首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leishmaniases are serious parasitic diseases the etiological organisms of which are transmitted by insect vectors, phlebotominae sand flies. Two sand fly species, Phlebotomus papatasi and P. sergenti, display remarkable specificity for Leishmania parasites they transmit in nature, but many others are broadly permissive to the development of different Leishmania species. Previous studies have suggested that in 'specific' vectors the successful parasite development is mediated by parasite surface glycoconjugates and sand fly lectins, however we show here that interactions involving 'permissive' sand flies utilize another molecules. We did find that the abundant surface glycoconjugate lipophosphoglycan, essential for attachment of Leishmania major in the specific vector P. papatasi, was not required for parasite adherence or survival in the permissive vectors P. arabicus and Lutzomyia longipalpis. Attachment in several permissive sand fly species instead correlated with the presence of midgut glycoproteins bearing terminal N-acetyl-galactosamine and with the occurrence of a lectin-like activity on Leishmania surface. This new binding modality has important implications for parasite transmission and evolution. It may contribute to the successful spreading of Leishmania due to their adaptation into new vectors, namely transmission of L. infantum by Lutzomyia longipalpis; this event led to the establishment of L. infantum/chagasi in Latin America.  相似文献   

2.
Visceral Leishmaniasis is an endemic disease in Brazil caused by Leishmania infantum chagasi and its main vector species is the sand fly Lutzomyia longipalpis. Epidemiological studies have used conventional PCR techniques to measure the rate of infection of sand flies collected in the field. However, real-time PCR can detect lower parasite burdens, reducing the number of false negatives and improving the quantification of Leishmania parasites in the sand fly. This study compared genes with various copy numbers to detect and quantify L. infantum chagasi in L. longipalpis specimens by real-time PCR. We mixed pools of 1, 10 and 30 male sand flies with various amounts of L. infantum chagasi, forming groups with 50, 500, 5000 and 50,000 Leishmania parasites. For the amplification of L. infantum chagasi DNA, primers targeting kDNA, polymerase α and the 18S ribosome subunit were employed. Parasites were measured by absolute and relative quantification. PCR detection using the amplification of kDNA exhibited the greatest sensitivity among the genes tested, showing the capacity to detect the DNA equivalent of 0.004 parasites. Additionally, the relative quantification using these primers was more accurate and precise. In general, the number of sand flies used for DNA extraction did not influence Leishmania quantification. However, for low-copy targets, such as the polymerase α gene, lower parasite numbers in the sample produced inaccurate quantifications. Thus, qPCR measurement of L. infantum chagasi in L. longipalpis was improved by targeting high copy-number genes; amplification of high copy-number targets increased the sensitivity, accuracy and precision of DNA-based parasite enumeration.  相似文献   

3.
Female phlebotomine sand flies Lutzomyia longipalpis naturally harbor populations of the medically important Leishmania infantum (syn. Leishmania chagasi) parasite in the gut, but the extent to which the parasite interacts with the immune system of the insect vector is unknown. To investigate the sand fly immune response and its interaction with the Leishmania parasite, we identified a homologue for caspar, a negative regulator of immune deficiency signaling pathway. We found that feeding antibiotics to adult female L. longipalpis resulted in an up-regulation of caspar expression relative to controls. caspar was differentially expressed when females were fed on gram-negative and gram-positive bacterial species. caspar expression was significantly down-regulated in females between 3 and 6 days after a blood feed containing Leishmania mexicana amastigotes. RNA interference was used to deplete caspar expression in female L. longipalpis, which were subsequently fed with Leishmania in a blood meal. Sand fly gut populations of both L. mexicana and L. infantum were significantly reduced in caspar-depleted females. The prevalence of L. infantum infection in the females fell from 85 to 45%. Our results provide the first insight into the operation of immune homeostasis in phlebotomine sand flies during the growth of bacterial and Leishmania populations in the digestive tract. We have demonstrated that the activation of the sand fly immune system, via depletion of a single gene, can lead to the abortion of Leishmania development and the disruption of transmission by the phlebotomine sand fly.  相似文献   

4.
Leishmania infantum, an etiologic agent of zoonotic visceral leishmaniasis, is endemic in the foxhound population in the United States and Canada. Leishmaniasis is usually transmitted by blood-feeding sand flies; however, epidemiological data do not support a significant role for sand flies in the maintenance of foxhound infections in North America, and an alternate mode of transmission may exist. The present study was conducted to determine if transplacental or direct transmission occurs in pregnant BALB/c mice experimentally infected with L. infantum isolated from a naturally infected foxhound from Virginia as well as to determine if the parasite was directly transmitted to the males used to breed the mice. Female BALB/c mice were intravenously inoculated with 1 x 10(6) promastigotes of the LIVT-1 strain of L. infantum. Mice were bred to uninfected male BALB/c mice 2 mo postinoculation. Pregnant mice were killed between days 13 and 18 of gestation. Pups and placentas were collected at necropsy, divided, and used for parasite culture and polymerase chain reaction (PCR) analyses. Culture and PCR analyses were performed on spleens from the male mice to determine the possibility of sexual transmission. Leishmania sp. DNA was detected in 4 of 88 pups and 3 of 16 placentas from LIVT-1-inoculated mice. One male mouse used to breed infected females was PCR positive. This work provides evidence for a low level of nonvector transmission of North American L. infantum in a mouse model.  相似文献   

5.
6.
7.
Female sand flies can acquire protozoan parasites in the genus Leishmania when feeding on an infected vertebrate host. The parasites complete a complex growth cycle in the sand fly gut until they are transmitted by bite to another host. Recently, a myoinhibitory peptide was isolated from Leishmania major promastigotes. This peptide caused significant gut distension and reversible, dose-dependent inhibition of spontaneous hindgut contractions in the enzootic sand fly vector, Phlebotomus papatasi. The current study further characterizes myoinhibitory activity in L. major and other kinetoplastid parasites, using the P. papatasi hindgut and other insect organ preparations. Myoinhibitory activity was greatest in cultured promastigotes and in culture medium in late log-phase and early stationary-phase, coinciding with development of infective Leishmania morphotypes in the sand fly midgut. L. major promastigote lysates inhibited spontaneous contractions of visceral muscle preparations from hemimetabolous (Blattaria and Hemiptera) and holometabolous (Diptera) insects. Inhibition of visceral muscle contractions in three insect orders indicates a conserved mode of action. Myoinhibitory activity was detected also in Leishmania braziliensis braziliensis, a Sudanese strain of Leishmania donovani, and the kinetoplastid parasite Leptomonas seymouri. Protozoan-induced myoinhibition mimics the effect of insect myotropins. Inhibiting host gut contractions protects Leishmania parasites from being excreted after blood meal and peritrophic matrix digestion, allowing development and transmission of infective forms.  相似文献   

8.
The regurgitation of metacyclic stages from the sand fly cardia is thought to be the prevailing mechanism of Leishmania transmission. This regurgitation may result through damage of the stomodeal valve and its mechanical block by the parasites. We found this phenomenon in three sand fly-Leishmania models and also in avian trypanosomes transmitted by Culex mosquitoes. Phlebotomus duboscqi, Phlebotomus papatasi, Lutzomyia longipalpis, and Culex pipiens were membrane-fed on blood containing Leishmania major, Leishmania chagasi (syn. infantum) and an unidentified avian Trypanosoma from Trypanosoma corvi clade, respectively. Females with the late-stage infections were processed for the optical and transmission electron microscopy. Localization of the parasites and changes to the stomodeal valve were in some aspects similar in all vector-parasite pairs studied: (i) a large plug of flagellates was observed in cardia region, (ii) parasites were attached to the chitin lining of the stomodeal valve by the formation of zonal hemidesmosome-like plaques. Leishmania promastigotes were found both attached to the valve as well as unattached in the lumen of midgut. The stomodeal valve of infected sand flies was opened, its chitin lining was destroyed and the unique filamentous structures on the apical end of cylindrical cells were degraded. In the Culex-Trypanosoma model, the whole population of epimastigotes was found in close contact with the chitin lining, and degenerative changes of the valve were less pronounced. We suggest that the phenomenon involving a blocked valve facilitating the regurgitation of parasites into the vertebrate host may occur generally in heteroxenous trypanosomatids transmitted by the bite of nematoceran Diptera.  相似文献   

9.
Wild-caught Phlebotomus ariasi Tonnoir permitted to feed on dogs infected with Leishmania infantum Nicolle were marked with fluorescent powder and released into their natural habitat in an uninhabited area of the Cévennes in southern France. Over a period of 29 days after release, 253 females were recaptured with CDC miniature light traps or by active search at night with portable UV lamps. The ovaries and infections in the alimentary tract were then examined. The females oviposited 6 nights after in infecting blood meal. Second blood meals were never taken during the maturation of eggs. During the first ovarian cycle, midgut infections with promastigotes were only moderately heavy. The intensity of infection increased markedly during the second ovarian cycle and, in the third ovarian cycle, the first pharynx infected with paramastigotes was seen (on day 19). From day 19 to day 29, 76% of the flies had pharyngeal infections. Three out of 19 sand flies with pharyngeal infections recaptured during this period had metacyclic promastigotes in their mouthparts. The long time required for parasites to reach the proboscis in completely natural conditions suggests that their presence in the mouthparts is not a prerequisite for transmission by bite. It is more likely that transmission is most commonly by the regurgitation of metacyclic promastigotes from the thoracic midgut following damage to the stomodaeal valve by chitinase produced by the parasite during its development in the gut of the fly. Nevertheless, it is reasonable to assume that the bite of a fly with metacyclic promastigotes in the proboscis (or salivary glands) would also be infective.  相似文献   

10.
The ability of the sand fly Phlebotomus (Adlerius) arabicus to transmit Leishmania tropica was studied experimentally using hyraxes (Procavia capensis), natural reservoir hosts of the parasite. Sand flies became infected with L. tropica after feeding on a lesion of needle-inoculated hyrax. Moreover, P. arabicus fed with L. tropica promastigotes transmitted the parasite to hyraxes by bite during a second bloodmeal. Although the animals remained asymptomatic after infective sand fly bite, they were PCR positive and infectious for naive sand flies. We have thus demonstrated cyclical transmission of L. tropica by P. arabicus in hyraxes. This confirms experimentally the vectorial competence of P. (Adlerius) arabicus, and demonstrates that asymptomatic reservoir hosts are infectious to appropriate vectors.  相似文献   

11.
Although Leishmania metacyclic promastigotes are generally considered resistant to human complement, studies of in vitro-cultured axenic stationary promastigotes using serum concentrations that approximate physiological plasma conditions indicate complement sensitivity. Natural Leishmania infection is caused by sand fly-inoculated promastigotes, whose complement resistance has not been analyzed systematically. We compared Leishmania susceptibility to human complement in L. infantum promastigotes derived from in vitro cultures and from sand flies. Phlebotomus perniciosus sand flies were fed with axenic promastigotes, L. infantum-infected U-937 cells, or spleen cells from L. infantum-infected hamsters. On selected days post-feeding, flies were dissected and promastigotes isolated; in addition, axenic promastigotes were obtained from culture at equivalent days of growth. In near-physiological serum concentration and temperature conditions, measurement of real-time kinetics of propidium iodide uptake showed that approximately 90% of axenic- and sand fly-derived promastigotes were rapidly killed by complement. We found no substantial differences between promastigotes from axenic culture, those isolated from flies on different post-feeding days, or those generated in flies fed with distinct inocula. The results indicate that Leishmania susceptibility to human complement is independent of promastigote developmental stage in the sand fly mid-gut and in axenic culture.  相似文献   

12.
Interspecies variations in lipophosphoglycan (LPG) have been the focus of intense study over the years due its role in specificity during sand fly-Leishmania interaction. This cell surface glycoconjugate is highly polymorphic among species with variations in sugars that branch off the conserved Gal(β1,4)Man(α1)-PO(4) backbone of repeat units. However, the degree of intraspecies polymorphism in LPG of Leishmania infantum (syn. Leishmania chagasi) is not known. In this study, intraspecific variation in the repeat units of LPG was evaluated in 16 strains of L. infantum from Brazil, France, Algeria and Tunisia. The structural polymorphism in the L. infantum LPG repeat units was relatively slight and consisted of three types: type I does not have side chains; type II has one β-glucose residue that branches off the disaccharide-phosphate repeat units and type III has up to three glucose residues (oligo-glucosylated). The significance of these modifications was investigated during in vivo interaction of L. infantum with Lutzomyia longipalpis, and in vitro interaction of the parasites and respective LPGs with murine macrophages. There were no consequential differences in the parasite densities in sand fly midguts infected with Leishmania strains exhibiting type I, II and III LPGs. However, higher nitric oxide production was observed in macrophages exposed to glucosylated type II LPG.  相似文献   

13.
Development of Leishmania infantum/Leishmania major hybrids was studied in two sand fly species. In Phlebotomus papatasi, which supported development of L. major but not L. infantum, the hybrids produced heavy late-stage infections with high numbers of metacyclic promastigotes. In the permissive vector Lutzomyia longipalpis, all Leishmania strains included in this study developed well. Hybrids were found to express L. major lipophosphoglycan, apparently enabling them to survive in P. papatasi midgut. The genetic exchange of the hybrids thus appeared to have enhanced their transmission potential and fitness. A potentially serious consequence is the future spread of the hybrids using this peridomestic and antropophilic vector.  相似文献   

14.
Leishmania infantum nicotinamidase, encoded by the Lipnc1 gene, converts nicotinamide into nicotinicacid to ensure Nicotinamide–Adenine–Dinucleotide (NAD+) biosynthesis. We were curious to explore the role of this enzyme during L. infantum development in its natural sand fly vector, Phlebotomus perniciosus (Diptera, Phlebotominae), using null mutants with a deleted Lipnc1 gene. The null mutants developed as well as the wild type L. infantum at the early time points post their ingestion within the bloodmeal. In contrast, once the blood meal digestion was completed, the null mutants were unable to develop further and establish late-stage infections. Data highlight the importance of the nicotinamide degradation pathway for Leishmania development in sand flies. They indicate that the endogenous nicotinamidase is essential for Leishmania development in the sand fly after the blood meal has been digested and the remnants defecated.  相似文献   

15.
The life cycle of Leishmania alternates between two main morphological forms: intracellular amastigotes in the mammalian host and motile promastigotes in the sand fly vector. Several different forms of promastigote have been described in sandfly infections, the best known of these being metacyclic promastigotes, the mammal-infective stages. Here we provide evidence that for Leishmania (Leishmania) mexicana and Leishmania (Leishmania) infantum (syn. chagasi) there are two separate, consecutive growth cycles during development in Lutzomyia longipalpis sand flies involving four distinct life cycle stages. The first growth cycle is initiated by procyclic promastigotes, which divide in the bloodmeal in the abdominal midgut and subsequently give rise to non-dividing nectomonad promastigotes. Nectomonad forms are responsible for anterior migration of the infection and in turn transform into leptomonad promastigotes that initiate a second growth cycle in the anterior midgut. Subsequently, leptomonad promastigotes differentiate into non-dividing metacyclic promastigotes in preparation for transmission to a mammalian host. Differences in timing, prevalence and persistence of the four promastigote stages were observed between L. mexicana and L. infantum in vivo, which were reproduced in cultures initiated with lesion amastigotes, indicating that development is to some extent governed by a programmed series of events. A new scheme for the life cycle in the subgenus Leishmania (Leishmania) is proposed that incorporates these findings.  相似文献   

16.
Lutzomyia longipalpis females received single and mixed infections with Endotrypanum and Leishmania. Two biological parameters were analyzed: the percentage of infected females and the distribution of flagellates in the gut of the females. The principal comparisons were performed between (1) two strains of Endotrypanum, (2) cloned versus primary sample of one strain of Endotrypanum, (3) Endotrypanum versus Leishmania guyanensis, and (4) the pattern of flagellates behaviour by optical microscopy in females with single or mixed infection versus the identification of parasites isolated from digestive tracts by isoenzyme electrophoresis. Flagellates of Endotrypanum showed distinct patterns of infection suggesting that there is variation between and within strains. The distribution of Endotrypanum and L. guyanensis differed significantly in relation to the colonization of the stomodeal valve. In co-infection with L. guyanensis, a large number of flagellates were seen to be plentifully infecting the stomodeal valve in significantly more specimens than in females infected by Endotrypanum only. However, the electrophoretic profiles of isoenzymes of parasites recovered from all co-infected specimens corresponded to Endotrypanum. This suggests that the mere correlation sand fly infection-biochemical analysis of isolates may induce parasitological incorrect consideration.  相似文献   

17.
Visceral leishmaniasis (VL) is an important health problem in Ardebil, where it borders Azerbaijan in the northwestern Iran. In spite of the presence of both cutaneous and visceral leishmaniasis (CL and VL) in northwestern Iran, previous researches have consistently revealed the etiologic agent of VL in the region to be Leishmania infantum. This is the first report of natural infection of Phlebotomus tobbi with L. infantum in Bilesavar district in the northern part of Ardebil province bordering Azerbaijan. Polymerase chain reaction (PCR) of kDNA, ITS1-rDNA, and CPB genes of the parasite followed by restriction fragment length polymorphism (RFLP) and gene sequencing analyses revealed presence of L. infantum in six out of 433 tested female sand fly specimens. Although sand flies of P. tobbi were infrequent, two out of 32 (6.25%) females captured in the area were found infected with the parasite. Phlebotomus perfiliewi transcaucasicus, the known vector of VL in the area, were the most dominant species but only four out of 273 (1.47%) tested were infected with L. infantum. This study showed that P. tobbi similar to P. perfiliewi transcaucasicus could play a significant role in the transmission of the L. infantum. However more investigations are needed to demonstrate that L. infantum is the only species circulating in the focus.  相似文献   

18.
Chitinases of trypanosomatid parasites have been proposed to fulfil various roles in their blood-feeding arthropod vectors but so far none have been directly tested using a molecular approach. We characterized the ability of Leishmania mexicana episomally transfected with LmexCht1 (the L. mexicana chitinase gene) to survive and grow within the permissive sand fly vector, Lutzomyia longipalpis. Compared with control plasmid transfectants, the overexpression of chitinase was found to increase the average number of parasites per sand fly and accelerate the escape of parasites from the peritrophic matrix-enclosed blood meal as revealed by earlier arrival at the stomodeal valve. Such flies also exhibited increased damage to the structure of the stomodeal valve, which may facilitate transmission by regurgitation. When exposed individually to BALB/c mice, those flies with chitinase-overexpressing parasites spent on average 2.4-2.5 times longer in contact with their host during feeding, compared with flies with control infections. Furthermore, the lesions that resulted from these single fly bite infections were both significantly larger and with higher final parasite burdens than controls. These data show that chitinase is a multifunctional virulence factor for L. mexicana which assists its survival in Lu. longipalpis. Specifically, this enzyme enables the parasites to colonize the anterior midgut of the sand fly more quickly, modify the sand fly stomodeal valve and affect its blood feeding, all of which combine to enhance transmission.  相似文献   

19.
In this study, a genotypification of Leishmania was performed using polimerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and sequencing techniques to identify species of Leishmania parasites in phlebotomine sand flies and dogs naturally infected. Between January-February of 2009, CDC light traps were used to collect insect samples from 13 capture sites in the municipality of Posadas, which is located in the province of Misiones of Argentina. Sand flies identified as Lutzomyia longipalpis were grouped into 28 separate pools for molecular biological analysis. Canine samples were taken from lymph node aspirates of two symptomatic stray animals that had been positively diagnosed with canine visceral leishmaniasis. One vector pool of 10 sand flies (1 out of the 28 pools tested) and both of the canine samples tested positively for Leishmania infantum by PCR and RFLP analysis. PCR products were confirmed by sequencing and showed a maximum identity with L. infantum. Given that infection was detected in one out of the 28 pools and that at least one infected insect was infected, it was possible to infer an infection rate at least of 0.47% for Lu. longipalpis among the analyzed samples. These results contribute to incriminate Lu. longipalpis as the vector of L. infantum in the municipality of Posadas, where cases of the disease in humans and dogs have been reported since 2005.  相似文献   

20.
Leishmania promastigotes are introduced into the skin by blood-sucking phlebotomine sand flies. In the vertebrate host, promastigotes invade macrophages, transform into amastigotes and multiply intracellularly. Sand fly saliva was shown to enhance the development of cutaneous leishmaniasis lesions by inhibiting some immune functions of the host macrophages. This study demonstrates that sand fly saliva promotes parasite survival and proliferation. First, macrophages gravitated towards increasing concentrations of sand fly saliva in vitro. Secondly, saliva increased the percentage of macrophages that became infected with Leishmania promastigotes and exacerbated the parasite load in these cells. Thus, during natural transmission, saliva probably reduces the exposure of promastigotes to the immune system by attracting macrophages to the parasite inoculation site and by accelerating the entry of promastigotes into macrophages. Saliva may also enhance lesion development by shortening the generation time of dividing intracellular amastigotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号