首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transgenic S1 cell line of Catharanthus roseus (L.) G. Don has been used to study possible rate limiting steps in the terpenoid indole alkaloid (TIA) biosynthesis. Line S1 carries a recombinant, over-expressed version of the endogenous Str gene which encodes strictosidine synthase (STR; EC 4.3.3.2). STR catalyzes the stereospecific condensation of tryptamine and secologanin to strictosidine. Various concentrations and combinations of biosynthetic indole precursors L-tryptophan, tryptamine, and iridoid precursors loganin and secologanin were added to the cell suspension cultures of line S1. The largest TIA accumulation occurred when the precursor was supplied at the time of inoculation of the cells into the production medium. Line S1 could supply tryptamine endogenously up to 0.8 mM loganin feeding. The enhancement of the accumulation of TIAs by addition of loganin indicates a limitation in the terpenoid pathway. Supplying tryptamine or tryptophan along with the iridoid precursors resulted in even further increase of alkaloid accumulation. Under optimal conditions, cultures of line S1 accumulated about 600 mol l–1 of TIAs. Also, the conversion of strictosidine into other TIAs further down the pathway seems to be a limiting step. Considering the mass balance of the intermediates fed and TIAs recovered, several yet unknown pathways must be involved in channeling away intermediates from the TIA pathway and in the breakdown of the TIAs. Our results suggest that high rates of tryptamine synthesis can still take place under conditions of low TDC activity and the flux towards tryptamine is induced by loganin feeding. However, accumulation of tryptamine seems to reduce the flux through feedback inhibition.  相似文献   

2.
To better understand the biosynthesis of Camptotheca acuminata alkaloids, the effect on camptothecin production of feeding with potential precursors of biosynthesis was studied (i.e., tryptamine and loganin combined, secologanin, and strictosidine). Two key enzymes in alkaloid biosynthesis 〚i.e., tryptophan decarboxylase (TDC; EC 4.1.1.28) and strictosidine synthase (STR; EC 4.3.3.2)〛 were also studied. The analyses were conducted using a C. acuminata CG1 cell line that does not produce alkaloids, which could be useful in better understanding the biosynthetic pathway and in identifying possible limiting factors. The activity of TDC was 5 pkat mg–1; the activity of STR was 1.1 pkat mg–1. Feeding with strictosidine revealed that this precursor is easily biotransformed by two enzymes (i.e., a hydroxylase and a dehydrogenase) in hydroxystrictosidine and didehydrostrictosidine, but camptothecin was never detected. The indole pathway and the low level of STR activity could be limiting factors in the production of camptothecin in the cell line used.  相似文献   

3.
In a Catharanthus roseus cell line accumulating secologanin, time-course studies on the uptake of loganin and the in vivo conversion to secologanin were performed. Four-day-old cells converted 100% of the fed loganin to secologanin within 24 hours, showing that this step is unlikely to be limiting for alkaloid accumulation. Thirteen-day-old cells also took up loganin, but only about 25% was recovered as secologanin. A saturation in the uptake of loganin and in the conversion of loganin into secologanin was observed after feeding increasing amounts of loganin. Elicitation by cellulase and pectinase decreased the cellular contents of secologanin and strictosidine whereas it increased the tryptamine content. In addition, the uptake of loganin in elicited cells was blocked. In vitro assays with protein extracts of elicited Catharanthus roseus cells indicated the activation of secologanin degrading enzyme(s). Feeding of tryptophan did not result in any increase in alkaloid contents, despite its complete uptake. Tryptamine feeding led to increased strictosidine contents, but ajmalicine levels remained unchanged. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
To obtain more insight into the regulation of terpenoid indole alkaloid (TIA) biosynthesis in Catharanthus roseus (L.) G. Don cell cultures and particularly to identify possible rate limiting steps, a transgenic cell line over-expressing tryptophan decarboxylase (Tdc), and thus having a high level of tryptamine, was fed with various amounts of precursors (tryptophan, tryptamine, loganin and secologanin) in different time schedules and analyzed for TIA production. When these precursors were added to this culture it was found that the optimal time for supplying the precursors was at inoculation of the cells into the production medium. Alkaloid accumulation by line T22 was enhanced by addition of loganin or secologanin; however, the secologanin feeding was less effective. Tryptamine or tryptophan alone had no effect on TIA accumulation. The over-expression of Tdc causes this cell line to produce quite large quantities of alkaloids after feeding loganin or secologanin. However, in combination with tryptophan or tryptamine, feeding of these precursors resulted in an even further increase of alkaloid accumulation and under optimal conditions line T22 accumulated around 1200 micromol l(-1) of TIAs whereas the control cultures accumulated less than 10 micromol l(-1) TIAs.  相似文献   

5.
We have used a transgenic cell line of Catharanthus roseus (L.) G. Don to study the relative importance of the supply of biosynthetic precursors for the synthesis of terpenoid indole alkaloids. Line S10 carries a recombinant, constitutively overexpressed version of the endogenous strictosidine synthase (Str) gene. Various concentrations and combinations of the substrate tryptamine and of loganin, the immediate precursor of secologanin, were added to suspension cultures of S10. Our results indicate that high rates of tryptamine synthesis can take place under conditions of low tryptophan decarboxylase activity, and that high rates of strictosidine synthesis are possible in the presence of a small tryptamine pool. It appears that the utilization of tryptamine for alkaloid biosynthesis enhances metabolic flux through the indole pathway. However, a deficiency in the supply of either the iridoid or the indole precursor can limit flux through the step catalyzed by strictosidine synthase. Precursor utilization for the synthesis of strictosidine depends on the availability of the cosubstrate; the relative abundance of these precursors is a cell-line-specific trait that reflects the metabolic status of the cultures.  相似文献   

6.
The effects of terpenoid precursor feeding and elicitation by a biotic elicitor on alkaloid production of Catharanthus roseus suspension cultures were studied. After addition of secologanin, loganin or loganic acid an increase in the accumulation of ajmalicine and strictosidine and a decrease of tryptamine level was observed in non-elicited cells. Elicitation increased tryptamine accumulation in non-fed cells but it did not further increase alkaloid accumulation in precursor-fed cells. A decrease of tryptamine level was also observed, despite the induction of the tryptamine pathway after elicitation. Feeding mevalonic acid did not increase alkaloid accumulation in any studied case.  相似文献   

7.
8.

Background  

The first two enzymatic steps of monoterpene indole alkaloid (MIA) biosynthetic pathway are catalysed by strictosidine synthase (STR) that condensates tryptamine and secologanin to form strictosidine and by strictosidine β-D-glucosidase (SGD) that subsequently hydrolyses the glucose moiety of strictosidine. The resulting unstable aglycon is rapidly converted into a highly reactive dialdehyde, from which more than 2,000 MIAs are derived. Many studies were conducted to elucidate the biosynthesis and regulation of pharmacologically valuable MIAs such as vinblastine and vincristine in Catharanthus roseus or ajmaline in Rauvolfia serpentina. However, very few reports focused on the MIA physiological functions.  相似文献   

9.
A transgenic cell suspension culture of Nicotiana tabacum L. `Petit Havana' SR1 was established expressing tryptophan decarboxylase and strictosidine synthase cDNA clones from Catharanthus roseus (L.) G. Don under the direction of cauliflower mosaic virus 35S promoter and nopaline synthase terminator sequences. During a growth cycle, the transgenic tobacco cells showed relatively constant tryptophan decarboxylase activity and an about two- to sixfold higher strictosidine synthase activity, enzyme activities not detectable in untransformed tobacco cells. The transgenic culture accumulated tryptamine and produced strictosidine upon feeding of secologanin, demonstrating the in vivo functionality of the two transgene-encoded enzymes. The accumulation of strictosidine, which occurred predominantly in the medium, could be enhanced by feeding both secologanin and tryptamine. No strictosidine synthase activity was detected in the medium, indicating the involvement of secologanin uptake and strictosidine release by the cells. Received: 25 February 1996 / Revision received: 16 August 1996 / Accepted: 30 September 1996  相似文献   

10.
A cell suspension culture of Tabernaemontana divaricata, that had lost alkaloid production, was still capable of producing a similar pattern of alkaloids as directly after its initiation. When fed with early precursors, such as tryptamine and loganin, 57% of the precursors was converted into indole alkaloids such as strictosidine, vallesamine, O-acetylvallesamine and voaphylline. Apparently most of the cell factory has remained stable during the many years of subculturing. Only an early step of the biosynthesis the flux seems to be diverted to other pathways.  相似文献   

11.
Biotechnology for the production of plant secondary metabolites   总被引:10,自引:2,他引:8  
Verpoorte  R.  Contin  A.  Memelink  J. 《Phytochemistry Reviews》2002,1(1):13-25
The production of plant secondary metabolites by means of large-scale culture of plant cells in bioreactors is technically feasible. The economy of such a production is the major bottleneck. For some costly products it is feasible, but unfortunately some of the most interesting products are only in very small amounts or not all produced in plant cell cultures. Screening, selection and medium optimization may lead to 20- to 30-fold increase in case one has producing cultures. In case of phytoalexins, elicitation will lead to high production. But for many of the compounds of interest the production is not inducible by elicitors. The culture of differentiated cells, such as (hairy) root or shoot cultures, is an alternative, but is hampered by problems in scaling up of such cultures. Metabolic engineering offers new perspectives for improving the production of compounds of interest. This approach can be used to improve production in the cell culture, in the plant itself or even production in other plant species or organisms. Studies on the production of terpenoid indole alkaloids have shown that the overexpression of single genes of the pathway may lead for some enzymes to an increased production of the direct product, but not necessarily to an increased alkaloid production. On the other hand feeding of such transgenic cultures with early precursors showed an enormous capacity for producing alkaloids, which is not utilized without feeding precursors. Overexpression of regulatory genes results in the upregulation of a series of enzymes in the alkaloid pathway, but not to an improved flux through the pathway, but feeding loganin does result in increased alkaloid production if compared with wild-type cells. Indole alkaloids could be produced in hairy root cultures of Weigelia by overexpression of tryptophan decarboxylase and strictosidine synthase. Alkaloids could be produced in transgenic yeast overexpressing strictosidine synthase and strictosidine glucosidase growing on medium made out the juice of Symphoricarpus albus berries to which tryptamine is added. Metabolic engineering thus seems a promising approach to improve the production of a cell factory.  相似文献   

12.
This work presents a study of the effect of different phytohormones on growth and accumulation of terpenoid indole alkaloids in a Catharanthus roseus cell suspension culture upon feeding with the precursors loganin and tryptamine. The phytohormones tested were 2,4-dichlorophenoxyacetic acid, salicylic acid, methyl jasmonate and abscisic acid. Among these only methyl jasmonate enhanced the accumulation of alkaloids. Abscisic acid did not enhance the accumulation of alkaloids but delayed the catabolism of strictosidine.  相似文献   

13.
A transgenic Saccharomyces cerevisiae was constructed containing the cDNAs coding for strictosidine synthase (STR) and strictosidine beta-glucosidase (SGD) from the medicinal plant Catharanthus roseus. Both enzymes are involved in the biosynthesis of terpenoid indole alkaloids. The yeast culture was found to express high levels of both enzymes. STR activity was found both inside the cells (13.2 nkatal/g fresh weight) and in the medium (up to 25 nkatal/l medium), whereas SGD activity was present only inside the yeast cells (2.5 mkatal/g fresh weight). Upon feeding of tryptamine and secologanin, this transgenic yeast culture produced high levels of strictosidine in the medium; levels up to 2 g/l were measured. Inside the yeast cells strictosidine was also detected, although in much lower amounts (0.2 mg/g cells). This was due to the low permeability of the cells towards the substrates, secologanin and tryptamine. However, the strictosidine present in the medium was completely hydrolyzed to cathenamine, after permeabilizing the yeast cells. Furthermore, transgenic S. cerevisiae was able to grow on an extract of Symphoricarpus albus berries serving as a source for secologanin and carbohydrates. Under these conditions, the addition of tryptamine was sufficient for the transgenic yeast culture to produce indole alkaloids. Our results show that transgenic yeast cultures are an interesting alternative for the production of plant alkaloids.  相似文献   

14.
Summary Suspension-cultured cells of Catharanthus roseus (L.) G. Don were immobilized on glass fibre mats and cultivated in shake flasks. The highly-aggregated immobilized cells exhibited a slower growth rate and accumulated reduced levels of tryptamine and indole alkaloids, represented by catharanthine and ajmalicine, in comparison to cells in suspension. The increased total protein synthesis in immobilized cells suggests a diversion of the primary metabolic flux toward protein biosynthetic pathways and away from other growth processes. In vitro assays for the specific activity of tryptophan decarboxylase (TDC) and tryptophan synthase (TS) suggest that the decreased accumulation of tryptamine in immobilized cells was due to reduced tryptophan biosynthesis. The specific activity of TDC was similar in immobilized and suspension-cultured cells. However, the expression of TS activity in immobilized cells was reduced to less than 25% of the maximum level in suspension-cultured cells. The reduced availability of a free tryptophan pool in immobilized cells is consistent with the reduced TS activity. Reduced tryptamine accumulation, however, was not responsible for the decreased accumulation of indole alkaloids in immobilized cells. Indole alkaloid accumulation increased to a similar level in immobilized and suspension-cultured cells only after the addition of exogenous secolaganin to the culture medium. The addition of tryptophan resulted in increased accumulation of tryptamine, but had no effect on indole alkaloid levels. Reduced biosynthesis of secologanin, the monoterpenoid precursor to indole alkaloids, in immobilized cells is suggested. Immobilization does not appear to alter the activity of indole alkaloid biosynthetic enzymes in our system beyond, and including, strictosidine synthase. Offprint requests to: P. J. Facchini  相似文献   

15.
H Mizukami  H Nordl?v  S L Lee  A I Scott 《Biochemistry》1979,18(17):3760-3763
Strictosidine synthetase, which catalyzes the condensation of tryptamine with secologanin to form strictosidine (isovincoside), was purified 740-fold to homogeneity from cultured cells of Catharanthus roseus in 10% yield. The specific activity is 5.85 nkat/mg. The molecular weight as estimated by gel filtration is 38,000. The isoelectric point is 4.6. Apparent Km values for tryptamine and secologanin are 0.83 and 0.46 mM, respectively. The enzyme shows a broad pH optimum between 5.0 and 7.5. The product of the enzymic reaction is exclusively strictosidine, while no trace of its epimer vincoside can be detected. Sulfhydryl inhibitors have no effect on the enzyme. End products in the biosynthetic pathway of indole alkaloids such as ajmalicine, vindoline, and catharanthine do not inhibit the activity of strictosidine synthetase.  相似文献   

16.
Strictosidine is a key intermediate in the biosynthesis of the terpenoid indole alkaloid (T1A) pathway. It results from a condensation reaction, catalyzed by strictosidine synthase (STR), between tryptamine and secologanin. We have now developed a useful method, based on enzyme-assisted synthesis, to produce strictosidine. Our procedure utilizes leaf extracts from Japanese honeysuckleLonicera japonica Thunb. as a secologanin source. In these experiments, an enzyme extract was prepared from transgenic yeastSaccharomyces cerevisiae that expresses theCatharanthus roseus STR (CrSTR) coding region. Strictosidine was then isolated with a 38% yield based on the initial amount of tryptamine in the enzymatic reaction.  相似文献   

17.
A proteomic approach is undertaken aiming at the identification of novel proteins involved in the alkaloid biosynthesis of Catharanthus roseus. The C. roseus cell suspension culture A11 accumulates the terpenoid indole alkaloids strictosidine, ajmalicine and vindolinine. Cells were grown for 21 days, and alkaloid accumulation was monitored during this period. After a rapid increase between day 3 and day 6, the alkaloid content reached a maximum on day 16. Systematic analysis of the proteome was performed by two-dimensional polyacrylamide gel electrophoresis. After day 3, the proteome started to change with an increasing number of protein spots. On day 13, the proteome changed back to roughly the same as at the start of the growth cycle. 88 protein spots were selected for identification by mass spectrometry (MALDI-MS/MS). Of these, 58 were identified, including two isoforms of strictosidine synthase (EC 4.3.3.2), which catalyzes the formation of strictosidine in the alkaloid biosynthesis; tryptophan synthase (EC 4.1.1.28), which is needed for the supply of the alkaloid precursor tryptamine; 12-oxophytodienoate reductase, which is indirectly involved in the alkaloid biosynthesis as it catalyzes the last step in the biosynthesis of the regulator jasmonic acid. Unique sequences were found, which may also relate to unidentified biosynthetic proteins.  相似文献   

18.
Among the pharmacologically important terpenoid indole alkaloids produced by Catharanthus roseus are the anti-cancer drugs vinblastine and vincristine. These two drugs are produced in small yields within the plant, which makes them expensive to produce commercially. Metabolic engineering has focused on increasing flux through this pathway by various means such as elicitation, precursor feeding, and introduction of genes encoding specific metabolic enzymes into the plant. Recently in our lab, a feedback-resistant anthranilate synthase alpha subunit was over-expressed in C. roseus hairy roots under the control of a glucocorticoid inducible promoter system. Upon induction we observed a large increase in the indole precursors, tryptophan, and tryptamine. The current work explores the effects of over-expressing the anthranilate synthase alpha or alpha and beta subunits in combination with feeding with the terpenoid precursors 1-deoxy-D-xylulose, loganin, and secologanin. In feeding 1-deoxy-D-xylulose to the hairy root line expressing the anthranilate synthase alpha subunit, we observed an increase of 125% in h?rhammericine levels in the induced samples, while loganin feeding increased catharanthine by 45% in the induced samples. Loganin feeding to the hairy root line expressing anthranilate synthase alpha and beta subunits increases catharanthine by 26%, ajmalicine by 84%, lochnericine by 119%, and tabersonine by 225% in the induced samples. These results suggest that the terpenoid precursors to the terpenoid indole alkaloids are important factors in terpenoid indole alkaloid production.  相似文献   

19.
Pre-purified enzymes isolated from Catharanthus roseus suspension cultures synthesize strictosidine and cathenamine from tryptamine and secologanin. Whereas strictosidine showed metabolic activity, cathenamine accumulates during the cell-free incubations in the absence of reduced pyridine nucleotides. In the presence of δ-d-gluconolactone (0.1 M), strictosidine accumulates in a yield of ca 50%. Optimum conditions for its accumulation in crude extracts were found to be at pH 4.1, 0.25 mM tryptamine and 1.25 mM secologinin. Strictosidine synthase is stable for more than 1.5 months at 4°. The optimum conditions for the enzymatic synthesis of cathenamine are 1.54 mM tryptamine and 7.7 mM secologanin at pH 7.5. In the presence of NH4+ the formation of the latter alkaloid decreases due to the synthesis of unidentified compounds.  相似文献   

20.
The Madagascar periwinkle (Catharanthus roseus) produces the well known and remarkably complex anticancer dimeric alkaloids vinblastine and vincristine, which are derived by the coupling of vindoline and catharanthine monomers. Recent data from in situ RNA hybridization and immunolocalization suggest that combinatorial cell factories within the leaf are involved in vindoline biosynthesis. In this study, the cell types responsible for vindoline biosynthesis were identified by laser-capture microdissection/RNA isolation/RT-PCR to show that geraniol hydroxylase, secologanin synthase, tryptophan decarboxylase, strictosidine synthase, strictosidine ss-glucosidase and tabersonine 16-hydroxylase can be detected preferentially in epidermal cells. A new and complementary application of the carborundum abrasion (CA) technique was developed to obtain epidermis-enriched leaf extracts that can be used to measure alkaloid metabolite levels, enzyme activities and gene expression. The CA technique showed that tabersonine and 16-methoxytabersonine, together with 16-hydroxytabersonine-16-O-methyltransferase, are found predominantly in Catharanthus leaf epidermis, in contrast to vindoline, catharanthine and later enzymatic steps in vindoline biosynthesis. The results show that leaf epidermal cells are biosynthetically competent to produce tryptamine and secologanin precursors that are converted via many enzymatic transformations to make 16-methoxytabersonine. This alkaloid or its 2,3 dihydro-derivative is then transported to cells (mesophyll/idioblast/laticifer) within Catharanthus leaves to complete the last three or four enzymatic transformations to make vindoline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号