goal. However, evaluating the environmental performance of these criteria (e.g., recycled content, biodegradable, renewable, and so on) has remained elusive. Life cycle assessment (LCA) can measure the impact reduction potential of sourcing strategies. However, full process‐based LCAs are time‐consuming and costly across multiple criteria of thousands of products and inputs purchased in an organizational setting. A streamlined “hotspot” methodology is presented using a combination of environmentally extended economic input‐output (EEIO) approaches and extant literature to identify hotspots in which to constrain a parameterized process‐based LCA. A case study of breakfast cereal manufacturing is developed to (1) assess the efficiencies associated with the hotspotting approach and (2) demonstrate its applicability in generating comparable decision signals of environmentally preferable sourcing criteria for procurement and supply‐chain managers along the dimensions of global warming potential and water use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号