首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
In the vascular endothelium of human beings, telomere length is negatively related while the frequency of aneuploidy is positively related to donor age. Both in culture and in vivo the frequency of aneuploidy increases as telomere length is shortened. In this study we explored the relation between telomere length and aneuploidy in cultured human umbilical vein endothelial cells (HUVEC) by: (a) karyotype analysis and fluorescent in situ hybridization (FISH), (b) measurement of the terminal restriction fragments (TRF), and (c) assessment of replicative senescence by the expression of beta-galactosidase. Of 8 HUVEC strains, 7 cell strains lost chromosome 13, as shown by metaphase analysis and FISH of interphase cells. Five strains gained chromosome 11. In addition, five HUVEC strains became hypotetraploid shortly after the loss of chromosome 13. The loss of chromosome 13 was observed as early as PD 20, when mean TRF length was greater than 9 kb and the percentage of cells positive for beta-galactosidase was relatively low. The almost uniform loss of chromosome 13 suggests that this unique type of aneuploidy of HUVEC is the result of a progressive expression of clones with survival advantage.  相似文献   

2.
The loss of telomere repeats has been causally linked to in vitro replicative senescence of human diploid fibroblasts (HDFs). In order to study the mechanism(s) by which telomere shortening signals cell senescence, we analyzed the telomere length at specific chromosome ends at cumulative population doublings in polyclonal and clonal HDFs by quantitative fluorescence in situ hybridization. The rate of telomere shortening at individual telomeres varied between 50 and 150 bp per population doubling and short telomeres with an estimated 1-2 kb of telomere repeats accumulated prior to senescence. The average telomere length in specific chromosome ends was remarkably similar between clones. However, some exceptions with individual telomeres measuring 0.5-1 kb were observed. In the fibroblast clones, the onset of replicative senescence was significantly correlated with the mean telomere fluorescence but, strikingly, not with chromosomes with the shortest telomere length. The accumulation of short telomeres in late passages of cultured HDFs is compatible with selection of cells on the basis of telomere length and limited recombination between telomeres prior to senescence.  相似文献   

3.
The replicative life span of human fibroblasts is heterogeneous, with a fraction of cells senescing at every population doubling. To find out whether this heterogeneity is due to premature senescence, i.e. driven by a nontelomeric mechanism, fibroblasts with a senescent phenotype were isolated from growing cultures and clones by flow cytometry. These senescent cells had shorter telomeres than their cycling counterparts at all population doubling levels and both in mass cultures and in individual subclones, indicating heterogeneity in the rate of telomere shortening. Ectopic expression of telomerase stabilized telomere length in the majority of cells and rescued them from early senescence, suggesting a causal role of telomere shortening. Under standard cell culture conditions, there was a minor fraction of cells that showed a senescent phenotype and short telomeres despite active telomerase. This fraction increased under chronic mild oxidative stress, which is known to accelerate telomere shortening. It is possible that even high telomerase activity cannot fully compensate for telomere shortening in all cells. The data show that heterogeneity of the human fibroblast replicative life span can be caused by significant stochastic cell-to-cell variation in telomere shortening.  相似文献   

4.
Lack of telomere shortening with age in mouse resting zone chondrocytes   总被引:1,自引:0,他引:1  
BACKGROUND AND AIM: Telomeres are hexameric repeat sequences that flank eukaryotic chromosomes. The telomere hypothesis of cellular aging proposes that replication of normal somatic cells leads to progressive telomere shortening which induces replicative senescence. Previous studies suggest that growth plate chondrocytes have a finite proliferative capacity in vivo. We therefore hypothesized that telomere shortening in resting zone chondrocytes leads to replicative senescence. METHOD: To test this hypothesis we compared the telomere restriction fragment (TRF) length of Mus casteneus at 1, 4, 8, and 56 weeks of age. RESULTS AND CONCLUSIONS: We found that TRF length did not diminish measurably with age, suggesting that telomere shortening in resting zone chondrocytes is not the mechanism that limits proliferation of growth plate chondrocytes in vivo.  相似文献   

5.
As we age, the majority of our cells gradually lose the capacity to divide because of replicative senescence that results from the inability to replicate the ends of chromosomes. The timing of senescence is dependent on the length of telomeric DNA, which elicits a checkpoint signal when critically short. Critically short telomeres also become vulnerable to deleterious rearrangements, end-degradation and telomere–telomere fusions. Here we report a novel role of non-homologous end-joining (NHEJ), a pathway of double-strand break repair in influencing both the kinetics of replicative senescence and the rate of chromosome loss in telomerase-deficient Saccharomyces cerevisiae . In telomerase-deficient cells, the absence of NHEJ delays replicative senescence, decreases loss of viability during senescence, and suppresses senescence-associated chromosome loss and telomere–telomere fusion. Differences in mating-type gene expression in haploid and diploid cells affect NHEJ function, resulting in distinct kinetics of replicative senescence. These results suggest that the differences in the kinetics of replicative senescence in haploid and diploid telomerase-deficient yeast are determined by changes in NHEJ-dependent telomere fusion, perhaps through the initiation of the breakage-fusion-bridge cycle.  相似文献   

6.
Several lines of evidence indicate that telomere shortening during in vitro aging of human somatic cells plays a causal role in cellular senescence. A critical telomere length seems to be associated with the replicative block characterizing senescent cells. In this paper we analyzed the mean length of the terminal restriction fragments (TRF) in fibroblast strains from 4 healthy centenarians, that is, in cells aged in vivo, and from 11 individuals of different ages. No correlation between mean TRF length and donor age was found. As expected, telomere shortening was detected during in vitro propagation of centenarian fibroblasts, suggesting that in fibroblasts aged in vivo telomeres can be far from reaching a critical length. Accordingly, chromosome analysis did not show the presence of telomeric associations in early passage centenarian fibroblasts. In blood cells from various individuals, the expected inverse correlation between mean TRF length and donor age was found. In particular, a substantial difference (about 2 kb) between telomere length in the two cell types was observed in the same centenarian. Expression analysis of three senescence-induced genes, i.e., fibronectin, apolipoprotein J, and p21, revealed for only the fibronectin expression levels a clear positive correlation with donor age. Our results suggest that (1) telomere shortening could play a different role in the aging of different cell types and (2) the characteristics of fibroblasts aged in vitro might not be representative of what occurs in vivo.  相似文献   

7.
Different telomere damage signaling pathways in human and mouse cells   总被引:24,自引:0,他引:24  
Programmed telomere shortening in human somatic cells is thought to act as a tumor suppressor pathway, limiting the replicative potential of developing tumor cells. Critically short human telomeres induce senescence either by activating p53 or by inducing the p16/RB pathway, and suppression of both pathways is required to suppress senescence of aged human cells. Here we report that removal of TRF2 from human telomeres and the ensuing de-protection of chromosome ends induced immediate premature senescence. Although the telomeric tracts remained intact, the TRF2(DeltaBDeltaM)-induced premature senescence was indistinguishable from replicative senescence and could be mediated by either the p53 or the p16/RB pathway. Telomere de-protection also induced a growth arrest and senescent morphology in mouse cells. However, in this setting the loss of p53 function was sufficient to completely abrogate the arrest, indicating that the p16/RB response to telomere dysfunction is not active in mouse cells. These findings reveal a fundamental difference in telomere damage signaling in human and mouse cells that bears on the use of mouse models for the telomere tumor suppressor pathway.  相似文献   

8.
Prevention of telomere erosion through acquisition of telomerase activity is thought to be an essential mechanism in most human cancer cells for avoidance of cellular senescence and crisis. It has been generally assumed that once telomerase has been activated, no further telomere shortening should ensue. We show here, however, that a much more complex pattern of telomere dynamics can exist in telomerase-positive immortal cancer cells. Using a panel of subclones derived from a human thyroid cancer cell line, K1E7, we found that some clones show persistent decline in mean telomere restriction fragment (TRF) length by up to 2 kb over 450 population doublings (pd), despite sustained high telomerase activity (as assessed by thein vitro“TRAP” assay). TRF length subsequently stabilized at around 5 kb, but with no corresponding increase in telomerase activity. One clone showed an even more unexpected biphasic time course, with the mean TRF length initially increasing by 1.5 kb over 90 pd, before “plateauing” and then returning over a similar period to its original value, again without any correlation to TRAP activity. Such dissociations between telomere dynamics and telomerase activity support the existence of additional controls on telomere length in the intact cell. Our observations are consistent with current negative-feedback models of telomere length regulation by telomere binding proteins and these cell lines should prove useful experimental tools for their further evaluation.  相似文献   

9.
The telomere-capping complex shelterin protects functional telomeres and prevents the initiation of unwanted DNA-damage-response pathways. At the end of cellular replicative lifespan, uncapped telomeres lose this protective mechanism and DNA-damage signalling pathways are triggered that activate p53 and thereby induce replicative senescence. Here, we identify a signalling pathway involving p53, Siah1 (a p53-inducible E3 ubiquitin ligase) and TRF2 (telomere repeat binding factor 2; a component of the shelterin complex). Endogenous Siah1 and TRF2 were upregulated and downregulated, respectively, during replicative senescence with activated p53. Experimental manipulation of p53 expression demonstrated that p53 induces Siah1 and represses TRF2 protein levels. The p53-dependent ubiquitylation and proteasomal degradation of TRF2 are attributed to the E3 ligase activity of Siah1. Knockdown of Siah1 stabilized TRF2 and delayed the onset of cellular replicative senescence, suggesting a role for Siah1 and TRF2 in p53-regulated senescence. This study reveals that p53, a downstream effector of telomere-initiated damage signalling, also functions upstream of the shelterin complex.  相似文献   

10.
Telomeres are essential for chromosome stability and the regulation of the replicative life‐span of somatic cells. Many studies showed that exogenous telomeric repeats could activate p53 protein. It is not known how cell dysfunction is induced by telomeric plasmids. A covalent closed circular (ccc) double‐stranded plasmid containing (TTAGGG)96 repeats (pRST5) was transiently transfected into the human gastric cancer MGC‐803 cells. We first confirmed that the cell viabilities decreased by 27%, cell senescence increased by 62% and G2/M cycle arrested in pRST5 plasmid transfected cells. Compared to control groups, cells transfected with telomeric plasmids showed an ATM‐dependent increasing of p53, TRF1, and TRF2 expression. Furthermore, telomere dysfunction‐induced foci (TIF) were observed. In conclusion, telomeric plasmids can elicit endogenous telomere dysfunction and induce cell senescence by activating ATM‐p53 pathway. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The shortening of telomeric repeats as a cell replicates has long been implicated as a determinant of cell viability. However, recent studies have indicated that it is not telomere length, but rather whether telomeres have bound a telomere-related protein, which in mammals is TTAGGG repeat binding factor-2 (TRF2), that determines whether a cell undergoes apoptosis (programmed cell death), enters senescence (a quiescent, non-replicative state), or continues to proliferate. When bound to a telomere, TRF2 allows a cell to recognize the telomere as the point where a chromosome ends rather than a break in DNA. When telomeres are not bound by TRF2, the cell can either immediately trigger senescence or apoptosis via the DNA damage response pathway, or indirectly trigger it by attempting to repair the chromosome, which results in chromosomal end joining. We model the ability of telomeres to bind TRF2 as a function of telomere length and apply the resulting binding probability to a model of cellular replication that assumes a homogeneous cell population. The model fits data from cultured human fibroblasts and human embryonic kidney cells for two free parameters well. We extract values for the percent of telomere loss at which cell proliferation ceases. We show, in agreement with previous experiments, that overexpression of TRF2 allows a cell to delay the senescence setpoint. We explore the effect of oxidative stress, which increases the rate of telomere loss, on cell viability and show that cells in the presence of oxidative stress have reduced lifespans. We also show that the addition of telomerase, an enzyme that maintains telomere length, is sufficient to result in cell immortality. We conclude that the increasing inability of TRF2 to bind telomeres as they shorten is a quantitatively reasonable model for a cause of either cellular apoptosis or senescence.  相似文献   

12.
13.
Most human cells do not express telomerase and irreversibly arrest proliferation after a finite number of divisions (replicative senescence). Several lines of evidence suggest that replicative senescence is caused by short dysfunctional telomeres, which arise when DNA is replicated in the absence of adequate telomerase activity. We describe a method to reversibly bypass replicative senescence and generate mass cultures that have different average telomere lengths. A retrovirus carrying hTERT flanked by excision sites for Cre recombinase rendered normal human fibroblasts telomerase-positive and replicatively immortal. Superinfection with retroviruses carrying wild-type or mutant forms of TIN2, a negative regulator of telomere length, created telomerase-positive, immortal populations with varying average telomere lengths. Subsequent infection with a Cre-expressing retrovirus abolished telomerase activity, creating mortal cells with varying telomere lengths. Using these cell populations, we show that, after hTERT excision, cells senesce with shorter telomeres than parental cells. Moreover, long telomeres, but not telomerase, protected cells from the loss of division potential caused by ionizing radiation. Finally, although telomerase-negative cells with short telomeres senesced after fewer doublings than those with long telomeres, telomere length per se did not correlate with senescence. Our results support a role for telomere structure, rather than length, in replicative senescence.  相似文献   

14.
Telomere shortening follows a developmentally regulated process that leads to replicative senescence of dividing cells. However, whether telomere changes are involved in postmitotic cell function and aging remains elusive. In this study, we discovered that the level of the TRF2 protein, a key telomere‐capping protein, declines in human skeletal muscle over lifetime. In cultured human myotubes, TRF2 downregulation did not trigger telomere dysfunction, but suppressed expression of the mitochondrial Sirtuin 3 gene (SIRT3) leading to mitochondrial respiration dysfunction and increased levels of reactive oxygen species. Importantly, restoring the Sirt3 level in TRF2‐compromised myotubes fully rescued mitochondrial functions. Finally, targeted ablation of the Terf2 gene in mouse skeletal muscle leads to mitochondrial dysfunction and sirt3 downregulation similarly to those of TRF2‐compromised human myotubes. Altogether, these results reveal a TRF2‐SIRT3 axis controlling muscle mitochondrial function. We propose that this axis connects developmentally regulated telomere changes to muscle redox metabolism.  相似文献   

15.
Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes.   总被引:39,自引:4,他引:35  
The telomere hypothesis of cellular aging proposes that loss of telomeric DNA (TTAGGG) from human chromosomes may ultimately cause cell-cycle exit during replicative senescence. Since lymphocytes have a limited replicative capacity and since blood cells were previously shown to lose telomeric DNA during aging in vivo, we wished to determine: (a) whether accelerated telomere loss is associated with the premature immunosenescence of lymphocytes in individuals with Down syndrome (DS) and (b) whether telomeric DNA is also lost during aging of lymphocytes in vitro. To investigate the effects of aging and trisomy 21 on telomere loss in vivo, genomic DNA was isolated from peripheral blood lymphocytes of 140 individuals (age 0-107 years), including 21 DS patients (age 0-45 years). Digestion with restriction enzymes HinfI and RsaI generated terminal restriction fragments (TRFs), which were detected by Southern analysis using a telomere-specific probe (32P-(C3TA2)3). The rate of telomere loss was calculated from the decrease in mean TRF length, as a function of donor age. DS patients showed a significantly higher rate of telomere loss with donor age (133 +/- 15 bp/year) compared with age-matched controls (41 +/- 7.7 bp/year) (P < .0005), suggesting that accelerated telomere loss is a biomarker of premature immunosenescence of DS patients and that it may play a role in this process. Telomere loss during aging in vitro was calculated for lymphocytes from four normal individuals, grown in culture for 10-30 population doublings. The rate of telomere loss was approximately 120 bp/cell doubling, comparable to that seen in other somatic cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Chi JX  Huang L  Nie W  Wang J  Su B  Yang F 《Chromosoma》2005,114(3):167-172
The Indian muntjac (Muntiacus muntjak vaginalis) has a karyotype of 2n=6 in the female and 7 in the male, the karyotypic evolution of which through extensive tandem fusions and several centric fusions has been well-documented by recent molecular cytogenetic studies. In an attempt to define the fusion orientations of conserved chromosomal segments and the molecular mechanisms underlying the tandem fusions, we have constructed a highly redundant (more than six times of whole genome coverage) bacterial artificial chromosome (BAC) library of Indian muntjac. The BAC library contains 124,800 clones with no chromosome bias and has an average insert DNA size of 120 kb. A total of 223 clones have been mapped by fluorescent in situ hybridization onto the chromosomes of both Indian muntjac and Chinese muntjac and a high-resolution comparative map has been established. Our mapping results demonstrate that all tandem fusions that occurred during the evolution of Indian muntjac karyotype from the acrocentric 2n=70 hypothetical ancestral karyotype are centromere–telomere (head–tail) fusions.  相似文献   

17.
The mechanisms of replicative senescence by telomere shortening are not fully understood. The Indian muntjac has the fewest chromosomes of all mammals, greatly simplifying the analysis of each telomere over time. In this study, telomere shortening was observed throughout the life span of cultured normal muntjac cells by quantitative fluorescence in situ hybridization and terminal restriction fragment analysis. Ectopic expression of the human telomerase catalytic subunit in these cells reconstituted telomerase activity, extended telomere lengths, and immortalized the cells, demonstrating that the Indian muntjac cells can serve as a telomere-based replicative senescence model for human cells. In one strain, two chromosome ends had significantly shorter telomeres than the other ends, which led to a variety of chromosome abnormalities. Near senescence, additional ends became telomere signal free, and chromosome aberrancies increased dramatically. Interstitial telomere sequences coincided with fragile sites, suggesting that these remnants of chromosome fusion events might contribute to genome instability. One SV40-immortalized cell line lacked telomerase, and its genetic instability was corrected by the ectopic expression of telomerase, confirming that too-short telomeres were the source of abnormalities. Indian muntjac cells provide an excellent system for understanding the mechanism of replicative senescence and the role of telomerase in the elongation of individual telomeres.  相似文献   

18.
《FEBS letters》2014,588(23):4369-4374
Telomeres are specialized structures protecting chromosomes against genome instability. Telomeres shorten with cell division, and replicative senescence is induced when telomeres are badly eroded. Whereas TRF2 (telomeric-repeat binding factor 2), ATM (ataxia telangiectasia mutated) and p53 have been identified involved in senescence induction, how it is triggered remains unclear. Here, we propose an integrated model associating telomere loss with senescence trigger. We characterize the dynamics of telomere shorting and the p53-centered regulatory network. We show that senescence is initiated in a switch-like manner when both the shortest telomere becomes uncapped and the TRF2-ATM-p53-Siah1 positive feedback loop is switched on. This work provides a coherent picture of senescence induction in terms of telomere shortening and p53 activation.  相似文献   

19.
Cellular senescence is a major defense against cancer. In human fibroblasts, suppressing both the p53 and pRb pathways is necessary to bypass replicative senescence as well as senescence induced by ectopic expression of a dominant negative form of the telomere repeat binding factor 2, TRF2(DN). We recently reported that exposure to oligonucleotides homologous to the telomere 3' overhang (T-oligos) activates both the p53 and pRb pathways and leads to senescence in primary human fibroblasts. To further characterize T-oligo-induced senescence, we compared established isogenic fibroblast cell lines lacking functional p53 and/or pRb pathways to the normal parental line. Here, we report that, as in physiologic senescence, inactivation of both the p53 and pRb pathways is necessary to suppress T-oligo-induced senescence. Moreover, T-oligo rapidly induces senescence in a malignant fibroblast-derived cell line, demonstrating the potential of using T-oligo as a novel anticancer therapeutic. Our data support the hypothesis that exposure of the TTAGGG tandem repeat telomere 3' overhang sequence is the event that initiates signaling through DNA damage response pathways after experimental telomere disruption, serial passage, or acute genomic damage of normal cells.  相似文献   

20.
Primary human cells have a definite life span and enter into cellular senescence before ceasing cell growth. Oxidative stress produced by aerobic metabolism has been shown to accelerate cellular senescence. Here, we demonstrated that ascorbic acid, used as an antioxygenic reagent, delayed cellular senescence in a continuous culture of normal human embryonic cells, human adult skin fibroblast cells, and Werner syndrome (WS) cells. The results using human embryonic cells showed that treatment with ascorbic acid phospholic ester magnesium salt (APM) decreased the level of oxidative stress, and extended the replicative life span. The effect of APM to extend the replicative life span was also shown in normal human adult cells and WS cells. To understand the mechanism of extension of cellular life span, we determined the telomere lengths of human embryonic cells, both with and without APM treatment, and demonstrated that APM treatment reduced the rate of telomere shortening. The present results indicate that constitutive oxidative stress plays a role in determining the replicative life span and that suppression of oxidative stress by an antioxidative agent, APM, extends the replicative life span by reducing the rate of telomere shortening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号