首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many of the core proteins in Photosystem II (PS II) undergo reversible phosphorylation. It is known that protein phosphorylation controls the repair cycle of Photosystem II. However, it is not known how protein phosphorylation affects the partial electron transport reactions in PS II. Here we have applied variable fluorescence measurements and EPR spectroscopy to probe the status of the quinone acceptors, the Mn cluster and other electron transfer components in PS II with controlled levels of protein phosphorylation. Protein phosphorylation was induced in vivo by varying illumination regimes. The phosphorylation level of the D1 protein varied from 10 to 58% in PS II membranes isolated from pre-illuminated spinach leaves. The oxygen evolution and QA to QB(QB ) electron transfer measured by flash-induced fluorescence decay remained similar in all samples studied. Similar measurements in the presence of DCMU, which reports on the status of the donor side in PS II, also indicated that the integrity of the oxygen-evolving complex was preserved in PS II with different levels of D1 protein phosphorylation. With EPR spectroscopy we examined individual redox cofactors in PS II. Both the maximal amplitude of the charge separation reaction (measured as photo-accumulated pheophytin) and the EPR signal from the QA Fe2+ complex were unaffected by the phosphorylation of the D1 protein, indicating that the acceptor side of PS II was not modified. Also the shape of the S2 state multiline signal was similar, suggesting that the structure of the Mn-cluster in Photosystem II did not change. However, the amplitude of the S2 multiline signal was reduced by 35% in PS II, where 58% of the D1 protein was phosphorylated, as compared to the S2 multiline in PS II, where only 10% of the D1 protein was phosphorylated. In addition, the fraction of low potential Cyt b 559 was twice as high in phosphorylated PS II. Implications from these findings, were precise quantification of D1 protein phosphorylation is, for the first time, combined with high-resolution biophysical measurements, are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
With a portable PAM-2000 fluorometer it was observed that responses of initial chlorophyll fluorescence Fo level to strong light were different in various plant species examined. When the photochemical efficiency of Photosystem II, Fv/Fm, declined, Fo increased significantly in leaves of some plants such as soybean and cotton, while Fo decreased remarkably in other plants such as wheat and barley. In order to explore the mechanism of the increase in Fo in soybean leaves, the change in D1 protein amount and effects of lincomycin and far-red light on these fluorescence parameters were observed by SDS–PAGE combined with gel scanning and chlorophyll fluorescence analysis. The following results were obtained. (1) The amount of inactive PS II reaction centers increased under strong light and decreased during subsequent dark recovery [Hong and Xu (1997) Chinese Sci Bull 42(8): 684–689]. (2) No net loss of D1 protein occurred after strong light treatment. (3) Lincomycin taken up through petioles following strong light treatment had no significant effect on D1 protein level and the decay of Fo in the dark. (4) Far-red light applied after strong light treatment could largely attenuate the increase in Fo and accelerate Fo decay in the dark. Based on these results, it is deduced that the increase in Fo under strong light is mainly due to reversible inactivation of part of PS II reaction centers, rather than the net loss of D1 protein and that reversible inactivation of PS II is prevalent in some plants.  相似文献   

3.
Recovery from 60 min of photoinhibitory treatment at photosynthetic photon flux densities of 500, 1400 and 2200 μMmol m?2 s? was followed in cells of the green alga Chlamydomonas reinhardtii grown at 125 μMmol m?2 s?1. These light treatments represent photoregulation, moderate photoinhibition and strong photoinhibition, respectively. Treatment in photoregulatory light resulted in an increased maximal rate of oxygen evolution (Pmax) and an increased quantum yield (Φ), but a 15% decrease in Fv/FM. Treatment at moderately photoinhibitory light resulted in a 30% decrease in Fv/FM and an approximately equal decrease in Φ. Recovery in dim light restored Fv/FM within 15 and 45 min after high light treatment at 500 and 1400 μMmol m?2 s?1, respectively. Convexity (Θ), a measure of the extent of co-limitation between PS II turnover and whole-chain electron transport, and Φ approached, but did not reach the control level during recovery after exposure to 1400 μMmol m?2 s?1, whereas Pmax increased above the control. Treatment at 2200 μMmol m?2 s?1 resulted in a strong reduction of the modeled parameters Φ, Θ and Pmax. Subsequent recovery was initially rapid but the rate decreased, and a complete recovery was not reached within 120 min. Based on the results, it is hypothesized that exposure to high light results in two phenomena. The first, expressed at all three light intensities, involves redistribution within the different aspects of PS II heterogeneity rather than a photoinhibitory destruction of PS II reaction centers. The second, most strongly expressed at 2200 μmol m?2 s?1, is a physical damage to PS II shown as an almost total loss of PS IIα and PS II QB-reducing centers. Thus recovery displayed two phase, the first was rapid and the only visible phase in algae exposed to 500 and 1400 μmol m?2 s?1. The second phase was slow and visible only in the later part of recovery in cells exposed to 2200 μmol m?2 s?1.  相似文献   

4.
Phosphorylation of the light-harvesting chlorophyll a/b complex II (LHC II) proteins is induced in light via activation of the LHC II kinase by reduction of cytochrome b6f complex in thylakoid membranes. We have recently shown that, besides this activation, the LHC II kinase can be regulated in vitro by a thioredoxin-like component, and H2O2 that inserts an inhibitory loop in the regulation of LHC II protein phosphorylation in the chloroplast. In order to disclose the complex network for LHC II protein phosphorylation in vivo, we studied phosphorylation of LHC II proteins in the leaves of npq1-2 and npq4-1 mutants of Arabidopis thaliana. In comparison to wild-type, these mutants showed reduced non-photochemical quenching and increased excitation pressure of Photosystem II (PS II) under physiological light intensities. Peculiar regulation of LHC II protein phosphorylation was observed in mutant leaves under illumination. The npq4-1 mutant was able to maintain a high amount of phosphorylated LHC II proteins in thylakoid membranes at light intensities that induced inhibition of phosphorylation in wild-type leaves. Light intensity-dependent changes in the level of LHC II protein phosphorylation were smaller in the npq1-2 mutant compared to the wild-type. No significant differences in leaf thickness, dry weight, chlorophyll content, or the amount of LHC II proteins were observed between the two mutant and wild-type lines. We propose that the reduced capacity of the mutant lines to dissipate excess excitation energy induces changes in the production of reactive oxygen species in chloroplasts, which consequently affects the regulation of LHC II protein phosphorylation.  相似文献   

5.
J. Feierabend  Silvia Dehne 《Planta》1996,198(3):413-422
The apoprotein of the enzyme catalase (EC 1.11.1.6) was shown to exhibit a light-dependent turnover in leaves. Present results indicate that photoinactivation of the enzyme was not accompanied by a synchronous destruction and new synthesis of its heme moiety. In rye (Secale cereale L.) leaves the catalase content was not depleted in light when porphyrin synthesis was inhibited by gabaculine. Photoinactivation of purified bovine liver or rye leaf catalase in vitro was not accompanied by concomitant damage to the heme groups. Both the incorporation of -[3H]aminolevulinic acid ([3H]ALA) into catalase-heme and its apparent turnover increased with irradiance. However, the apparent half-life of the catalase-heme was much longer than that of its apoprotein. It is probable that not only degradation but also an exchange with the free heme pool contributed to the apparent turnover of radioactivity of the catalase-heme. Part of the chlorophyll (Chl) associated with photosystem II (PS II) had a preferential light-induced turnover, and repair of PS II appeared to require new Chl synthesis also in mature green rye leaves. The activity of PS II, indicated by the ratio of variable to maximal fluorescence (Fv/Fm), rapidly declined in the presence of gabaculine in light and the reaction-center proteins D1 and D2 were depleted. When segments of mature green rye leaves were labeled with [3H]ALA and incorporation into Chl-protein complexes analysed after electrophoretic separation in the presence of Deriphat, the highest radioactivity was observed in the core complex of PS II, while PS I and the light-harvesting complex of PS II (LHC II) were unlabeled. In greening etiolated leaves highest incorporation was observed in LHC II. Both the incorporation of [3H]ALA into the PS II core complex of green rye leaves and its turnover increased with irradiance. However, the apparent half-life of the PS II-bound labeled porphyrin compounds (mainly Chl) was considerably longer than that of the reaction-center protein D1 under identical conditions.Abbreviations ALA -aminolevulinic acid - CII Core complex of PS II - Chl chlorophyll - DMSO dimethyl sulfoxide - Fv/Fm ratio of variable to maximal chlorophyll fluorescence - LHC light-harvesting complex - PAR photosynthetically active radiation We thank the Deutsche Forschungsgemeinschaft for financial support. Technical assistence by B. Kramer and Ch. van Oijen is greatly appreciated. We are grateful to Dr. Johanningmeier and Dr. Godde (Lehrstuhl für Biochemie der Pflanzen, Universität Bochum, Germany) for providing antisera against the D1 and D2 proteins and Dr. M. Schmidt (Botanisches Institut, Universität Frankfurt am Main, Germany) for valuable advice. Deriphat 160 was kindly supplied by Henkel Corp., Hoboken, N.J., USA.  相似文献   

6.
Photoinactivation of Photosystem (PS) II in vivo was investigated by cumulative exposure of pea, rice and spinach leaves to light pulses of variable duration from 2 to 100 s, separated by dark intervals of 30 min. During each light pulse, photosynthetic induction occurred to an extent depending on the time of illumination, but steady-state photosynthesis had not been achieved. During photosynthetic induction, it is clearly demonstrated that reciprocity of irradiance and duration of illumination did not hold: hence the same cumulative photon exposure (mol m–2) does not necessarily give the same extent of photoinactivation of PS II. This contrasts with the situation of steady-state photosynthesis where the photoinactivation of PS II exhibited reciprocity of irradiance and duration of illumination (Park et al. (1995) Planta 196: 401–411). We suggest that, for reciprocity to hold between irradiance and duration of illumination, there must be a balance between photochemical (qP) and non-photochemical (NPQ) quenching at all irradiances. The index of susceptibility to light stress, which represents an intrinsic ability of PS II to balance photochemical and non-photochemical quenching, is defined by the quotient (1-qP)/NPQ. Although constant in steady-state photosynthesis under a wide range of irradiance (Park et al. (1995). Plant Cell Physiol 36: 1163–1169), this index of susceptibility for spinach leaves declined extremely rapidly during photosynthetic induction at a given irradiance, and, at a given cumulative photon exposure, was dependent on irradiance. During photosynthetic induction, only limited photoprotective strategies are developed: while the transthylakoid pH gradient conferred some degree of photoprotection, neither D1 protein turnover nor the xanthophyll cycle was operative. Thus, PS II is more easily photoinactivated during photosynthetic induction, a phenomenon that may have relevance for understorey leaves experiencing infrequent, short sunflecks.Abbreviations D1 protein psbA gene product - DTT dithiothreitol - Fv, Fm, Fo variable, maximum, and initial (corresponding to open traps) chlorophyll fluorescence yield, respectively - NPQ non-photochemical quenching - PS Photosystem - QA primary quinone acceptor of PS II - qP photochemical quenching coefficient  相似文献   

7.
Based on the electron-transport properties on the reducing side of the reaction center, photosystem II (PS II) in green plants and algae occurs in two distinct forms. Centers with efficient electron-transport from QA to plastoquinone (QB-reducing) account for 75% of the total PS II in the thylakoid membrane. Centers that are photochemically competent but unable to transfer electrons from QA to QB (QB-nonreducing) account for the remaining 25% of total PS II and do not participate in plastoquinone reduction. In Dunaliella salina, the pool size of QB-nonreducing centers changes transiently when the light regime is perturbed during cell growth. In cells grown under moderate illumination intensity (500 E m-2s-1), dark incubation induces an increase (half-time 45 min) in the QB-nonreducing pool size from 25% to 35% of the total PS II. Subsequent illumination of these cells restores the steady-state concentration of QB-nonreducing centers to 25%. In cells grown under low illumination intensity (30 µE m–2s–1), dark incubation elicits no change in the relative concentration of QB-nonreducing centers. However, a transfer of low-light grown cells to moderate light induces a rapid (half-time 10 min) decrease in the QB-nonreducing pool size and a concomitant increase in the QB-reducing pool size. These and other results are explained in terms of a pool of QB-nonreducing centers existing in a steady-state relationship with QB-reducing centers and with a photochemically silent form of PS II in the thylakoid membrane of D. salina. It is proposed that QB-nonreducing centers are an intermediate stage in the process of damage and repair of PS II. It is further proposed that cells regulate the inflow and outflow of centers from the QB-nonreducing pool to maintain a constant pool size of QB-nonreducing centers in the thylakoid membrane.Abbreviations Chl chlorophyll - PS photosystem - QA primary quinone electron acceptor of PS II - QB secondary quinone electron acceptor of PS II - LHC light harvesting complex - Fo non-variable fluorescence yield - Fpl intermediate fluorescence yield plateau level - Fmax maximum fluorescence yield - Fi mitial fluorescence yield increase from Fo to Fpl(Fpl-Fo) - Fv total variable fluorescence yield (Fmax-Fo) - DCMU dichlorophenyl-dimethylurea  相似文献   

8.
Photoinhibition of PSII and turnover of the D1 reaction-centre protein in vivo were studied in pumpkin leaves (Cucurbita pepo L.) acclimated to different growth irradiances and in low-light-grown moss, (Ceratodon purpureus) (Hedw.) Brid. The low-light-acclimated pumpkins were most susceptible to photoinhibition. The production rate of photoinhibited PSII centres (kPI), determined in the presence of a chloroplast-encoded protein-synthesis inhibitor, showed no marked difference between the high- and low-light-grown pumpkin leaves. On the other hand, the rate constant for the repair cycle (kREC) of PSII was nearly three times higher in the high-light-grown pumpkin when compared to low-light-grown pumpkin. The slower degradation rate of the damaged D1 protein in the low-light-acclimated leaves, determined by pulsechase experiments with [35S]methionine suggested that the degradation of the Dl protein retards the repair cycle of PSII under photoinhibitory light. Slow degradation of the D1 protein in low-light-grown pumpkin was accompanied by accumulation of a phosphorylated form of the D1 protein, which we postulate as being involved in the regulation of D1-protein degradation and therefore the whole PSII repair cycle. In spite of low growth irradiance the repair cycle of PSII in the moss Ceratodon was rapid under high irradiance. When compared to the high- or low-light-acclimated pumpkin leaves, Ceratodon had the highest rate of D1-protein degradation at 1000 mol photons m–2 s–1. In contrast to the higher plants, the D1 protein of Ceratodon was not phosphorylated either under high irradiance in vivo or under in-vitro conditions, which readily phosphorylate the D1 protein of higher plants. This is consistent with the rapid degradation of the D1 protein in Ceratodon. Screening experiments indicated that D1 protein can be phosphorylated in the thylakoid membranes of angiosperms and conifers but not in lower plants. The postulated regulation mechanism of D1-protein degradation involving phosphorylation and the role of thylakoid organization in the function of PSII repair cycle are discussed.Abbreviations Chl Chlorophyll - D1* phosphorylated form of D1 protein - Fmax and Fv maximal and variable fluorescence respectively - kPJ and kREC rate constants of photoinhibition and concurrent recovery respectively - LHCII lightharvesting chlorophyll a/bprotein of PSII - PFD photon flux density Dr. R. Barbato (Dipartimento di Biologia, Universita di Padova, Padova, Italy), Prof. P. Böger (Lehrstuhl fur Physiologie und Biochemie der Pflanzen, Universität Konstanz, Konstanz, Germany), Prof. A. Melis (Department of Plant Biology, University of California, Berkeley, USA), Prof. I. Ohad (Department of Biological Chemistry, Hebrew University, Jerusalem, Israel) and Mr. A. Soitamo (Department of Biology, University of Turku, Turku, Finland) are gratefully acknowledged for the D1-protein-specific antibodies. The authors thank Ms. Virpi Paakkarinen for excellent technical assistance. This work was supported by the Academy of Finland and the Foundation of the University of Turku.  相似文献   

9.
Inhibition of photosynthesis by UV-B was investigated in the thalloid liverwort Conocephalum conicum Dum. UV-B irradiance was adjusted to a strength producing 50% inhibition of the rate of photosynthesis during 10 min of irradiation. A linear relationship of the fluorescence terms Fv/Fm of photosystem (PS) II and JP was observed following a UV-B irradiation. This suggested that PS II was a major site of UV-B-induced damage of photosynthesis. The apparent inhibition of Fv/Fm was much smaller when electron flow to the secondary PS II acceptor QB was inhibited by DCMU or when Fv/Fm was measured at 77 K. Apparently, the major target of UV-B effects was electron donation to the PS II reaction center, rather than electron transfer reactions at the PS II acceptor side. The time required for repair of PS II from UV-B-induced damage was light-dependent and minimal at a flux density of 5 μE m?2 s?1. Low temperatures and the presence of streptomycin inhibited the repair processes of PS II, indicating that protein synthesis may be involved in the recovery of PS II. The data indicate that UV-B irradiation on bright and cool winter days may be most harmful for photosynthesis of C. conicum. A repeated irradiation of the thalli with UV-B induced tolerance of photosynthesis which was related to an accumulation of pigments with a maximum of absorption around 315 nm.  相似文献   

10.
The aim of the present investigation was to test the hypothesis that the cypress canker caused by a fungus (Seiridium cardinale) infection induced effects on photosynthesis which could be related to photoinhibition and the process of recovery in susceptible and resistant needles. Photoinhibition of photosynthesis and recovery was studied in canker‐infected susceptible and resistant needles of cypress (Cupressus sempervirens L.) under controlled conditions (irradiation of detached needles to approximately 1900 μmol/m2/s). The degree of photoinhibition was determined by means of the ratio of variable to maximum chlorophyll (Chl) fluorescence (Fv/Fm) and electron transport measurements. The potential efficiency of photosystem (PS) II, Fv/Fm declined, and Fo increased significantly in canker‐susceptible needles, while Fo did not change in resistant needles. In isolated thylakoids, high light (HL) decreased the rate of whole chain and PS II activity markedly more in susceptible than in resistant needles. A smaller reduction of PS I activity was noticed only in susceptible needles. Upon subsequent dark incubation, fast recovery was noticed in both needle types and reached maximum rates of PS II efficiency similar to those noticed in non‐photoinhibited needles. The artificial exogenous electron donors such as diphenyl carbazide (DPC), NH2OH and Mn2+ failed to restore the HL induced loss of PS II activity in susceptible needles, while DPC and NH2OH significantly restored it in resistant needles. The results suggest that HL inactivates the donor side of PS II in resistant and the acceptor side of PS II in susceptible needles. The results on the quantification of the PS II reaction centre protein D1 and 33 kDa protein of water‐splitting complex following HL exposure showed pronounced differences between susceptible and resistant needles. The marked loss of PS II activity in HL‐irradiated needles was due to the marked loss of D1 protein in susceptible and 33 kDa protein in resistant needles, respectively.  相似文献   

11.
F. Torti  P.D. Gerola  R.C. Jennings 《BBA》1984,767(2):321-325
The hypothesis that the chlorophyll fluorescence decline due to membrane phosphorylation is caused principally by the detachment and removal of LHCP from the LHCP-PS II matrix is examined. It is demonstrated that when membranes are phosphorylated in the dark (a) the fluorescence decline is greater when excited by light enriched in wavelengths absorbed mainly by LHCP (475 nm) than when excited by light absorbed to a large extent also by the PS II complex (435 nm), (b) titration with different artificial quenchers of chlorophyll fluorescence is unchanged after the phosphorylation-induced fluorescence decline, and (c) the Fv/Fm ratio does not change after the phosphorylation-induced fluorescence decline. These data indicate that it is indeed principally LHCP that interacts with the quencher (PS I presumably). This interaction involves a small fraction of the total PS II-coupled LHCP, which becomes functionally detached from the LHCP-PS II matrix.  相似文献   

12.
The effects of a 60 min exposure to photosynthetic photon flux densities ranging from 300 to 2200 mol m–2s–1 on the photosynthetic light response curve and on PS II heterogeneity as reflected in chlorophyll a fluorescence were investigated using the unicellular green alga Chlamydomonas reinhardtii. It was established that exposure to high light acts at three different regulatory or inhibitory levels; 1) regulation occurs from 300 to 780 mol m–2s–1 where total amount of PS II centers and the shape of the light response curve is not significantly changed, 2) a first photoinhibitory range above 780 up to 1600 mol m–2s–1 where a progressive inhibition of the quantum yield and the rate of bending (convexity) of the light response curve can be related to the loss of QB-reducing centers and 3) a second photoinhibitory range above 1600 mol m–2s–1 where the rate of light saturated photosynthesis also decreases and convexity reaches zero. This was related to a particularly large decrease in PS II centers and a large increase in spill-over in energy to PS I.Abbreviations Chl chlorophyll - DCMU 3,(3,4-dichlorophenyl)-1,1-dimethylurea - FM maximal fluorescence yield - Fpl intermediate fluorescence yield plateau level - F0 non-variable fluorescence yield - Fv total variable fluorescence yield (FM-F0) - initial slope to the light response curve, used as an estimate of initial quantum yield - convexity (rate of bending) of the light response curve of photosynthesis - LHC light-harvesting complex - Pmax maximum rate of photosynthesis - PQ plastoquinone - Q photosynthetically active photon flux density (400–700 nm, mol m–2s–1) - PS photosystem - QA and QB primary and secondary quinone electron acceptor of PS II  相似文献   

13.
The components of non-photochemical chlorophyll fluorescence quenching (qN) in barley leaves have been quantified by a combination of relaxation kinetics analysis and 77 K fluorescence measurements (Walters RG and Horton P 1991). Analysis of the behaviour of chlorophyll fluorescence parameters and oxygen evolution at low light (when only state transitions — measured as qNt — are present) and at high light (when only photoinhibition — measured as qNi — is increasing) showed that the parameter qNt represents quenching processes located in the antenna and that qNi measures quenching processes located in the reaction centre but which operate significantly only when those centres are closed. The theoretical predictions of a variety of models describing possible mechanisms for high-energy-state quenching, measured as the residual quenching, qNe, were then tested against the experimental data for both fluorescence quenching and quantum yield of oxygen evolution. Only one model was found to agree with these data, one in which antennae exist in two states, efficient in either energy transfer or energy dissipation, and in which those photosynthetic units in a dissipative state are unable to exchange energy with non-dissipative units.Abbreviations: Fo, Fm room-temperature chlorophyll fluorescence yield with all centres open, closed - Fv variable fluorescence yield - LHC II light-harvesting chlorophyll-protein complex of PS II - PS I, PS II Photosystem I, II - P700, P680 primary donor in Photosystem I, II - QA primary electron acceptor of PS II - Pmax maximum quantum yield of oxygen evolution - qN coefficient of non-photochemical quenching of variable fluorescence - qNe, qNt, qNi coefficient of non-photochemical quenching due to high-energy-state, state transition, photoinhibition - qO coefficient of quenching of dark level fluorescence - qP coefficient of photochemical quenching of variable fluorescence - P intrinsic quantum yield of open PS II reaction centres = s/qP - PS 2 quantum yield of PS = qP × Fv/Fm - S quantum yield of oxygen evolution = rate of oxygen evolution/light intensity  相似文献   

14.
Photoinhibition of photosynthesis was studied in intact barley leaves at 5 and 20°C, to reveal if Photosystem II becomes predisposed to photoinhibition at low temperature by 1) creation of excessive excitation of Photosystem II or, 2) inhibition of the repair process of Photosystem II. The light and temperature dependence of the reduction state of QA was measured by modulated fluorescence. Photon flux densities giving 60% of QA in a reduced state at steady-state photosynthesis (300 mol m–2s–1 at 5°C and 1200 mol m–2s–1 at 20°C) resulted in a depression of the photochemical efficiency of Photosystem II (Fv/Fm) at both 5 and 20°C. Inhibition of Fv/Fm occurred with initially similar kinetics at the two temperatures. After 6h, Fv/Fm was inhibited by 30% and had reached steady-state at 20°C. However, at 5°C, Fv/Fm continued to decrease and after 10h, Fv/Fm was depressed to 55% of control. The light response of the reduction state of QA did not change during photoinhibition at 20°C, whereas after photoinhibition at 5°C, the proportion of closed reaction centres at a given photon flux density was 10–20% lower than before photoinhibition.Changes in the D1-content were measured by immunoblotting and by the atrazine binding capacity during photoinhibition at high and low temperatures, with and without the addition of chloramphenicol to block chloroplast encoded protein synthesis. At 20°C, there was a close correlation between the amount of D1-protein and the photochemical efficiency of photosystem II, both in the presence or in the absence of an active repair cycle. At 5°C, an accumulation of inactive reaction centres occurred, since the photochemical efficiency of Photosystem II was much more depressed than the loss of D1-protein. Furthermore, at 5°C the repair cycle was largely inhibited as concluded from the finding that blockage of chloroplast encoded protein synthesis did not enhance the susceptibility to photoinhibition at 5°C.It is concluded that, the kinetics of the initial decrease of Fv/Fm was determined by the reduction state of the primary electron acceptor QA, at both temperatures. However, the further suppression of Fv/Fm at 5°C after several hours of photoinhibition implies that the inhibited repair cycle started to have an effect in determining the photochemical efficiency of Photosystem II.Abbreviations CAP D-threochloramphenicol - F0 and F 0 fluorescence when all Photosystem II reaction centres are open in dark- and light-acclimated leaves, respectively - Fm and F m fluorescence when all Photosystem II reaction centres are closed in dark- and light-acclimated leaves, respectively - Fs fluorescence at steady state - QA the primary, stable quinone acceptor of Photosystem II - qN non-photochemical quenching of fluorescence - qP photochemical quenching of fluorescence  相似文献   

15.
Recent work has shown that the light-induced PS II core protein degradation, as monitored by immunostain reduction on Western blots, was stimulated even at low light during phosphorylation of thylakoid proteins in the presence of NaF, and that the thylakoid kinase inhibitor FSBA blocked completely the light- and ATP-stimulated degradation [Georgakopoulos and Argyroudi-Akoyunoglou (1997) Photosynth Res 53: 185–195]. To assess whether D1, D2 or both proteins are degraded, antibodies raised against D1/D2, or the D-E loop of D1 were used. Greatest immunostain reduction was observed with antibodies raised against D1/D2, immunostaining a 34 kDa protein on blots of 15% polyacrylamide-6 M urea gels, suggesting that the phosphorylation-induced degradation may be mainly directed against D2. To see how protein phosphorylation might be implicated in PS II core protein degradation we further tested the effect of free radical scavengers, on thylakoid protein phosphorylation. Active oxygen scavengers like n-propyl gallate, histidine, and imidazole, shown earlier to inhibit high light-induced D1 degradation, also suppressed the phosphorylation of thylakoid proteins; on the other hand, NaN3 and D-mannitol, known to stimulate light- induced D1 degradation did not suppress protein phosphorylation, whereas superoxide dismutase and catalase, known also to inhibit high light-induced D1 degradation, did not affect thylakoid protein phosphorylation. In addition, the ATP-induced degradation was also observed in the dark under conditions of kinase activation, and in the light under anaerobic conditions, that block light-induced degradation, whereas it was reduced in the absence of NaF, the phosphatase inhibitor. The results point to the involvement of a proteolytic system in PS II core protein degradation, which is active in its phosphorylated state.  相似文献   

16.
To study the effects of limitations in the Calvin-cycle on Photosystem (PS) II function and on its repair by D1-protein turnover, glycerinaldehyde (DLGA) was applied to 1 h dark-adapted pea leaves via the petiole. The application resulted in a 90% inhibition of photosynthetic oxygen evolution after 90 min illumination at either 120 or 500 µmol m–2 s–1. In the control leaves an increase of light-dependent oxygen production to 147 and 171% was observed after 90 min illumination. According to chlorophyll fluorescence quenching analysis the inhibition of photosynthetic electron transport by DLGA led to a substantial increase in the reduction state of the primary quinone acceptor of PS II, QA, and to a rise in membrane energetisation. However, PS II functionality was hardly affected by DLGA at the low light intensity as indicated by the constant high yield of variable fluorescence, Fv/Fm. Only at 500 µmol m–2 s–1 a 15% loss of Fv/Fm was observed in the presence of DLGA indicating that inactivated PS II centres had accumulated. The control leaves also showed a slight loss of Fv/Fm which did not affect photosynthetic electron transport due to a faster reoxidation of QA. The relative stability of PS II function in the presence of DLGA could not be ascribed to an increased repair by the rapid turnover of the D1-protein. Radioactive pulse-labelling studies with [14C] leucine in combination with immunological determination of the protein content revealed that both synthesis and degradation of the protein were inhibited in DLGA-treated leaves whereas in the control leaves a stimulation of D1-protein turnover was observed. The changes of D1-protein turnover could be explained by differences in the occupancy state of the QB-binding niche. A relation between the phosphorylation status of the PS II polypeptides and the turnover of the D1-protein could not be established. As shown by radioactive labelling with [32P]i, addition of DLGA led to an increase in the phosphorylation level of the PS II polypeptides D1 and D2 at the low light intensity when compared to the non-treated control. At the higher light intensity the phosphorylation level of the PS II polypeptides in control and DLGA-treated leaves were identical in spite of the substantial differences in D1-protein turnover.  相似文献   

17.
The effects of low temperature acclimation and photoinhibitory treatment on Photosystem 2 (PS 2) have been studied by thermoluminescence and chlorophyll fluorescence decay kinetics after a single turnover saturating flash. A comparison of unhardened and hardened leaves showed that, in the hardened case, a decrease in overall and B-band thermoluminescence emissions occurred, indicating the presence of fewer active PS 2 reaction centers. A modification in the form of the B-band emission was also observed and is attributed to a decrease in the apparent activation energy of recombination in the hardened leaves. The acclimated leaves also produced slower QA reoxidation kinetics as judged from the chlorophyll fluorescence decay kinetics. This change was mainly seen in an increased lifetime of the slow reoxidation component with only a small increase in its amplitude. Similar changes in both thermoluminescence and fluorescence decay kinetics were observed when unhardened leaves were given a high light photoinhibitory treatment at 4°C, whereas the hardened leaves were affected to a much lesser extent by a similar treatment. These results suggest that the acclimated plants undergo photoinhibition at 4°C even at low light intensities and that a subsequent high light treatment produces only a small additive photoinhibitory effect. Furthermore, it can be seen that photoinhibition eventually gives rise to PS 2 reaction centers which are no longer functional and which do not produce thermoluminescence or variable chlorophyll fluorescence.Abbreviations D1 The 32 kDa protein of Photosystem 2 reaction center - Fm maximum chlorophyll fluorescence yield - F0 minimal chlorophyll fluorescence yield obtained when all PS 2 centers are open - Fi intermediate fluorescence level corresponding to PS 2 centers which are loosely or not connected to plastoquinone (non-B centers) - Fv maximum variable chlorophyll fluorescence yield (Fv=Fm–F0) - PS 2 Photosystem 2 - QA and QB respectively, primary and secondary quinonic acceptors of PS 2 - S1, S2 and S3 respectively, the one, two and three positively charged states of the oxygen evolving system - Z secondary donor of PS 2  相似文献   

18.
Photosystem II (PS II) chlorophyll (Chl) a fluorescence lifetimes were measured in thylakoids and leaves of barley wild-type and chlorina f104 and f2 mutants to determine the effects of the PS II Chl a+b antenna size on the deexcitation of absorbed light energy. These barley chlorina mutants have drastically reduced levels of PS II light-harvesting Chls and pigment-proteins when compared to wild-type plants. However, the mutant and wild-type PS II Chl a fluorescence lifetimes and intensity parameters were remarkably similar and thus independent of the PS II light-harvesting antenna size for both maximal (at minimum Chl fluorescence level, Fo) and minimal rates of PS II photochemistry (at maximum Chl fluorescence level, Fm). Further, the fluorescence lifetimes and intensity parameters, as affected by the trans-thylakoid membrane pH gradient (pH) and the carotenoid pigments of the xanthophyll cycle, were also similar and independent of the antenna size differences. In the presence of a pH, the xanthophyll cycle-dependent processes increased the fractional intensity of a Chl a fluorescence lifetime distribution centered around 0.4–0.5 ns, at the expense of a 1.6 ns lifetime distribution (see Gilmore et al. (1995) Proc Natl Acad Sci USA 92: 2273–2277). When the zeaxanthin and antheraxanthin concentrations were measured relative to the number of PS II reaction center units, the ratios of fluorescence quenching to [xanthophyll] were similar between the wild-type and chlorina f104. However, the chlorina f104, compared to the wild-type, required around 2.5 times higher concentrations of these xanthophylls relative to Chl a+b to obtain the same levels of xanthophyll cycle-dependent fluorescence quenching. We thus suggest that, at a constant pH, the fraction of the short lifetime distribution is determined by the concentration and thus binding frequency of the xanthophylls in the PS II inner antenna. The pH also affected both the widths and centers of the lifetime distributions independent of the xanthophyll cycle. We suggest that the combined effects of the xanthophyll cycle and pH cause major conformational changes in the pigment-protein complexes of the PS II inner or core antennae that switch a normal PS II unit to an increased rate constant of heat dissipation. We discuss a model of the PS II photochemical apparatus where PS II photochemistry and xanthophyll cycle-dependent energy dissipation are independent of the Peripheral antenna size.Abbreviations Ax antheraxanthin - BSA bovine serum albumin - cx lifetime center of fluorescence decay component x - CP chlorophyll binding protein of PS II inner antenna - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DTT dithiothreitol - fx fractional intensity of fluorescence lifetime component x - Fm, Fm maximal PS II Chl a fluorescence intensity with all QA reduced in the absence, presence of thylakoid membrane energization - Fo minimal PS II Chl a fluorescence intensity with all QA oxidized - Fv=Fm–Fo variable level of PS II Chl a fluorescence - HPLC high performance liquid chromatography - kA rate constant of all combined energy dissipation pathways in PS II except photochemistry and fluorescence - kF rate constant of PS II Chl a fluorescence - LHCIIb main light harvesting pigment-protein complex (of PS II) - Npig mols Chl a+b per PS II - NPQ=(Fm/Fm–1) nonphotochemical quenching of PS II Chl a fluorescence - PAM pulse-amplitude modulation fluorometer - PFD photon-flux density, mols photons m–2 s–1 - PS II Photosystem II - P680 special-pair Chls of PS II reaction center - QA primary quinone electron acceptor of PS II - Vx violaxanthin - wx width at half maximum of Lorentzian fluorescence lifetime distribution x - Zx zeaxanthin - pH trans-thylakoid proton gradient - % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakeaacqGH8aapcqaHepaDcqGH% +aGpdaWgaaWcbaGaamOraiaad2gaaeqaaaaa!4989!\[< \tau > _{Fm}\],% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakeaacqGH8aapcqaHepaDcqGH% +aGpdaWgaaWcbaGaamOraiaad+gaaeqaaOGaeyypa0Zaaabqaeaaca% WGMbWaaSbaaSqaaiaadIhaaeqaaOGaam4yamaaBaaaleaacaWG4baa% beaaaeqabeqdcqGHris5aaaa!50D3!\[< \tau > _{Fo} = \sum {f_x c_x }\] average lifetime of Chl a fluorescence calculated from a multi-exponential model under Fm, Fo conditions  相似文献   

19.
Synechococcus sp. PCC 7942 (Anacystis nidulans R2) contains two forms of the Photosystem II reaction centre protein D1, which differ in 25 of 360 amino acids. D1: 1 predominates under low light but is transiently replaced by D1:2 upon shifts to higher light. Mutant cells containing only D1:1 have lower photochemical energy capture efficiency and decreased resistance to photoinhibition, compared to cells containing D1:2. We show that when dark-adapted or under low to moderate light, cells with D1:1 have higher non-photochemical quenching of PS II fluorescence (higher qN) than do cells with D1:2. This is reflected in the 77 K chlorophyll emission spectra, with lower Photosystem II fluorescence at 697–698 nm in cells containing D1:1 than in cells with D1:2. This difference in quenching of Photosystem II fluorescence occurs upon excitation of both chlorophyll at 435 nm and phycobilisomes at 570 nm. Measurement of time-resolved room temperature fluorescence shows that Photosystem II fluorescence related to charge stabilization is quenched more rapidly in cells containing D1:1 than in those with D1:2. Cells containing D1:1 appear generally shifted towards State II, with PS II down-regulated, while cells with D1:2 tend towards State I. In these cyanobacteria electron transport away from PS II remains non-saturated even under photoinhibitory levels of light. Therefore, the higher activity of D1:2 Photosystem II centres may allow more rapid photochemical dissipation of excess energy into the electron transport chain. D1:1 confers capacity for extreme State II which may be of benefit under low and variable light.Abbreviations D1 the atrazine-binding 32 kDa protein of the PS II reaction centre core - D1:1 the D1 protein constitutively expressed during acclimated growth in Synechococcus sp. PCC 7942 - D1:2 an alternate form of the D1 protein induced under excess excitation in Synechococcus sp. PCC 7942 - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - Fo minimal fluorescence in the dark-adapted state - Fo minimal fluorescence in a light-adapted state - FM maximum fluorescence with all quenching mechanisms at a minimum, measured in presence of DCMU - FM maximal fluorescence in a light-adapted state, measured with a saturating flash - FMdark maximal fluorescence in the dark-adapted state - FV variable fluorescence in a light-adapted state (FM-Fo) - PAM pulse amplitude modulated fluorometer - qN non-photochemical quenching of PS II fluorescence - qN (dark) qN in the dark adapted state - qP photochemical quenching of fluorescence  相似文献   

20.
Implication of D1 degradation in phosphorylation-induced state transitions   总被引:1,自引:0,他引:1  
State transitions and lateral migration of phosphorylated mobile-LHC II upon thylakoid unstacking have been reported as being interdependent. However, now the thyakoid unstacking event can be separated from the thyakoid phosphorylation and the associated F730/F685 enhancement by using the serine-type-protease inhibitor benzamidine. Thus, lateral migration appears not be necessary, and it can be shown that LHC II-rich fragments, originating in peripheral granal membranes, can be released by digitonin although in reduced amounts. On the other hand, phosphorylation of thylakoid proteins greatly stimulates the light-induced D1 degradation, which is observed in chloroplasts phosphorylated even at very low light (15 µmol m–2s–1). Thylakoid pretreatment with FSBA (the PS II protein-kinase inhibitor) blocks the light-induced and ATP-stimulated D1 degradation, and the F730/F685 ratio increase; this suggests that the dissociation of the PS II unit, resulting from the introduction of repulsive negative charges ( ATP groups) into LHC II and PS II core proteins, leads to D1 degradation. In chloroplast samples transferred to darkness following short-time phosphorylation, the D1 level is recovered. The results suggest that disassembly of PS II and D1 degradation occur parallel to State transitions. The removal of outer phospho-LHC II from PS II and its association with PS I at the periphery of grana may allow D1 degradation and increased light utilization by PS I, while net de novo synthesis of D1, stimulated by ATP, may lead to the assembly of new PS II units which could bind dephosphorylated LHC II in the dark, resulting in increased light utilization by PS II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号