首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blood filtration in the kidney glomerulus is essential for physiological homeostasis. The filtration apparatus of the kidney glomerulus is composed of three distinct components: the fenestrated endothelial cells, the glomerular basement membrane, and interdigitating foot processes of podocytes that form the slit diaphragm. Recent studies have demonstrated that podocytes play a crucial role in blood filtration and in the pathogenesis of proteinuria and glomerular sclerosis; however, the molecular mechanisms that organize the podocyte filtration barrier are not fully understood. In this study, we suggest that tight junction protein 1 (Tjp1 or ZO-1), which is encoded by Tjp1 gene, plays an essential role in establishing the podocyte filtration barrier. The podocyte-specific deletion of Tjp1 down-regulated the expression of podocyte membrane proteins, impaired the interdigitation of the foot processes and the formation of the slit diaphragm, resulting in glomerular dysfunction. We found the possibility that podocyte filtration barrier requires the integration of two independent units, the pre-existing epithelial junction components and the newly synthesized podocyte-specific components, at the final stage in glomerular morphogenesis, for which Tjp1 is indispensable. Together with previous findings that Tjp1 expression was decreased in glomerular diseases in human and animal models, our results indicate that the suppression of Tjp1 could directly aggravate glomerular disorders, highlights Tjp1 as a potential therapeutic target.  相似文献   

2.
Integrins are transmembrane heteromeric receptors that mediate interactions between cells and extracellular matrix (ECM). β1, the most abundantly expressed integrin subunit, binds at least 12 α subunits. β1 containing integrins are highly expressed in the glomerulus of the kidney; however their role in glomerular morphogenesis and maintenance of glomerular filtration barrier integrity is poorly understood. To study these questions we selectively deleted β1 integrin in the podocyte by crossing β1flox/flox mice with podocyte specific podocin-cre mice (pod-Cre), which express cre at the time of glomerular capillary formation. We demonstrate that podocyte abnormalities are visualized during glomerulogenesis of the pod-Cre;β1flox/flox mice and proteinuria is present at birth, despite a grossly normal glomerular basement membrane. Following the advent of glomerular filtration there is progressive podocyte loss and the mice develop capillary loop and mesangium degeneration with little evidence of glomerulosclerosis. By 3 weeks of age the mice develop severe end stage renal failure characterized by both tubulointerstitial and glomerular pathology. Thus, expression of β1 containing integrins by the podocyte is critical for maintaining the structural integrity of the glomerulus.  相似文献   

3.
Podocytes are specialized epithelial cells covering the basement membrane of the glomerulus in the kidney. The molecular mechanisms underlying the role of podocytes in glomerular filtration are still largely unknown. We generated podocin-deficient (Nphs2-/-) mice to investigate the function of podocin, a protein expressed at the insertion of the slit diaphragm in podocytes and defective in a subset of patients with steroid-resistant nephrotic syndrome and focal and segmental glomerulosclerosis. Nphs2-/- mice developed proteinuria during the antenatal period and died a few days after birth from renal failure caused by massive mesangial sclerosis. Electron microscopy revealed the extensive fusion of podocyte foot processes and the lack of a slit diaphragm in the remaining foot process junctions. Using real-time PCR and immunolabeling, we showed that the expression of other slit diaphragm components was modified in Nphs2-/- kidneys: the expression of the nephrin gene was downregulated, whereas that of the ZO1 and CD2AP genes appeared to be upregulated. Interestingly, the progression of the renal disease, as well as the presence or absence of renal vascular lesions, depends on the genetic background. Our data demonstrate the crucial role of podocin in the establishment of the glomerular filtration barrier and provide a suitable model for mapping and identifying modifier genes involved in glomerular diseases caused by podocyte injuries.  相似文献   

4.
5.
6.
Aprotinin (Ap), a basic polypeptide with a molecular weight of 6500, is filtered at the glomerular membrane without steric restriction and is completely absorbed by the proximal tubule cells. Here Ap is broken down to amino acids, but no breakdown products enter the peritubular circulation during the first 20 min following an intravenous injection. These properties have recently been exploited for measurement of local glomerular filtration rate, based on the assumption that the proximal tubular uptake site is located at the level of the filtering glomerulus. To evaluate that assumption we have now made serial autoradiographs of the rat kidney 20 min after intravenous injection of 2-750 microg of 125I-Aprotinin. With all doses the percent 125I-containing proximal tubular transections were about 50 in the outer and middle cortex and 35 in the inner third. We interpret these numbers to mean that all filtered Ap is taken up in the first two thirds of the proximal convoluted tubular length and does not reach the pars recta. Since the proximal tubule on average is located more superficial than its glomerulus, measurement of local Ap uptake will tend to overestimate glomerular filtration rate in outer layers of the cortex. Quantitative estimate of this "displacement" will be presented in a companion article.  相似文献   

7.
Focal segmental glomerulosclerosis (FSGS), a type of primary glomerular disease, is the leading cause of end-stage renal disease (ESRD). Several studies have revealed that certain single-gene mutations are involved in the pathogenesis of FSGS; however, the main cause of FSGS has not been fully elucidated. Homozygous mutations in the glomerular basement membrane gene can lead to early renal failure, while heterozygous carriers develop renal failure symptoms late. Here, molecular genetic analysis of clinical information collected from clinical reports and medical records was performed. Results revealed that nephrosis 2 (NPHS2) gene polymorphism aggravated renal damage in three FSGS families with heterozygous COL4A3 mutation, leading to early renal failure in index patients. Our findings suggest that COL4A3 and NPHS2 may have a synergistic effect on renal injury caused by FSGS. Further analysis of the glomerular filtration barrier could help assess the cause of kidney damage. Moreover, a detailed analysis of the glomerular basement membrane-related genes and podocyte structural proteins may help us better understand FSGS pathogenesis and provide insights into the prognosis and treatment of hereditary glomerulonephropathy.  相似文献   

8.
Development of the renal glomerulus: good neighbors and good fences   总被引:1,自引:0,他引:1  
The glomerulus of the mammalian kidney is an intricate structure that contains an unusual filtration barrier that retains higher molecular weight proteins and blood cells in the circulation. Recent studies have changed our conception of the glomerulus from a relatively static structure to a dynamic one, whose integrity depends on signaling between the three major cell lineages: podocytes, endothelial and mesangial cells. Research into the signaling pathways that control glomerular development and then maintain glomerular integrity and function has recently identified several genes, such as the nephrin and Wilms' tumor 1 genes, that are mutated in human kidney disease.  相似文献   

9.
The glomerulus is a highly specialized capillary tuft, which under pressure filters large amounts of water and small solutes into the urinary space, while retaining albumin and large proteins. The glomerular filtration barrier (GFB) is a highly specialized filtration interface between blood and urine that is highly permeable to small and midsized solutes in plasma but relatively impermeable to macromolecules such as albumin. The integrity of the GFB is maintained by molecular interplay between its 3 layers: the glomerular endothelium, the glomerular basement membrane and podocytes, which are highly specialized postmitotic pericytes forming the outer part of the GFB. Abnormalities of glomerular ultrafiltration lead to the loss of proteins in urine and progressive renal insufficiency, underlining the importance of the GFB. Indeed, albuminuria is strongly predictive of the course of chronic nephropathies especially that of diabetic nephropathy (DN), a leading cause of renal insufficiency. We found that high glucose concentrations promote autophagy flux in podocyte cultures and that the abundance of LC3B II in podocytes is high in diabetic mice. Deletion of Atg5 specifically in podocytes resulted in accelerated diabetes-induced podocytopathy with a leaky GFB and glomerulosclerosis. Strikingly, genetic alteration of autophagy on the other side of the GFB involving the endothelial-specific deletion of Atg5 also resulted in capillary rarefaction and accelerated DN. Thus autophagy is a key protective mechanism on both cellular layers of the GFB suggesting autophagy as a promising new therapeutic strategy for DN.  相似文献   

10.
Podocytes are specialized cells of the kidney that form the blood filtration barrier in the kidney glomerulus. The barrier function of podocytes depends upon the development of specialized cell-cell adhesion complexes called slit-diaphragms that form between podocyte foot processes surrounding glomerular blood vessels. Failure of the slit-diaphragm to form results in leakage of high molecular weight proteins into the blood filtrate and urine, a condition called proteinuria. In this work, we test whether the zebrafish pronephros can be used as an assay system for the development of glomerular function with the goal of identifying novel components of the slit-diaphragm. We first characterized the function of the zebrafish homolog of Nephrin, the disease gene associated with the congenital nephritic syndrome of the Finnish type, and Podocin, the gene mutated in autosomal recessive steroid-resistant nephrotic syndrome. Zebrafish nephrin and podocin were specifically expressed in pronephric podocytes and required for the development of pronephric podocyte cell structure. Ultrastructurally, disruption of nephrin or podocin expression resulted in a loss of slit-diaphragms at 72 and 96 h post-fertilization and failure to form normal podocyte foot processes. We also find that expression of the band 4.1/FERM domain gene mosaic eyes in podocytes is required for proper formation of slit-diaphragm cell-cell junctions. A functional assay of glomerular filtration barrier revealed that absence of normal nephrin, podocin or mosaic eyes expression results in loss of glomerular filtration discrimination and aberrant passage of high molecular weight substances into the glomerular filtrate.  相似文献   

11.
朱亚男  敖英  李斌  万阳  汪晖 《遗传》2018,40(2):116-125
足细胞是肾小球滤过屏障的重要组成部分,其数量减少或功能障碍将导致肾小球滤过功能损伤和相关肾脏疾病的发生。足细胞为不可再生性细胞,其数量和功能在一定程度上取决于其正常发育。已发表的文献和本实验室的研究工作表明,遗传或不良宫内环境等原因所致的足细胞发育不良,可能导致成年后肾小球滤过功能障碍,并成为某些胎源性肾脏疾病发生或易感的病因之一,而表观遗传学机制可能参与介导足细胞发育过程中某些关键基因的表达异常。本文对足细胞结构功能和正常发育、足细胞发育异常的病因和机制、以及足细胞发育异常所致的肾脏疾病等几方面进行综述,以期对发育源性足细胞相关肾脏疾病的诊断与治疗提供借鉴与参考。  相似文献   

12.
13.
Many acquired and familial renal diseases in man lead to kidney dysfunction and nephrotic syndrome. These diseases share a common pathological fate in the form of glomerular dysfunction and proteinuria. Classification of the disease is difficult because the onset of pathological appearance in congenital nephrotic syndrome (CNS) varies considerably. Recently, classification has been aided by applying molecular genetics to identify genes involved in the pathogenesis of proteinuria. Light has also been shed on the biology and mechanisms of glomerular filtration and the molecular pathogenesis of CNS.  相似文献   

14.
Insulin-like growth factors (IGFs) and their binding proteins are implicated in the growth regulation of the kidney during embryogenesis and differentiation. Recent evidence also suggests that IGFs play a role in kidney physiology (glomerular filtration rate, renal plasma flow) and pathology (diabetic renal hypertrophy, nephritis, glomerulosclerosis, kidney tumours, chronic renal failure). This review focuses on the biology of IGFs at the molecular, protein and receptor levels and considers their importance in renal physiology and pathology. The current data demonstrate a central role for the IGFs in the mediation of a wide variety of effects on renal growth, function and malignancy.  相似文献   

15.
Glomerular filtration rates in whole kidney and in outer, middle and inner cortical zones have previously been estimated by measuring the amount of iodinated Aprotinin, filtered and taken up in the first two thirds of the proximal convoluted tubules, in part positioned more superficial than the parent glomerulus. Thus, an appreciable amount of the absorbed Aprotinin may be located superficial to its filtration site and lead to an underestimate of glomerular filtration in deep cortical layers. Therefore, in this study we have measured the distance from the glomerulus to the center of proximal convoluted tubular ball and the site of Aprotinin uptake. Measurements were made on photos of Microfil-injected tubules and on camera lucida drawings of tubular transections from autoradiographs of nephrons containing both Microfil and iodinated Aprotinin. Both techniques showed that the center of the tubular ball was localized more superficial in all cortical layers. The average distance, in percent of cortical thickness, from all proximal convoluted tubular transections to the parent glomerulus was 9% in deep and 13% in middle and superficial cortex. Corresponding distances for tubular transections containing Aprotinin were 7 and 12%. Grain density in five reconstructed proximal convoluted tubules showed a continuous and exponential fall of Aprotinin along the uptake segment. The results may be used to estimate single nephron filtration rate from Aprotinin uptake and glomerular density in outer, middle, and inner cortex.  相似文献   

16.
The glomerular filtration barrier is necessary for the selective passage of low molecular weight waste products and the retention of blood plasma proteins. Damage to the filter results in proteinuria. The filtration barrier is the major pathogenic site in almost all glomerular diseases and its study is therefore of clinical significance. We have taken advantage of the zebrafish pronephros as a system for studying glomerular filtration. In order to identify new regulators of filtration barrier assembly, we have performed a reverse genetic screen in the zebrafish testing a group of genes which are enriched in their expression within the mammalian glomerulus. In this novel screen, we have coupled gene knockdown using morpholinos with a physiological glomerular dye filtration assay to test for selective glomerular permeability in living zebrafish larvae. Screening 20 genes resulted in the identification of ralgps1, rapgef2, rabgef1, and crb2b. The crumbs (crb) genes encode a family of evolutionarily conserved proteins important for apical-basal polarity within epithelia. The crb2b gene is expressed in zebrafish podocytes. Electron microscopic analysis of crb2b morphants reveals a gross disorganization of podocyte foot process architecture and loss of slit diaphragms while overall polarity is maintained. Nephrin, a major component of the slit diaphragm, is apically mis-localized in podocytes from crb2b morphants suggesting that crb2b is required for the proper protein trafficking of Nephrin. This report is the first to show a role for crb function in podocyte differentiation. Furthermore, these results suggest a novel link between epithelial polarization and the maintenance of a functional filtration barrier.  相似文献   

17.
18.
Shao DC  Lu LM 《生理科学进展》2011,42(4):246-250
糖尿病肾病(diabetic kidney disease,DKD)作为诱发终末期肾脏病(end-stage renal disease,ESRD)的主要原因,至今其病理机制仍不十分清楚.DKD病程中蛋白尿持续增多并伴随肾素-血管紧张素系统(renin-angiotensin system,RAS)过度激活.阻断RAS能改善蛋白尿,有良好的临床肾脏保护作用.足细胞表达RAS的各成员,作为肾小球滤过的最后屏障,其损伤与蛋白尿的发生关系密切.本文就RAS与足细胞损伤在DKD病理中作用作一简单综述.  相似文献   

19.
Idiopathic nephrotic syndrome (INS) is caused by renal diseases that increase the permeability of the glomerular filtration barrier without evidence of a specific systemic cause. The aim of the present work was to reveal inherent molecular features of INS in children using combined urinary proteomics and metabolomics profiling. In this study, label-free mass spectrometric analysis of urinary proteins and small molecule metabolites was carried out in 12 patients with INS versus 12 sex- and age-matched control subjects with normal renal function. Integration and biological interpretation of obtained results were carried out by Ingenuity IPA software. Validation of obtained proteomics data was carried out by Western blot method. Proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD000765. This study indicates for the first time that paediatric INS is associated with up-regulation of afamin, hydroxyphenylacetate and uridine, and concomitant down-regulation in glutamine and phenylalanine levels, and many of these molecular species were previously shown to be involved in oxidative stress. Further studies in larger patient population are underway to investigate the role of oxidative stress in renal injury in paediatric INS.  相似文献   

20.
Diabetic nephropathy is a major long‐term complication of diabetes mellitus and one of the most common causes of end‐stage renal disease. Thickening of the glomerular basement membrane, glomerular cell hypertrophy and podocyte loss are among the main pathological changes that occur during diabetic nephropathy, resulting in proteinuria. Injury to podocytes, which are a crucial component of the glomerular filtration barrier, seems to play a key role in the development of diabetic nephropathy. Recent studies have suggested that dysregulation of AMP‐activated kinase protein, which is an essential cellular energy sensor, may play a fundamental role in this process. The purpose of this review is to highlight the molecular mechanisms associated with AMP‐activated protein kinase (AMPK) in podocytes that are involved in the pathogenesis of diabetic nephropathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号