首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The carotenoid lycopene has been associated with decreased risks of several types of cancer, such as hepatoma. Although lycopene has been shown to inhibit metastasis, its mechanism of action is poorly understood. Here, we used SK-Hep-1 cells (from a human hepatoma) to test whether lycopene exerts its anti-invasion activity via down-regulation of the expression of matrix metalloproteinase (MMP)-9, an important enzyme in the degradation of basement membrane in cancer invasion. The activity and expressions of MMP-9 protein and mRNA were detected by gelatin zymography, Western blotting and RT-PCR, respectively. The binding abilities of nuclear factor-kappa B (NF-kappaB), activator protein-1 and stimulatory protein-1 (Sp1) to the binding sites in the MMP-9 promoter were measured by the electrophoretic mobility shift assay. We showed that lycopene (1-10 microM) significantly inhibited SK-Hep-1 invasion (P<.05) and that this effect correlated with the inhibition of MMP-9 at the levels of enzyme activity (r(2)=.94, P<.001), protein expression (r(2)=.80, P=.007) and mRNA expression (r(2)=.94, P<.001). Lycopene also significantly inhibited the binding abilities of NF-kappaB and Sp1 and decreased, to some extent, the expression of insulin-like growth factor-1 receptor (IGF-1R) and the intracellular level of reactive oxygen species (P<.05). The antioxidant effect of lycopene appeared to play a minor role in its inhibition of MMP-9 and invasion activity of SK-Hep-1 cells because coincubation of cells with lycopene plus hydrogen peroxide abolished the antioxidant effect but did not significantly affect the anti-invasion ability of lycopene. Thus, lycopene decreases the invasive ability of SK-Hep-1 cells by inhibiting MMP-9 expression and suppressing the binding activity of NF-kappaB and Sp1. These effects of lycopene may be related to the down-regulation of IGF-1R, while the antioxidant activity of lycopene appears to play a minor role.  相似文献   

2.
Chen YY  Chou PY  Chien YC  Wu CH  Wu TS  Sheu MJ 《Phytomedicine》2012,19(8-9):768-778
Cancer metastasis is a primary cause of cancer death. Antrodia cinnamomea (A. cinnamomea), a medicinal mushroom in Taiwan, has been shown antioxidant and anticancer activities. In this study, we first observed that ethanol extract of fruiting bodies of A. cinnamomea (EEAC) exerted a concentration-dependent inhibitory effect on migration and motility of CL1-0 cells in the absence of cytotoxicity. The results of a gelatin zymography assay showed that A. cinnamomea suppressed the activity of matrix metalloproteinase (MMP)-2 and MMP-9 in a concentration-dependent manner. Western blot results demonstrated that treatment with A. cinnamomea decreased the expression of MMP-9 and MMP-2; while the expression of the endogenous inhibitors of these proteins, i.e., tissue inhibitors of MMP (TIMP-1 and TIMP-2) increased. Two major compounds from EEAC codycepin and zhankuic acid A alone and together inhibited MMP-9 and MMP-2 expressions. Further investigation revealed that A. cinnamomea suppressed the phosphorylation of p38, and JNK1/2. A. cinnamomea also suppressed the expressions of PI3K and phosphorylation of AKT. This is the first report confirming the anti-migration activity of this potentially beneficial mushroom against human lung adenocarcinoma CL1-0.  相似文献   

3.
4.
Berberine, a type of isoquinoline alkaloid isolated from Chinese medicinal herbs, has been reported to have various pharmacological activities. Studies have demonstrated that berberine has beneficial effects on vascular remodeling and alleviates restenosis after vascular injury. However, its mechanism of action on vascular smooth muscle cell migration is not fully understood. We therefore investigated the effect of berberine on human aortic smooth muscle cell (HASMC) migration. Boyden chamber assay was performed to show that berberine inhibited HASMC migration dosedependently. Real-time PCR and Western blotting analyses showed that levels of matrix metalloproteinase (MMP)-2, MMP-9, and urokinase-type plasminogen activator (u-PA) were reduced by berberine at both the mRNA and protein levels. Western blotting assay further confirmed that activities of c-Fos, c-Jun, and NF-κB were significantly attenuated. These results suggest that berberine effectively inhibited HASMC migration, possibly by down-regulating MMP-2, MMP-9, and u-PA; and interrupting AP-1 and NF-κB mediated signaling pathways. [BMB Reports 2014; 47(7): 388-392]  相似文献   

5.
Imbalance between matrix metalloproteinases (MMPs) and tissue inhibitor of matrix metalloproteinases (TIMPs) is an important control point in tissue remodelling. Several findings have reported a marked MMP/TIMP imbalance in a variety of in vitro models in which oxidative stress was induced. Since previous studies showed that commercial hyaluronan and chondroitin-4-sulphate are able to limit lipid peroxidation during oxidative stress, we investigated the antioxidant capacity of purified human plasma chondroitin-4-sulfate in reducing MMP and TIMP imbalance in a model of ROS-induced oxidative injury in fibroblast cultures. Purified human plasma chondroitin-4-sulfate was added to the fibroblast cultures exposed to FeSO4 plus ascorbate. We assayed cell death, MMP and TIMP mRNA expression and protein activities, DNA damage, membrane lipid peroxidation, and aconitase depletion. FeSO4 plus ascorbate produced severe death of cells and increased MMP-1, MMP-2 and MMP-9 expression and protein activities. It also caused DNA strand breaks, enhanced lipid peroxidation and decreased aconitase. TIMP-1 and TIMP-2 protein levels and mRNA expression remain unaltered. Purified human plasma C4S, at three different doses, restored the MMP/TIMP homeostasis, increased cell survival, reduced DNA damage, inhibited lipid peroxidation and limited impairment of aconitase. These results further support the hypothesis that these biomolecules possess antioxidant activity and by reducing ROS production C4S may limit cell injury produced by MMP/TIMP imbalance.  相似文献   

6.
Reactive oxygen species-scavenging enzyme Cu/Zn superoxide dismutase (SOD) regulated by peroxisome proliferator-activated receptors (PPARs) plays an important role in vascular responsiveness. However, it remains unknown whether statin restores vascular dysfunction through the activation of reactive oxygen species-scavenging enzymes in vivo. We hypothesized that pitavastatin restores vascular function by modulating oxidative stress through the activation of Cu/ZnSOD and PPAR-gamma in hypercholesterolemia. New Zealand White male rabbits were fed either normal chow or a 1% cholesterol (CHO) diet for 14 wk. After the first 7 wk, the CHO-fed rabbits were further divided into three groups: those fed with CHO feed only (HC), those additionally given pitavastatin, and those additionally given an antioxidant, probucol. The extent of atherosclerosis was assessed by examining aortic stiffness. When compared with the HC group, both the pitavastatin and probucol groups showed improved aortic stiffness by reducing aortic levels of reactive oxidative stress, nitrotyrosine, and collagen, without affecting serum cholesterol or blood pressure levels. Pitavastatin restored both Cu/ZnSOD activity (P < 0.005) and PPAR-gamma expression and activity (P < 0.01) and inhibited NAD(P)H oxidase activity (P < 0.0001) in the aorta, whereas probucol inhibited NAD(P)H oxidase activity more than did pitavastatin (P < 0.0005) without affecting Cu/ZnSOD activity or PPAR-gamma expression and activity. Importantly, Cu/ZnSOD activity was positively correlated with the PPAR-gamma activity in the aorta (P < 0.005), both of which were negatively correlated with aortic stiffness (P < 0.05). Vascular Cu/ZnSOD and PPAR-gamma may play a crucial role in the antiatherogenic effects of pitavastatin in hypercholesterolemia in vivo.  相似文献   

7.
目的:探讨基质金属蛋白酶及其抑制剂在乳腺癌组织中的表达及其与肿瘤浸润转移的关系,为乳腺癌的临床治疗及预后预测提供基础。方法:选择我院2012年5月至2014年5月收治的乳腺癌患者80例,对所选病例的乳腺癌组织、癌旁组织及正常乳腺组织样本进行检测。观察并比较不同乳腺组织中MMP-2,MMP-7、MMP-9、TIMP-1及TIMP-2 m RNA的表达水平。结果:与正常乳腺组织相比较,乳腺癌组织和癌旁组织中MMP-2、MMP-7、MMP-9,TIMP-1及TIMP-2 m RNA的表达显著增加,差异具有统计学意义(P0.05)。乳腺癌组织中MMP-2、MMP-7、MMP-9、TIMP-1及TIMP-2 m RNA的表达显著高于癌旁组织和正常组织,差异具有统计学意义(P0.05)。随着肿瘤范围扩大,MMP-2、MMP-7和MMP-9 m RNA的表达水平显著增加(P0.05),而TIMP-1和TIMP-2 m RNA表达无显著变化(P0.05)。随着淋巴结转移进展,MMP-2、MMP-7和MMP-9 m RNA的表达显著增加(P0.05),而TIMP-1和TIMP-2 m RNA无显著变化(P0.05)。结论:MMP-2、MMP-7、MMP-9、TIMP-1和TIMP-2的m RNA在乳腺癌组织中呈高表达,这可能与乳腺癌的发生和发展有关,而MMP-2、MMP-7和MMP-9可能有助于预测乳腺癌的侵袭行为。  相似文献   

8.
9.
An inflammatory response followed by vascular injury plays an important role in neointima formation and development of atherosclerotic lesions, which are in part mediated by proinflammatory cytokines. Using a cuff injury model, we examined the effects of adenovirus-mediated overexpression of phosphatase and tensin homology deleted on chromosome 10 (PTEN) on neointima formation and the proinflammatory response. A cuff was placed around the femoral artery, and adenovirus expressing human PTEN type 1 (AdPTEN) or Escherichia coli beta-galactosidase (AdLacZ) was injected between the cuff and the adventitia. After 14 days, the arteries were examined histopathologically and by Western blotting. The significant reduction of neointima formation by AdPTEN compared with AdLacZ was accompanied by reduced cell proliferation and increased adventitial cell apoptosis. AdPTEN also reduced expression of phosphorylated I kappa B-alpha, but not nonphosphorylated I kappa B-alpha. Western blotting revealed that AdPTEN reduced the cuff injury-induced expression levels of monocyte chemoattractant protein-1, TNF-alpha, and IL-1 beta and their expression in all layers of the arterial wall. In contrast, cuff-induced macrophage invasion, which was also inhibited by AdPTEN, was detected only at the intimal surface and in the adventitia. In cultured vascular smooth muscle cells, PTEN directly inhibited ANG II-induced monocyte chemoattractant protein-1 expression as quantified by real-time PCR and Western blotting. Our results suggest that overexpression of PTEN reduces neointima formation, possibly in part through inhibition of the inflammatory response by macrophage invasion and proinflammatory cytokine expression.  相似文献   

10.
11.
The pantetheinase vanin-1 generates cysteamine, which inhibits reduced glutathione (GSH) synthesis. Vanin-1 promotes inflammation and tissue injury partly by inducing oxidative stress, and partly by peroxisome proliferator-activated receptor gamma (PPARγ) expression. Vascular smooth muscle cells (SMCs) contribute to neointimal hyperplasia in response to injury, by multiple mechanisms including modulation of oxidative stress and PPARγ. Therefore, we tested the hypothesis that vanin-1 drives SMC activation and neointimal hyperplasia. We studied reactive oxygen species (ROS) generation and functional responses to platelet-derived growth factor (PDGF) and the pro-oxidant diamide in cultured mouse aortic SMCs, and also assessed neointima formation after carotid artery ligation in vanin-1 deficiency. Vnn1(-/-) SMCs demonstrated decreased oxidative stress, proliferation, migration, and matrix metalloproteinase 9 (MMP-9) activity in response to PDGF and/or diamide, with the effects on proliferation linked, in these studies, to both increased GSH levels and PPARγ expression. Vnn1(-/-) mice displayed markedly decreased neointima formation in response to carotid artery ligation, including decreased intima:media ratio and cross-sectional area of the neointima. We conclude that vanin-1, via dual modulation of GSH and PPARγ, critically regulates the activation of cultured SMCs and development of neointimal hyperplasia in response to carotid artery ligation. Vanin-1 is a novel potential therapeutic target for neointimal hyperplasia following revascularization.  相似文献   

12.
目的:探讨锌指基因ZFP580在全反式维甲酸(ATRA)调节VSMCs迁移功能中的作用及其机制。方法:分离,培养并鉴定大鼠主动脉VSMCs;分别予以0、5、10、20 μmol/L ATRA刺激VSMCs 24h,以0 μmol/L ATRA组为对照组,观察不同溶度ATRA刺激不同时间对VSMCs迁移能力的影响或给予0、20 μmol/L ATRA刺激VSMCs 24、48、72h,观察ATRA刺激不同时间对VSMCs迁移能力的影响;QPCR及Western blot检测ATRA刺激VSMCs后ZFP580的mRNA和蛋白表达变化;应用ERK抑制剂PD98059抑制ERK的蛋白表达,观察ERK信号蛋白表达变化对ATRA刺激后ZFP580蛋白表达的影响;腺病毒转染技术获得过表达或低表达ZFP580的VSMCs,QPCR及Western blot检测MMP-2和MMP-9、ZFP580蛋白和mRNA表达水平。结果:分离的VSMCs在培养10d后,免疫荧光显示平滑肌细胞特异性标记物SM22α抗体阳性。与对照组相比,5、10、20 μmol/L ATRA预刺激分别降低了32%、43%和59%的VSMCs迁移能力;20 μmol/L ATRA刺激VSMCs与对照组相比,在24、48、72h分别降低49%、36%和22%细胞迁移能力。ZFP580的mRNA和蛋白表达随着ATRA刺激溶度的增加和刺激时间的延长而升高。ERK在ATRA刺激15min即显著升高,运用ERK抑制剂PD98059(20 μmol/L)预处理抑制ERK蛋白表达并降低了ATRA诱导ZFP580的蛋白表达。过表达ZFP580降低MMP-2和MMP-9的mRNA和蛋白表达,反之,低表达ZFP580则上调了MMP-2和MMP-9的mRNA和蛋白表达。结论:ATRA可通过ERK信号通路上调ZFP580的表达,而ZFP580通过调控MMP-2和MMP-9的表达参与ATRA对VSMCs迁移的抑制作用。  相似文献   

13.
Degradation and resynthesis of the extracellular matrix (ECM) are essential during tissue remodeling. Expansion of the vascular intima in atherosclerosis and restenosis following injury is dependent upon smooth muscle cell (SMC) proliferation and migration. The migration of SMC from media to intima critically depends on degradation of ECM protein by matrix metalloproteinases (MMPs). MMP inhibitors and eNOS gene transfer have been shown to inhibit SMC migration in vitro and neointima formation in vivo. Nitric oxide (NO) and cyclic-GMP have been implicated in the inhibition of VSMC migration. But, there are few studies addressing the role of NO signaling pathways on the expression of MMPs. Here we reported the involvement of cyclic-GMP-dependent protein kinase (PKG) (an important mediator of NO and cGMP signaling pathway in VSMC) on MMP-2 expression in rat aortic SMC. The goal of the present study was to gain insight into the possible involvement of PKG on MMP-2 in rat aortic SMC. MMP-2 protein and mRNA level and activity were downregulated in PKG-expressing cells as compared to PKG-deficient cells. In addition, the secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2) was increased in PKG-expressing cells as compared to PKG-deficient cells. PKG-specific membrane permeable peptide inhibitor (DT-2) reverses the process. Interestingly, little or no changes of MMP-9 were observed throughout the study. Taken together our data suggest the possible role of PKG in the suppression of MMP-2.  相似文献   

14.
Vascular smooth muscle (VSM) cell migration is a critical step in the development of a neointima after angioplasty. Matrix metalloproteinases (MMPs) degrade the basement membrane and extracellular matrix, facilitating VSM cell migration. Recently, we demonstrated that nitric oxide (NO) inhibits interleukin-1 beta (IL-1 beta)-stimulated MMP-9 induction in rat aortic VSM cells. In this study, we examined the hypothesis that NO inhibits MMP-9 induction by attenuating superoxide generation and extracellular signal-regulated kinase (ERK) activation. Stimulation of VSM cells with IL-1 beta significantly (P < 0.05) increased superoxide production, ERK activation, and MMP-9 induction. Pretreatment of VSM cells with the NO donor DETA NONOate significantly (P < 0.05) decreased IL-1 beta-stimulated superoxide generation. In addition, pretreatment of VSM cells with a specific ERK pathway inhibitor, PD-98059, or DETA NONOate inhibited IL-1 beta-stimulated ERK activation and MMP-9 induction. Direct exposure of VSM cells to increased superoxide levels by treatment with xanthine/xanthine oxidase increased ERK activation and MMP-9 induction, whereas pretreatment of cells with PD-98059 significantly (P < 0.05) inhibited xanthine/xanthine oxidase-stimulated ERK activation and MMP-9 induction. We conclude that NO inhibits IL-1 beta-stimulated MMP-9 induction by inhibiting superoxide generation and subsequent ERK activation.  相似文献   

15.
16.
In response to brain injury, microglia migrate and accumulate in the affected sites, which is an important step in the regulation of inflammation and neuronal degeneration/regeneration. In this study, we investigated the effect of urokinase-type plasminogen activator (uPA) on the BV-2 microglial cell migration. At resting state, BV-2 microglial cells secreted uPA and the release of uPA was increased by ATP, a chemoattractant released from injured neuron. The migration of BV-2 cell was significantly induced by uPA and inhibited by uPA inhibitors. In this condition, uPA increased the activity of matrix metalloproteinase (MMP-9) and the inhibition of MMP activity with pharmacological inhibitors against either uPA (amiloride) or MMP (phenanthrolene and SB-3CT) effectively prevented BV2 cell migration. Interestingly, the level of MMP-9 protein and mRNA in the cell were not changed by uPA. These results suggest that the increase of MMP-9 activity by uPA is regulated at the post-translational level, possibly via increased activation of the enzyme. Unlike the uPA inhibitor, plasmin inhibitor PAI-1 only partially inhibited uPA-induced cell migration and MMP-9 activation. The incubation of recombinant MMP-9 with uPA resulted in the activation of MMP-9. These results suggest that uPA plays a critical role in BV-2 microglial cell migration by activating pro-MMP-9, in part by its direct action on MMP-9 and also in part by the activation of plasminogen/plasmin cascade.  相似文献   

17.
18.
19.
Increased matrix metalloproteinase (MMP) levels are involved in vascular remodeling of hypertension. In this study, we hypothesized that doxycycline (a MMP inhibitor) could exert antioxidant effects, reverse establish vascular remodeling, and lower blood pressure in spontaneously hypertensive rats (SHR). SHR and Wistar–Kyoto rats received either doxycycline at 30 mg/kg/day by gavage or vehicle. Systolic blood pressure (SBP) was assessed weekly by tail cuff. After 5 weeks of treatment, morphologic changes in the aortic wall were studied in hematoxylin/eosin sections. MMP activity and expression were determined by in situ zymography using DQ gelatin and immunofluorescence for MMP-2. Dihydroethidium was used to evaluate aortic reactive oxygen species (ROS) production by fluorescence microscopy. Doxycycline reduced SBP by 25 mmHg. However, the antihypertensive effects were not associated with significant reversal of hypertension-induced vascular hypertrophy. SHR showed increased aortic MMP-2 levels which co-localized with higher aortic MMP activity and ROS levels, and all those biochemical alterations associated with hypertension were blunted by treatment with doxycycline. These results show that MMP inhibition with doxycycline in SHR with established hypertension resulted in antioxidant effects, lower gelatinolytic activity, and antihypertensive effects which were not associated with reversal of hypertension-induced vascular remodeling.  相似文献   

20.
To investigate the potential regulation of sphingosine kinase 1 (SPHK1) on the migration, invasion, and matrix metalloproteinase (MMP) expression in human rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS). RA-FLS were transfected control siRNA or SPHK1 siRNA. The migration and invasion of unmanipulated control, control siRNA or SPHK1 siRNA- transfected RA-FLS in vitro were measured by the transwell system. The relative levels of SPHK1, PI3K, and AKT as well as AKT phosphorylation in RA-FLS were determined by Western blot. The levels of MMP-2/9 secreted by RA-FLS were detected by ELISA. Knockdown of SPHK1 significantly inhibited the spontaneous migration and invasion of RA-FLS, accompanied by significantly reduced levels of PI3K expression and AKT phosphorylation. Similarly, treatment with LY294002, an inhibitor of the PI3K/AKT pathway, inhibited the migration and invasion of RA-FLS. Knockdown of SPHK1 and treatment with the inhibitor synergistically inhibited the migration and invasion of RA-FLS, by further reducing the levels of PI3K expression and AKT phosphorylation. In addition, knockdown of SPHK1 or treatment with LY294002 inhibited the secretion of MMP-2 and MMP-9, and both synergistically reduced the production of MMP-2 and MMP-9 in RA-FLS in vitro. Knockdown of SPHK1 expression inhibits the PI3K/AKT activation, MMP-2 and MMP-9 expression, and human RA-FLS migration and invasion in vitro. Potentially, SPHK1 may be a novel therapeutic target for RA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号