首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 277 毫秒
1.
Oblimersen Bcl-2 antisense: facilitating apoptosis in anticancer treatment   总被引:15,自引:0,他引:15  
The components of the apoptotic program are targets for anticancer therapy. Bcl-2 protein inhibits apoptosis and confers resistance to treatment with traditional cytotoxic chemotherapy, radiotherapy, and monoclonal antibodies (mAb). Oblimersen sodium (G3139, Genasense, Genta Inc., Berkeley Heights, NJ) is an antisense oligonucleotide (AS-ON) compound designed to specifically bind to the first 6 codons of the human bcl-2 mRNA sequence, resulting in degradation of bcl-2 mRNA and subsequent decrease in Bcl-2 protein translation. Oblimersen is the first oligonucleotide to demonstrate proof of principle of an antisense effect in human tumors by the documented downregulation of the target Bcl-2 protein. A growing body of preclinical and clinical evidence suggests that oblimersen synergizes with many cytotoxic and biologic/immunotherapeutic agents against a variety of hematologic malignancies and solid tumors. Randomized clinical trials are currently underway to evaluate the efficacy and tolerability of oblimersen in combination with cytotoxic chemotherapy in chronic lymphocytic leukemia, multiple myeloma, malignant melanoma, and non-small cell lung cancer. In addition, nonrandomized trials are under way to evaluate oblimersen in non-Hodgkin's lymphoma, acute myeloid leukemia, and hormone-refractory prostate cancer. Preclinical data also support the clinical evaluation of oblimersen in additional tumor types, including chronic myelogenous leukemia and breast, small cell lung, gastric, colon, bladder, and Merkel cell cancers. Enhancement of the efficacy of anticancer treatments with oblimersen Bcl-2 antisense therapy represents a promising new apoptosis-modulating strategy, and ongoing clinical trials will test this therapeutic approach.  相似文献   

2.
Smac/DIABLO was recently identified as a protein released from mitochondria in response to apoptotic stimuli which promotes apoptosis by antagonizing inhibitors of apoptosis proteins. Furthermore, Smac/DIABLO plays an important regulatory role in the sensitization of cancer cells to both immune-and drug-induced apoptosis. However, little is known about the role of Smac/DIABLO in hydrogen peroxide (H(2)O(2))-induced apoptosis of C2C12 myogenic cells. In this study, Hoechst 33258 staining was used to examine cell morphological changes and to quantitate apoptotic nuclei. DNA fragmentation was observed by agarose gel electrophoresis. Intracellular translocation of Smac/DIABLO from mitochondria to the cytoplasm was observed by Western blotting. Activities of caspase-3 and caspase-9 were assayed by colorimetry and Western blotting. Full-length Smac/DIABLO cDNA and antisense phosphorothioate oligonucleotides against Smac/DIABLO were transiently transfected into C2C12 myogenic cells and Smac/DIABLO protein levels were analyzed by Western blotting. The results showed that: (1) H(2)O(2) (0.5 mmol/L) resulted in a marked release of Smac/DIABLO from mitochondria to cytoplasm 1 h after treatment, activation of caspase-3 and caspase-9 4 h after treatment, and specific morphological changes of apoptosis 24 h after treatment; (2) overexpression of Smac/DIABLO in C2C12 cells significantly enhanced H(2)O(2)-induced apoptosis and the activation of caspase-3 and caspase-9 (P<0.05). (3) Antisense phosphorothioate oligonucleotides against Smac/DIABLO markedly inhibited de novo synthesis of Smac/DIABLO and this effect was accompanied by decreased apoptosis and activation of caspase-3 and caspase-9 induced by H(2)O(2) (P<0.05). These data demonstrate that H(2)O(2) could result in apoptosis of C2C12 myogenic cells, and that release of Smac/DIABLO from mitochondria to cytoplasm and the subsequent activation of caspase-9 and caspase-3 played important roles in H(2)O(2)-induced apoptosis in C2C12 myogenic cells.  相似文献   

3.
采用蛋白组学技术分析质粒介导siRNA的“Off-target”效应   总被引:1,自引:0,他引:1  
siRNA的"脱靶效应"(off-target effects)是RNA干扰应用研究领域的热点问题.采用蛋白组学技术对质粒介导的siRNA稳定沉默原癌基因c-myc可能存在的"off-target"效应进行初步研究,为siRNA靶向特异性的系统评价奠定理论与实验基础.构建靶向c-myc的siRNA真核表达质粒p-Mat01-1及其错配质粒p-Mis09-1,空质粒pEGFP-C1为对照,并稳定转染MCF-7人乳腺癌细胞.通过RT-PCR和Western印迹分析结果显示p-Mat01-1稳定转染克隆中c-myc/c-MYC的表达降低.采用2-DE及LC-ESI-MS/MS等方法,研究了p-Mat01-1与pEGFP-C1稳定转染克隆的蛋白组表达差异.结果显示,p-Mat01-1稳定转染克隆中有47个c-myc非调控蛋白点表达升高或降低,约占423个随机检测蛋白点的11.1%.这些蛋白涉及细胞骨架、代谢、增殖、信号传导、分子伴侣、氧化还原等多条途径.实验结果表明,质粒介导靶向c-myc的siRNA在MCF-7细胞中存在明显的"off-target"效应,提示在设计siRNA实验及应用研究时应系统考察其靶向特异性.  相似文献   

4.
目的:研究bFGF反义硫代寡核苷酸增强肿瘤细胞对化疗药物敏感性作用。方法:设计、合成bFGF寡核苷酸,用聚乙烯亚胺(polyemyleneimine,PEI)介导bFGF反义硫代寡核苷酸转染入黑色素瘤B16细胞,MTT法检测bFGF反义硫代寡核苷酸及其与化疗药物联合处理后的细胞增殖率;半定量RT-PCR测定bFGF反义硫代寡核苷酸转染后细胞中bFGF mRNA水平;流式细胞仪分析bFGF反义硫代寡核苷酸诱导的细胞凋亡。结果:bFGF反义硫代寡核苷酸对B16细胞增殖的抑制率为64.8%,且呈剂量依赖效应。B16细胞中bFGF mRNA被bFGF反义硫代寡核苷酸显著降低,为对照细胞的57.9%,且bFGF反义硫代寡核苷酸诱导B16细胞凋亡,凋亡率为41.8%。bFGF反义硫代寡核苷酸转染能显著增强B16细胞对阿霉素、5-氟脲嘧啶及顺铂的敏感性,非特异性硫代寡核苷酸不影响阿霉素、5-氟脲嘧啶及顺铂抑制B16细胞增殖。结论:bFGF反义硫代寡核苷酸显著增强B16细胞的化疗敏感性,表明其可协同化疗药物用于治疗肿瘤。  相似文献   

5.
Transforming growth factor-β (TGF-β) can induce G2/M phase-dependent apoptosis and G1/S phase-dependent epithelial–mesenchymal transition (EMT) in hepatocytes, but the underlying mechanism remains poorly understood. In this study, we investigated alterations in the global proteome using two dimensional gel electrophoresis of AML-12 murine hepatocyte cells after treatment with TGF-β at several time points after synchronization in the G2/M or G1/S phase. Upon TGF-β treatment, the expression levels of 44 proteins were found to be significantly changed in cells synchronized in the G2/M phase. These proteins were identified by MALDI-TOF/TOF and classified into seven categories according to function. In addition, TGF-β induced downregulation of glutamine synthetase in cells in G2/M but not G1/S phase, and this was further confirmed by immunoblotting. Moreover, exogenous glutamine completely blocked TGF-β-induced apoptosis in G2/M and non-synchronized cells, whereas it had no effect on EMT, suggesting that the downregulation of glutamine synthetase is involved in G2/M phase-dependent apoptosis. These results provide new insight into the mechanism of the multifunctional effects of TGF-β and how apoptosis and EMT are regulated in the same type of cells.  相似文献   

6.
Mild testicular heating safely and reversibly suppresses spermatogenesis. In this study, we attempted to clarify the underlying molecular mechanism(s) involved in heat‐induced spermatogenesis suppression in human testis. We conducted global proteomic analyses of human testicular biopsies before, and at 2 and 9 wk after heat treatment. Thirty‐one and Twenty‐six known proteins were identified with significant differential expression at 2 and 9 wk after heat treatment, respectively. These were used to characterize the cellular and molecular events in the testes when seminiferous epithelia became damaged (2 wk) and recovered (9 wk). At 2 wk post‐treatment, the changed expression of a series of proteins could promote apoptosis or suppress proliferation and cell survival. At 9 wk post‐treatment, the changed expression of proteins mainly promoted cell proliferation, differentiation and survival, but resisted cell apoptosis. Among those heat‐regulated proteins, HNRNPH1 was selected for the further functional study. We found that HNRNPH1 was an anti‐apoptosis protein that could regulate the expression of other heat‐induced proteins. In conclusion, heat‐induced reversible suppression of spermatogenesis occurred by modulating the expression of proteins related to proliferation, differentiation, apoptosis and cell survival pathways. These differentially expressed proteins were found to be key molecular targets affecting spermatogenesis after heat treatment.  相似文献   

7.
The BH3-only proteins of the Bcl-2 family are known to mediate mitochondrial dysfunction during apoptosis. However, the identity of the critical BH3-only proteins and the mechanism of their action following treatment by diverse apoptotic stimuli remain to be fully resolved. We therefore used RNAi to screen the entire Bcl-2 family for their involvement in three major apoptotic pathways in HeLa cells. We found that Bcl-xL and Mcl-1 are major inhibitors of apoptosis induced by TNF-related apoptosis-inducing ligand (TRAIL), endoplasmic reticulum (ER) stress, and proteasome inhibition. Among the 10 BH3-only proteins, Bid and Noxa were found to be critically involved in TRAIL-induced apoptosis, in which Noxa participates by constitutively binding to Mcl-1. Bim and Noxa were found to be necessary for ER stress-induced apoptosis, in which Noxa assisted Bim function by sequestering Mcl-1 and binding to Bcl-xL. As a critical BH3-only protein, Noxa was strongly upregulated and became associated with both Mcl-1 and Bcl-xL during apoptosis induced by proteasome inhibition. In addition, we found that Noxa became 'Mcl-1 free' following treatment by ER stress and proteasome inhibition, but not after TRAIL treatment. These results defined the critical Bcl-2 network during apoptosis and suggested that Noxa participated in triggering mitochondrial dysfunction in multiple apoptotic pathways through distinct mechanisms.  相似文献   

8.
Anti-microRNA (miRNA) oligonucleotides (AMOs) with 2′-O-Methyl (2′OMe) residues are commonly used to study miRNA function and can achieve high potency, with low cytotoxicity. Not withstanding this, we demonstrate the sequence-dependent capacity of 2′OMe AMOs to inhibit Toll-like receptor (TLR) 7 and 8 sensing of immunostimulatory RNA, independent of their miRNA-targeting function. Through a screen of 29 AMOs targeting common miRNAs, we found a subset of sequences highly inhibitory to TLR7 sensing in mouse macrophages. Interspecies conservation of this inhibitory activity was confirmed on TLR7/8 activity in human peripheral blood mononuclear cells. Significantly, we identified a core motif governing the inhibitory activity of these AMOs, which is present in more than 50 AMOs targeted to human miRNAs in miRBaseV20. DNA/locked nucleic acids (LNA) AMOs synthesized with a phosphorothioate backbone also inhibited TLR7 sensing in a sequence-dependent manner, demonstrating that the off-target effects of AMOs are not restricted to 2′OMe modification. Taken together, our work establishes the potential for off-target effects of AMOs on TLR7/8 function, which should be taken into account in their therapeutic development and in vivo application.  相似文献   

9.
10.
Various useful animal models, such as Alzheimer’s disease and Niemann–Pick disease, were provided by U18666A. However, the pathogenesis of U18666A-induced diseases, including U18666A-mediated apoptosis, remains incompletely elucidated, and therapeutic strategies are still limited. Dihydrotestosterone (DHT) has been reported to contribute to the prevention and treatment of neurodegenerative disorders. Our study investigated the neuroprotective activity of DHT in U18666A-related diseases. Apoptosis of C6 cells was detected by Hoechst 33258 fluorescent staining and flow cytometry with annexin V-FITC/PI dual staining. Cell viability was assessed using Cell Counting Kit-8. Expression of apoptosis-related proteins, such as Akt, seladin-1, Bcl-2 family proteins, and caspase-3, was determined using Western blot. Our results demonstrated that the apoptotic rate of C6 cells significantly increased after U18666A addition, but was remarkably reduced after DHT treatment. Pretreatment with DHT attenuated U18666A-induced cell viability loss. PI3K inhibitor LY294002 could suppress DHT anti-apoptotic effect. Furthermore, we discovered that U18666A could significantly downregulate seladin-1 expression in a dose-dependent manner, but no significant change was observed in Bcl-xL, Bax, and P-Akt protein expressions. Compared with U18666A-treated group, the expression of P-Akt, seladin-1, and Bcl-xL significantly increased, and the expression of Bax and caspase-3 remarkably reduced after DHT treatment. However, in the presence of LY294002, the effect of DHT was reversed. In conclusion, we found that seladin-1 may take part in U18666A-induced apoptosis. DHT may inhibit U18666A-induced apoptosis by regulating downstream apoptosis-related proteins including seladin-1, caspase-3, Bcl-xL, and Bax through activation of the PI3K/Akt signal pathway.  相似文献   

11.
The effect of valproic acid (VA) on protein expression in human T-lymphocytic leukemia cells MOLT-4 was studied. VA is an inhibitor of histonedeacetylases and has a potential use as antitumor agent in leukemia treatment. The authors in this work prove that 4 h long incubation with 2 mmol/l VA causes phosphorylation of histone H2A.X and its colocalization with 53BP1 in nuclear foci. Their co-localization is typical for DSB signaling machinery. These foci were detected in cells after 4 h exposure without increase of Annexin V positive apoptotic cells. Slight increase in apoptosis (Annexin V positivity) after 24 h is accompanied by more intensive increase in phosphorylation of H2A.X and also by formation of nuclear foci containing γH2A.X and 53BP1. Treatment of cells with 2 mmol/l VA resulted in induction of apoptosis affecting about 30% of cells after incubation for 72 h. The changes in protein expression were examined after cell incubation with 2 mmol/l VA for 4 h. Proteins were separated by two-dimensional electrophoresis and quantified using image evaluation system. Those exhibiting significant VA-induced abundance alterations were identified by mass spectrometry. Changes in expression of 22 proteins were detected, of which 15 proteins were down-regulated. Proteomic analysis resulted in successful identification of three proteins involving alfa-tubulin 3, tubulin-specific chaperone and heterogeneous nuclear ribonucloprotein F. Expression of seven proteins was up-regulated, including heterogeneous nuclear ribonucloprotein A/B. Identified proteins are related to microtubular system and hnRNP family. Suppression of microtubular proteins and changes of balance among hnRNPs can contribute to proliferation arrest and apoptosis induction.  相似文献   

12.
Treatment with injectable testosterone undecanoate (TU) alone or in combination with oral levonorgestrel (LNG) resulted in marked decreases in sperm concentrations. In this study, we used proteomic analyses to examine the cellular/molecular events occurring in the human testis after TU or TU + LNG treatment. We conducted a global proteomic analysis of the human testicular biopsies before and at 2 weeks after TU alone or TU + LNG treatment. Proteins showing significant changes in expression were identified and analyzed. As a result, 17 and 46 protein spots were found with significant differential expression after the treatment with TU alone and TU + LNG, respectively. TU treatment changed the expression of heterogeneous nuclear ribonucleoprotein K (hnRNP K), proteasome inhibitor PI31 subunit (PSMF1), and superoxide dismutase [Mn] mitochondrial precursor (SOD2). These proteins inhibit "assembly", induce cell death, and promote compensatory "cell survival" in the testis. After TU + LNG treatment, "proliferation/cell survival" and "apoptosis/death" were the predominant responses in the testis. TU + LNG treatment inhibited the expression of Prolyl 4-hydroxylase beta subunit (P4HB) and Annexin A2 (Annexin II). These proteins are involved in apoptosis and cell proliferation, respectively. TU + LNG treatment also enhanced the expression of SOD2 and Parvalbumin alpha (Pvalb). These two proteins may protect testicular cells against apoptosis/death and promote cell survival. In conclusion, TU and TU + LNG treatments suppress spermatogenesis through different pathways by changing the expression of different proteins. hnRNP K, PSMF1, SOD2, P4HB, Annexin II, and Pvalb, are key proteins that may be early molecular targets responsible for spermatogenesis suppression induced by hormone treatment.  相似文献   

13.
Recently protein kinases have emerged as some of the most promising drug targets; and therefore, pharmaceutical strategies have been developed to inhibit kinases in the treatment of a variety of diseases. CK2 is a serine/threonine-protein kinase that has been implicated in a number of cellular processes, including maintenance of cell viability, protection of cells from apoptosis, and tumorigenesis. Elevated CK2 activity has been established in a number of cancers where it was shown to promote tumorigenesis via the regulation of the activity of various oncogenes and tumor suppressor proteins. Consequently the development of CK2 inhibitors has been ongoing in preclinical studies, resulting in the generation of a number of CK2-directed compounds. In the present study, an unbiased evaluation of CK2 inhibitors 4,5,6,7-tetrabromo-1H-benzotriazole (TBB), 4,5,6,7-tetrabromo-1H-benzimidazole (TBBz), and 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT) was carried out to elucidate the mechanism of action as well as inhibitor specificity of these compounds. Utilizing a chemoproteomics approach in conjunction with inhibitor-resistant mutant studies, CK2alpha and CK2alpha' were identified as bona fide targets of TBB, TBBz, and DMAT in cells. However, inhibitor-specific cellular effects were observed indicating that the structurally related compounds had unique biological properties, suggesting differences in inhibitor specificity. Rescue experiments utilizing inhibitor-resistant CK2 mutants were unable to rescue the apoptosis associated with TBBz and DMAT treatment, suggesting the inhibitors had off-target effects. Exploitation of an unbiased chemoproteomics approach revealed a number of putative off-target inhibitor interactions, including the discovery of a novel TBBz and DMAT (but not TBB) target, the detoxification enzyme quinone reductase 2 (QR2). The results described in the present study provide insight into the molecular mechanism of action of the inhibitors as well as drug specificity that will assist in the development of more specific next generation CK2 inhibitors.  相似文献   

14.
15.
Epigenetic inactivation of gene expression is a general phenomenon associated with malignant transformation. Recently, we have found that a novel series of histone deacetylases (HDAC) inhibitors exhibit a broad-spectrum inhibition profile characterized by a marked effect on acetylation of histone and non-histone proteins. RC307, a representative compound of this series, caused a growth-inhibitory effect in colon carcinoma cells HCT116 associated with G2 accumulation and induction of apoptosis. The present study was designed to investigate the effect of RC307 on protein expressions in the HCT116 cells following treatment with cytotoxic drug concentrations. HCT116 cells were cultured in the absence or presence of RC307 and total cell lysates, as well as nuclear proteins, were extracted. The protein samples were then subjected to two-dimensional polyacrylamide gel electrophoresis, and the 2D gel images were compared to discover the protein changes caused by RC307 treatment. A total of 48 and 46 different spots were found to be modulated by RC307 in total lysates and nuclear proteome of HCT116 cell line. The modulated proteins were identified by tandem mass spectrometry. We found that RC307 exposure modulates proteins that are involved in proliferation, cell cycle regulation, apoptosis, gene expression, as well as chromatin and cytoskeleton organization.  相似文献   

16.
To test whether bystander effects occur in vivo after low doses of radiation relevant to occupational and population exposure, we exposed mice to whole-body X-radiation doses (0.01 and 1 mGy) where only a proportion of cells would receive an electron track. We used a precise method to analyze the apoptosis frequency in situ in spleen tissue sections at 7 h and 1, 3 and 7 days after irradiation to determine whether an increase in apoptosis above that predicted by direct effects was observed. No significant changes in the apoptosis frequency at any time after low-dose irradiation were detected. Apoptosis was induced above endogenous levels by five- to sevenfold 7 h after 1000 mGy. Using these data, the expected increases in apoptosis 7 h after a dose of 1 mGy or 0.01 mGy were calculated based on the assumption that induction of apoptosis would decrease linearly with dose. The magnitude of potential bystander effects for apoptosis that could be detected above homeostatic levels after these low doses of radiation was determined. A substantial bystander effect for apoptosis (>50-fold above direct effects) would be required before such proposed effects would be identified using 10 animals/treatment group as studied here. These data demonstrate that amplification of apoptosis even due to a substantial bystander effect would fall within the homeostatic range.  相似文献   

17.
谷氧还蛋白1(Grx1)在体内具有广泛的抗氧化、抗凋亡作用,与氧化应激损伤导致的糖尿病和心肌病等多种疾病的发病机制密切相关. 研究表明,糖尿病心血管病与自噬调节异常密切相关,但糖尿病心血管病变时自噬水平如何调节才能够保护受损的心肌还尚未定论.为研究自噬在高糖诱导心肌细胞凋亡中的作用及其与Grx1的关系,以明确Grx1对高糖诱导的心肌细胞凋亡的抑制作用及相关机制,本研究以高糖诱导大鼠心肌细胞H9c2建立高糖损伤模型,采用氧化还原蛋白免疫印迹法检测蛋白质的氧化水平.免疫印迹检测活性caspase 3蛋白和自噬蛋白Beclin1和LC3以及抗凋亡蛋白Bcl 2的表达水平.研究发现,高糖可诱导蛋白质的氧化水平增加,而Grx1可拮抗高糖诱导的H9c2细胞中蛋白质的氧化.并且含血清的高糖(25和50 mmol/L)作用H9c2心肌细胞后,自噬蛋白Beclin 1表达水平在6~48 h显著上调.同时发现,活性caspase 3水平也呈时间依赖性表达上调,caspase 3和自噬蛋白表达水平的同趋势增加,说明升高的自噬水平与心肌细胞凋亡的调节有关.Grx1保护组的自噬蛋白及活性caspase 3表达水平均显著下调,Grx1抑制剂镉组可拮抗Grx1调节的自噬蛋白和凋亡蛋白水平,说明Grx 1通过抑制自噬及caspase 3水平抑制高糖诱导的心肌细胞凋亡.以上研究结果提示,通过提高Grx1/GSH抗氧化系统功能,调节氧化还原稳态,可以有效减少高糖诱导的心肌损伤,保护糖尿病心脏功能.  相似文献   

18.
This article shows that HepG2, Hep3B, and SK-Hep1 cells, three lines of human hepatocellular carcinoma (HCC) cells, are resistant to apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Parthenolide, a sesquiterpene lactone found in European feverfew, has been shown to exert both anti-inflammatory and anti-cancer activities. This article demonstrates that co-treatment with parthenolide and TRAIL-induced apoptosis with synergistic interactions in the three lines of HCC cells. In order to explain these effects we ascertained that parthenolide increased either at protein or mRNA level the total content of death receptors TRAIL-R1 and -R2 as well as their surface expression. These effects were found in the three cell lines in the case of TRAIL-R2, while for TRAIL-R1 they were observed in HepG2 and SK-Hep1 cells, but not in Hep3B cells. We suggest that the effects of parthenolide on death receptors depend on the decrease in the level of phosphorylated and active forms of STAT proteins, an event which could be a consequence of the inhibitory effect exerted by parthenolide on the activation of JAK proteins. In agreement with this hypothesis treatment with STAT3 siRNA increased in HCC cells the effect of parthenolide on the expression of death receptors. Sensitization by parthenolide to TRAIL stimulated in the three cell lines the extrinsic mechanism of apoptosis with the activation of both caspases 8 and 3, whereas mitochondria were not involved in the process. Our results suggest that co-treatment with parthenolide and TRAIL could represent a new important therapeutic strategy for hepatic tumors.  相似文献   

19.
Activation of metabotropic glutamate receptor 5 (mGluR5) has been shown to reduce caspase-dependent apoptosis in primary neuronal cultures induced by staurosporine and etoposide. beta-Amyloid (Abeta)-induced neurotoxicity in culture appears to be in part caspase mediated. In the present studies the effects of treatment with an mGluR5 agonist or antagonist on Abeta-induced neuronal apoptosis were examined in rat cortical neuronal cultures. Pretreatment with the selective mGluR5 agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) markedly reduced the number of apoptotic cells after exposure to Abeta (25-35), as well as associated LDH release. Blockade of mGluR5 by the selective antagonist, 2-methyl-6-(phenylethynyl)pyridine (MPEP) attenuated these effects of CHPG. A similar neuroprotective effect of mGluR5 activation by CHPG was observed in cultures treated with full-length Abeta peptide (1-42). CHPG attenuated Abeta (25-35)-induced cytochrome c release and decreased levels of active caspase-3 protein. CHPG also reduced translocation of apoptosis-inducing factor (AIF) induced by Abeta (25-35). Thus, mGluR5 activation limits the release of mitochondrial proteins associated with induction of both caspase-dependent and -independent apoptosis.  相似文献   

20.
CRISPR/Cas9系统介导的基因组编辑技术是新一代功能强大的基因修饰技术。然而,脱靶效应(Off-target effects)是目前CRISPR/Cas9技术面临的最大问题。因此,设计脱靶风险低的sgRNA(single guide RNA)就成为关键。sgRNAcas9是一款专门用于sgRNA设计和评估脱靶效应的软件包。针对其核心运行程序,我们利用Java程序语言开发了其图形用户界面。此外,依据脱靶位点碱基数和sgRNA种子序列(seed sequences)的特异性,通过设置不同的风险等级对sgRNA的脱靶效应进行评估。随后,利用此软件设计了34 124条靶向人、小鼠、大鼠、猪和鸡中共4691个microRNA(miRNA)前体的sgRNAs。此外,随机挑选了一个靶向人miR-206前体的sgRNA进行脱靶效应评估和验证。结果发现,sgRNAcas9软件人机交互界面友好,大多数miRNA前体可通过该软件寻找到sgRNA,且他们的GC%含量范围集中于40%~60%。利用sgRNAcas9软件设计的靶向miR-206的sgRNA,其基因组编辑活性和脱靶位点可被实验验证。本研究表明sgRNAcas9图形用户界面软件能针对任意物种设计特异性的sgRNA,其可在BiooTools(http://www.biootools.com/)网站下载。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号