首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Summary Two sisters with premature menopause and a small deletion of the long arm of one of their X chromosomes [del (X)(pterq26.3:)] were investigated with polymorphic DNA probes near the breakpoint. The deleted chromosome retained the factor IX (F9) locus and the loci DXS51 (52A) and DXS100 (pX45h), which are proximal to F9. However, the factor VIII (F8) locus was not present, nor were two loci tightly linked to this locus, DXS52 (St14) and DXS15 (DX13) This deletion refines the location of the F9 locus to Xq26 or to the interface Xq26/Xq27, thus placing it more proximally than has been previously reported. The DNA obtained from these patients should be valuable in the mapping of future probes derived from this region of the X chromosome.  相似文献   

2.
The genomic sequences recognized by the anonymous probe 767 (DXS115) are localized to two sites within Xq28. One site lies within intron 22 of the factor VIII gene (FBC). Physical mapping suggests that the second site lies within 1.2 megabases of the F8C gene. The RFLPs detected by 767 are located within the second site. Genetic data suggest that F8C and DXS115 are tightly linked (theta max = .04; Zmax = 8.30). Recombination events in meioses informative for DXS52 (St14), DXS115, and F8C suggest that DXS115 and F8C lie distal to DXS52.  相似文献   

3.
We are using pulsed-field gel electrophoresis (PFGE) to establish a physical map of the human Xq28 region. We have identified a new probe 35.239 (DXYS64), localized in Xq28 by somatic hybrid mapping and belonging to a region of greater than 99% homology between the X and the Y chromosomes. PFGE data show that probes 35.239 and the polymorphic locus DXS115 (probe 767) map within a common 300-kb BssHII fragment. Both probes, in addition, hybridize to 575-kb BssHII and 590-kb ClaI fragments that contain the gene coding for coagulation factor VIII (F8C). The order F8C-DXS115-DXYS64 could be determined. Our results also provide evidence for linkage between the red/green color vision locus (RCP,GCP) and probes MD13 and T1.7 (GdX, DXS254) within a 750-kb ClaI fragment. Although the latter two probes are located within 50 kb of the 3' end of the G6PD gene, a G6PD cDNA probe did not hybridize to this fragment. G6PD, on the other hand, could be linked to F8C on a 290-kb BssHII fragment. All these data allow us to propose the order (RCP,GCP)-MD13-GdX-G6PD-F8C-DXS115-DXYS 64. We also linked probes St14 (DXS52), MN12 (DXS33), and DX13 (DXS15) to a member of a small family of X-linked dispersed sequences (DNF22S3) within a 575-kb BssHII fragment. The preliminary physical map presented here should be useful for further fine mapping of disease genes in the Xq28 region and should be helpful in orientating efforts toward the cloning of sequences close to the fragile X syndrome.  相似文献   

4.
X-linked hydrocephalus (HSAS) is the most frequent genetic form of hydrocephalus. Clinical symptoms of HSAS include hydrocephalus, mental retardation, clasped thumbs, and spastic paraparesis. Recently we have assigned the HSAS gene to Xq28 by linkage analysis. In the present study we used a panel of 18 Xq27-q28 marker loci to further localize the HSAS gene in 13 HSAS families of different ethnic origins. Among the Xq27-q28 marker loci used, DXS52, DXS15, and F8C gave the highest combined lod scores, of 14.64, 6.53 and 6.33, respectively, at recombination fractions of .04, 0, and .05, respectively. Multipoint linkage analysis localizes the HSAS gene in the telomeric part of the Xq28 region, with a maximal lod score of 20.91 at 0.5 cM distal to DXS52. Several recombinations between the HSAS gene and the Xq28 markers DXS455, DXS304, DXS305, and DXS52 confirm that the HSAS locus is distal to DXS52. One crossover between HSAS and F8C suggests that HSAS gene to be proximal to F8C. Therefore, data from multipoint linkage analysis and the localization of key crossovers indicate that the HSAS gene is most likely located between DXS52 and F8C. This high-resolution genetic mapping places the HSAS locus within a region of less than 2 Mb in length, which is now amenable to positional cloning.  相似文献   

5.
Summary The coagulation factor IX gene and two other polymorphic loci corresponding to DNA probes 52 A and St 14 have been previously localized in the q27 to qter region of the human X chromosome. In order to study their localization with respect to the fragile site at Xq27-28, we have hybridized the three DNA probes to metaphase chromosomes of a boy with fragile X mental retardation. We show that probe 52A is located in the proximal part of the Xq27 band, while the coagulation factor IX gene is on the distal part of this band, but proximal to the fragile site. The very polymorphic St 14 probe is located in the distal part of the Xq28 band, on the other side of the fragile site.  相似文献   

6.
Summary We have isolated an X chromosome probe, St35.691 (DXS305), which detects two RFLPs with TaqI and PstI, whose combined heterozygosity is about 60%. This probe has been assigned to Xq28 by physical and genetic mapping and is very closely linked to DXS52, DXS15, and the coagulation factor VIII gene (F8C). The best estimate of the recombination fraction for the DXS52-DXS305 interval is 0.014, with a lod score of 50.1. Multipoint analysis places DXS305 on the same side of F8C as DXS52, but complete ordering of the three loci was not possible with our present data. This highly informative marker should be useful in the precise mapping of the many disease genes that have been assigned to the Xq28 band.  相似文献   

7.
Physical mapping studies on the human X chromosome in the region Xq27-Xqter   总被引:23,自引:0,他引:23  
We have characterized three terminal deletions of the long arm of the X chromosome. Southern analysis using Xq27/q28 probes suggests that two of the deletions have breakpoints near the fragile site at Xq27.3. Flow karyotype analysis provides an estimate of 12 X 10(6) bp for the size of the deleted region. We have not detected the deletion breakpoints by pulsed-field gel electrophoresis (PFGE) using the closet DNA probes, proximal to the fragile site. The physical distance between the breakpoints and the probes may therefore be several hundred kilobases. The use of the deletion patients has allowed a preliminary physical map of Xq27/28 to be constructed. Our data suggest that the closest probes to the fragile site on the proximal side are 4D-8 (DXS98), cX55.7 (DXS105), and cX33.2 (DXS152). PFGE studies provide evidence for the physical linkage of 4D-8, cX55.7, and cX33.2. We have also found evidence for the physical linkage of F8C, G6PD, and 767 (DXS115), distal to the fragile site.  相似文献   

8.
Linkage of the gene responsible for an X-linked early onset parkinsonism disorder with mental retardation (McKusick 311510) to DNA probes that detect restriction fragment length polymorphisms is described. The disease gene is linked to the F8C gene, and to DNA probes detecting polymorphic loci DXS52, DXS15, DXS134, and DXS374 with maximum lod scores at theta = 0 of 5.08, 5.19, 5.00, 5.03, and 4.46, respectively. Multipoint linkage analysis gives a maximum multipoint lod score of 6.75 at the F8C gene. This places the disease gene in chromosomal region Xq27.3-qter.  相似文献   

9.
Repeated DNA sequences in the distal long arm of the human X chromosome   总被引:1,自引:1,他引:0  
Summary Two DNA probes from within a single large insert from a recombinant phage-DNA library that was constructed from flow-sorted chromosomes enriched for the human X chromosome were shown to hybridize with repeated X-specific and autosomal DNA sequences. The X-chromosomal repeated sequences were assigned to the distal long arm of the X chromosome by both hybrid mapping and in situ hybridization. Fine mapping places these repeats in a region of Xq28 between DX13 (DXS15, in distal Xq28) and factor VIII (F8C, in proximal Xq28). The location of the X-specific repeats makes them potentially useful for future investigations of discases mapping to the distal long arm of the X chromosome, such as the fragile X syndrome.  相似文献   

10.
Human Xq28 is highly gene dense with over 27 loci. Because most of these genes have been mapped by linkage to polymorphic loci, only one of which (DXS52) is informative in most families, a search was conducted for new, highly polymorphic Xq28 markers. From a cosmid library constructed using a somatic cell hybrid containing human Xq27.3----qter as the sole human DNA, a human-insert cosmid (c346) was identified and found to reveal variation on Southern blot analyses with female DNA digested with any of several different restriction endonucleases. Two subclones of c346, p346.8 and p346.T, that respectively identify a multiallelic VNTR locus and a frequent two-allele TaqI polymorphism were isolated. Examination of 21 unrelated females showed heterozygosity of 76 and 57%, respectively. These two markers appeared to be in linkage equilibrium, and a combined analysis revealed heterozygosity in 91% of unrelated females. Families segregating the fragile X syndrome with key Xq28 crossovers position this locus (designated DXS455) between the proximal Xq28 locus DXS296 (VK21) and the more distal locus DXS374 (1A1), which is proximal to DXS52. DXS455 is therefore the most polymorphic locus identified in Xq28 and will be useful in the genetic analysis of this gene dense region, including the diagnosis of nearby genetic disease loci by linkage.  相似文献   

11.
Summary The frequency of alleles for intragenic (intron 17 and intron 25) and extragenic (DXS15 and DXS52) F8C RFLPs was investigated in the Algerian population. Altogether 287 X chromosomes (97 males and 95 females) were studied. The allele frequencies found with the two intragenic F8C RFLPs were not substantially different from those reported in a Mediterranean population. At the highly polymorphic extragenic DXS52 locus the distribution in Algeria differed from that found in France. A new allele (14kb), called 1 DZ, was found in 3.1% of the chromosomes. Fifty-one families with hemophilia A were studied with the same probes (374 subjects). Of the females, 94% were informative for at least one intra- or extragenic RFLP. Two recombinations were found between DXS52 and F8C, of which one occurred between the DXS15, DXS52 block and F8C, indicating that the two anonymous loci are on the same side of the F8C gene. Only two obvious gene deletions were observed in 73 unrelated hemophiliacs: one encompassed exons 14–22 (about 4.3 kb of cDNA and 36kb of genomic DNA); the other removed the last exon (exon 26, representing 2 kb of cDNA).  相似文献   

12.
In a large German family with Emery-Dreifuss muscular dystrophy (EDMD) linkage analysis was performed using the factor IX gene (F9), the factor VIII:C gene (F8), the anonymous DNA probe DXS52, and DXS15 as markers. Tight linkage was found between the EDMD locus and the F8 probe (Zmax = 1.19; theta max = 0.00), DXS15 (Zmax = 1.75; theta max = 0.00) and DXS52 (Zmax = 2.26; theta max = 0.00). Weak linkage was found to F9 (Zmax = 0.02; theta max = 0.43). The data from the literature and our results suggest that the gene locus of EDMD is close to F8 (confidence interval theta = 0-0.07). The new linkage data are useful for carrier detection and diagnosis of EDMD patients before onset of major clinical signs.  相似文献   

13.
We isolated X-chromosomal DNA probes from a cosmid library constructed from a single human X/hamster hybrid-cell line (C12D). One hundred human clones were isolated and used to construct a pool of X-chromosomal DNA. This DNA was digested into 0.15-2-kb fragments and subcloned into plasmids allowing the rapid characterization of new single-copy probes. These were regionally mapped and used for the detection of restriction-site polymorphisms. Together with a series of subcloned probes from individually isolated cosmids, we found seven polymorphic probes among 53 tested. Thirty-one of the probes were physically localized to different regions of the X chromosome. Four polymorphic probes map to Xq27-Xq28: DXS102 (cX38.1), DXS105(cX55.7), DXS107(cpX234), and DXS134(cpX67). These were genetically mapped by multipoint analysis relative to previously characterized loci, a mapping that resulted in the following order: DXYS1, DXS107, DXS51/DXS102, F9, DXS105, Fra-X, F8/DXS52, DXS15, DXS134. The mapping of DXS105 between F9 and Fra-X makes this probe useful for Fra-X analysis. For the linkage between FraX and DXS105, a maximum lod score of 5.01 at 4 cMorgans has been obtained in one large Dutch pedigree.  相似文献   

14.
Two yeast artificial chromosome (YAC) libraries were screened for probes in Xq28, around the gene for coagulation factor VIII (F8). A set of 30 YACs were recovered and assembled into a contig spanning at least 1.6 Mb from the DXYS64 locus to the glucose 6-phosphate dehydrogenase gene (G6PD). Overlaps among the YACs were determined by several fingerprinting techniques and by additional probes generated from YAC inserts by using Alu-vector or ligation-mediated PCR. Analysis of more than 30 probes and sequence-tagged sites (STSs) made from the region revealed the presence of several homologous genomic segments. For example, a probe for the DXYS64 locus, which maps less than 500 kb 5' of F8, detects a similar but not identical locus between F8 and G6PD. Also, a probe for the DXS115 locus detects at least three identical copies in this region, one in intron 22 of F8 and at least two more, which are upstream of the 5' end of the gene. Comparisons of genomic and YAC DNA suggest that the multiple loci are not created artifactually during cloning but reflect the structure of uncloned human DNA. On the basis of these data, the most likely order for the loci analyzed is tel-DXYS61-DXYS64-(DXS115-3-DXS115-2)-5'F8-(D XS115-1)-3'F8-G6PD.  相似文献   

15.
We have used the proximity of probe hybridization sites in interphase chromatin to derive the order of DNA sequences in a 2-3-Mbp region of human chromosome Xq28. The map generated bridges the results of genetic and pulsed-field gel electrophoresis mapping to produce a more complete map of Xq28 than possible with either of these other techniques alone. Two-color fluorescence in situ hybridization (FISH) was used to detect the positions of two or more probes in G1 male interphase nuclei. We show that cosmids that are 50 kbp to 2-3 Mbp apart can be ordered rapidly with two alternative approaches: (1) by comparing the average measured distance between two probes and (2) simply by scoring the order of red and green fluorescent dots after detection of three or more probes with two fluorochromes. The validity of these approaches is demonstrated using five cosmids from a region spanning approximately 800 kbp that includes the factor VIII (F8), glucose-6-phosphate dehydrogenase (G6PD), and color-vision pigment (CV) genes. The cosmid map derived from interphase mapping is consistent with the map determined by restriction-fragment analysis. The two interphase mapping approaches were then used (1) to orient the F8/CV cluster relative to two markers, c1A1 and st14c, which we show by metaphase mapping to be proximal to the F8/CV cluster, (2) to position st14c (DXS52) between c1A1 and F8, and (3) to orient the CV gene cluster relative to G6PD by using two CV-flanking cosmids, 18b41 and fr7. The probe order in Xq28 derived from interphase proximity is cen-c1A1-st14c-5'F8 (p624-p542-p625)-G6PD-18b41-3' green-green-red-fr7-tel. We also show that, to determine their order by using metaphase chromosomes, sequences must be at least 1 Mbp apart, an order of magnitude greater than required in interphase chromatin. The data show that FISH mapping is a simple way to order sequences separated by greater than or equal to 50 kbp for the construction of long-range maps of mammalian genomes.  相似文献   

16.
The Xq26-q27 region of the X chromosome is interesting, as an unusually large number of genes and anonymous RFLP probes have been mapped in this area. A number of studies have used classical linkage analysis in families to map this region. Here, we use mutant human T-lymphocyte clones known to be deleted for all or part of the hypoxanthine-guanine phosphoribosyltransferase (hprt) gene, to order anonymous probes known to map to Xq26. Fifty-seven T-cell clones were studied, including 44 derived from in vivo mutation and 13 from in vitro irradiated T-lymphocyte cultures. Twenty anonymous probes (DXS10, DXS11, DXS19, DXS37, DXS42, DXS51, DXS53, DXS59, DXS79, DXS86, DXS92, DXS99, DXS100d, DXS102, DXS107, DXS144, DXS172, DXS174, DXS177, and DNF1) were tested for codeletion with the hprt gene by Southern blotting methods. Five of these probes (DXS10, DXS53, DXS79, DXS86 and DXS177) showed codeletion with hprt in some mutants. The mutants established the following unambiguous ordering of the probes relative to the hprt gene: DXS53-DXS79-5'hprt3'-DXS86-DXS10-DXS177 . The centromere appears to map proximal to DXS53. These mappings order several closely linked but previously unordered probes. In addition, these studies indicate that rather large deletions of the functionally haploid X chromosome can occur while still retaining T-cell viability.  相似文献   

17.
Emery-Dreifuss muscular dystrophy (EDMD) is an X-linked humeroperoneal dystrophy associated with cardiomyopathy that is distinct from the Duchenne and Becker forms of X-linked muscular dystrophy. Linkage analysis has assigned EDMD to the terminal region of the human X chromosome long arm. We report here further linkage analysis in two multigenerational EDMD families using seven Xq28 marker loci. Cumulative lod scores suggest that EDMD is approximately 2 cM from DXS52 (lod = 15.67) and very close to the factor VIII (F8C) and the red/green color pigment (R/GCP) loci, with respective lod scores of 9.62 and 10.77, without a single recombinant. Several recombinations between EDMD and three proximal Xq28 markers suggest that the EDMD gene is located in distal Xq28. Multipoint linkage analysis indicates that the odds are 2,000:1 that EDMD lies distal to DXS305. These data substantially refine the ability to perform accurate carrier detection, prenatal diagnosis, and the presymptomatic diagnosis of at-risk males for EDMD by linkage analysis. The positioning of the EDMD locus close to the loci for F8C and R/GCP will assist in future efforts to identify and isolate the disease gene.  相似文献   

18.
Assignment of X-linked hydrocephalus to Xq28 by linkage analysis   总被引:8,自引:0,他引:8  
X-linked recessive hydrocephalus (HSAS) occurs at a frequency of approximately 1 per 30,000 male births and consists of hydrocephalus, stenosis of the aqueduct of Sylvius, mental retardation, spastic paraparesis, and clasped thumbs. Prenatal diagnosis of affected males by ultrasonographic detection of hydrocephalus is unreliable because hydrocephalus may be absent antenatally. Furthermore, carrier detection in females is not possible because they are asymptomatic. Using four families segregating HSAS, we performed linkage analysis with a panel of X-linked probes that detect restriction fragment length polymorphisms. We report here that HSAS, in all tested families, is closely linked to marker loci mapping in Xq28 (DXS52, lod = 6.52 at theta of 0.03; F8, lod = 4.32 at theta of 0.00; DXS15, lod = 3.40 at theta of 0.00). These data assign HSAS to the gene-dense chromosomal band Xq28 and allow for both prenatal diagnosis and carrier detection by linkage analysis.  相似文献   

19.
Sequences corresponding to the Xq28 loci DXS15, DXS52, DXS134, and DXS130 were shown to be present in a 140-kb yeast artificial chromosome (YAC XY58, isolated by Little et al.). This YAC clone appears to contain a faithful copy of this genomic region, as shown by comparison with human DNA and with a cosmid clone that contains probes St14c (part of the DXS52 sequences) and cpX67 (DXS134). cpX67 and St14c are contained in 11 kb and detect the same MspI RFLP polymorphism. A comparison of the YAC restriction map and pulsed-field gel electrophoresis data leads us to propose the following order of loci: DXS52(VNTR)-DXS33-DXF22S3-DXS130-DXS134 -DXS52-DXS15-DXS52, this whole cluster being comprised within 575 kb. The physical proximity of the DXS15, DXS52, and DXS134 loci led us to reinvestigate recombination events that had been reported between these loci in families from the Centre d'Etude du Polymorphisme Humain. Our results do not support the assumption that this region shows increased recombination.  相似文献   

20.
The locus DXS98, detected with the 1.5-kb anonymous probe p4D-8, was recently shown to be closely linked and proximal to the locus for the fragile X syndrome, with theta = .05 at lod = 3.406, by utilizing a limited number of meioses informative for a two-allele MspI RFLP. Because DXS98 may be the closest available marker to the fragile X locus (FRAXA), we sought to increase its utility for linkage studies by extending its PIC and confirming its localization to Xq27, proximal to FRAXA. We have isolated 15 kb of genomic DNA (lambda 4D8-3) from the DXS98 locus by using p4D-8 to screen a genomic phage library containing partial Sau3A-digested human DNA. Three additional RFLPs for the enzymes BglII and XmnI were found by using the entire lambda 4D8-3 as probe. Combined heterozygosity for the four RFLPs in 25 unrelated females was 48%, as compared with only 28% when the MspI RFLP alone was used. In situ hybridization of unique sequences from lambda 4D8-3 was performed on metaphase chromosomes of lymphocytes and lymphoblasts from patients with the fragile X syndrome. Grains on the X chromosome were significantly clustered at band Xq27. Following fragile site induction, all nine grains in the q27-28 region were proximal to the fragile site. Confirmation of the location of DXS98 proximal to FRAXA and the new RFLPs at this locus make DXS98 more useful for linkage analysis and physical mapping in the region of the fragile X mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号