首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Phylogenetic relationships among the 5 groups of extant seed plants are presently unsettled. To reexamine this long-standing debate, we determine the complete chloroplast genome (cpDNA) of Cycas taitungensis and 56 protein-coding genes encoded in the cpDNA of Gnetum parvifolium. The cpDNA of Cycas is a circular molecule of 163,403 bp with 2 typical large inverted repeats (IRs) of 25,074 bp each. We inferred phylogenetic relationships among major seed plant lineages using concatenated 56 protein-coding genes in 37 land plants. Phylogenies, generated by the use of 3 independent methods, provide concordant and robust support for the monophylies of extant seed plants, gymnosperms, and angiosperms. Within the modern gymnosperms are 2 highly supported sister clades: Cycas-Ginkgo and Gnetum-Pinus. This result agrees with both the "gnetifer" and "gnepines" hypotheses. The sister relationships in Cycas-Ginkgo and Gnetum-Pinus clades are further reinforced by cpDNA structural evidence. Branch lengths of Cycas-Ginkgo and Gnetum were consistently the shortest and the longest, respectively, in all separate analyses. However, the Gnetum relative rate test revealed this tendency only for the 3rd codon positions and the transversional sites of the first 2 codon positions. A PsitufA located between psbE and petL genes is here first detected in Anthoceros (a hornwort), cycads, and Ginkgo. We demonstrate that the PsitufA is a footprint descended from the chloroplast tufA of green algae. The duplication of ycf2 genes and their shift into IRs should have taken place at least in the common ancestor of seed plants more than 300 MYA, and the tRNAPro-GGG gene was lost from the angiosperm lineage at least 150 MYA. Additionally, from cpDNA structural comparison, we propose an alternative model for the loss of large IR regions in black pine. More cpDNA data from non-Pinaceae conifers are necessary to justify whether the gnetifer or gnepines hypothesis is valid and to generate solid structural evidence for the monophyly of extant gymnosperms.  相似文献   

2.
3.
Crisp MD  Cook LG 《The New phytologist》2011,192(4):997-1009
We test the widely held notion that living gymnosperms are 'ancient' and 'living fossils' by comparing them with their sister group, the angiosperms. This perception derives partly from the lack of gross morphological differences between some Mesozoic gymnosperm fossils and their living relatives (e.g. Ginkgo, cycads and dawn redwood), suggesting that the rate of evolution of gymnosperms has been slow. We estimated the ages and diversification rates of gymnosperm lineages using Bayesian relaxed molecular clock dating calibrated with 21 fossils, based on the phylogenetic analysis of alignments of matK chloroplast DNA (cpDNA) and 26S nuclear ribosomal DNA (nrDNA) sequences, and compared these with published estimates for angiosperms. Gymnosperm crown groups of Cenozoic age are significantly younger than their angiosperm counterparts (median age: 32 Ma vs 50 Ma) and have long unbranched stems, indicating major extinctions in the Cenozoic, in contrast with angiosperms. Surviving gymnosperm genera have diversified more slowly than angiosperms during the Neogene as a result of their higher extinction rate. Compared with angiosperms, living gymnosperm groups are not ancient. The fossil record also indicates that gymnosperms suffered major extinctions when climate changed in the Oligocene and Miocene. Extant gymnosperm groups occupy diverse habitats and some probably survived after making adaptive shifts.  相似文献   

4.
Relationships among the five groups of extant seed plants (cycads, Ginkgo, conifers, Gnetales, and angiosperms) remain uncertain. To explore relationships among groups of extant seed plants further and to attempt to explain the conflict among molecular data sets, we assembled a data set of four plastid (cpDNA) genes (rbcL, atpB, psaA, and psbB), three mitochondrial (mtDNA) genes (mtSSU, coxI, and atpA), and one nuclear gene (18S rDNA) for 19 exemplars representing the five groups of living seed plants. Analyses of the combined eight-gene data set (15?772 base pairs/taxon) with maximum parsimony (MP), maximum likelihood (ML), and Bayesian approaches reveal a gymnosperm clade that is sister to angiosperms. Within the gymnosperms, a conifer clade includes Gnetales as sister to Pinaceae. Cycads and Ginkgo are either successive sisters to this conifer clade (including Gnetales) or a clade that is sister to conifers and Gnetales. All analyses of the mtDNA partition and ML analyses of the nuclear partition yield very similar topologies. However, MP analyses of the combined cpDNA genes place Gnetales as sister to all other seed plants with strong bootstrap support, whereas ML and Bayesian analyses of the cpDNA data set place Gnetales as sister to Pinaceae. Maximum parsimony and ML analyses of first and second codon positions of the cpDNA partiation also place Gnetales as sister to Pinaceae. In contrast, MP analyses of third codon positions place Gnetales as sister to other seed plants, although ML analyses of third codon positions place Gnetales with Pinaceae. Thus, most of the discrepancies in seed plant topologies involve third codon positions of cpDNA genes. The likelihood ratio (LR) and Shimodaira-Hasegasa (SH) tests were applied to the cpDNA data. The preferred topology based on the LR test is that Gnetales are sister to Pseudotsuga. The SH test based on first and second codon and all three codon positions indicated that there is no significant difference between the best topology (Gnetales sister to Pseudotsuga) and Gnetales sister to a conifer clade. However, there is a significant difference between the best topology and topologies in which Gnetales are sister to the rest of the seed plants or Gnetales sister to angiosperms.  相似文献   

5.
To gain insights into the nature of the mitochondrial genome in the common ancestor of all green plants, we have completely sequenced the mitochondrial DNA (mtDNA) of Mesostigma viride. This green alga belongs to a morphologically heterogeneous class (Prasinophyceae) that includes descendants of the earliest diverging green plants. Recent phylogenetic analyses of ribosomal RNAs (rRNAs) and concatenated proteins encoded by the chloroplast genome identified Mesostigma as a basal branch relative to the Streptophyta and the Chlorophyta, the two phyla that were previously thought to contain all extant green plants. The circular mitochondrial genome of Mesostigma resembles the mtDNAs of green algae occupying a basal position within the Chlorophyta in displaying a small size (42,424 bp) and a high gene density (86.6% coding sequences). It contains 65 genes that are conserved in other mtDNAs. Although none of these genes represents a novel coding sequence among green plant mtDNAs, four of them (rps1, sdh3, sdh4, and trnL[caa]) have not been reported previously in chlorophyte mtDNAs, and two others (rpl14 and trnI[gau]) have not been identified in the streptophyte mtDNAs examined so far (land-plant mtDNAs). Phylogenetic analyses of 19 concatenated mtDNA-encoded proteins favor the hypothesis that Mesostigma represents the earliest branch of green plant evolution. Four group I introns (two in rnl and two in cox1) and three group II introns (two in nad3 and one in cox2), two of which are trans-spliced at the RNA level, reside in Mesostigma mtDNA. The insertion sites of the three group II introns are unique to this mtDNA, suggesting that trans-splicing arose independently in the Mesostigma lineage and in the Streptophyta. The few structural features that can be regarded as ancestral in Mesostigma mtDNA predict that the common ancestor of all green plants had a compact mtDNA containing a minimum of 75 genes and perhaps two group I introns. Considering that the mitochondrial genome is much larger in size in land plants than in Mesostigma, we infer that mtDNA size began to increase dramatically in the Streptophyta either during the evolution of charophyte green algae or during the transition from charophytes to land plants.  相似文献   

6.
7.
8.
The chloroplast (cp) DNA type and mitochondrial (mt) DNA composition of 17 somatic hybrids between a cytoplasmic albino tomato and monoploid potato (A7-hybrids) and 18 somatic hybrids between a nitrate reductase-deficient tomato and monoploid potato (C7-hybrids) were analyzed. Thirteen A7-hybrids and 9 C7-hybrids were triploids (with one potato genome); the other hybrids were tetraploid. As expected, all A7-hybrids contained potato cpDNA. Of the C7-hybrids 7 had tomato cpDNA, 10 had potato cpDNA and 1 hybrid contained both tomato and potato cpDNA. The mtDNA composition of the hybrids was analyzed by hybridization of Southern blots with four mtDNA-specific probes. The mtDNAs in the hybrids had segregated independently from the cpDNAs. Nuclear DNA composition (i.e. one or two potato genomes) did not influence the chloroplast type in the C7-hybrids, nor the mtDNA composition of A7- or C7-hybrids. From the cosegregation of specific mtDNA fragments we inferred that both tomato and potato mtDNAs probably have a coxII gene closely linked to 18S+5S rRNA genes. In tomato, atpA, and in potato, atp6 seems to be linked to these mtDNA genes.  相似文献   

9.
Whether the Amborella/Amborella-Nymphaeales or the grass lineage diverged first within the angiosperms has recently been debated. Central to this issue has been focused on the artifacts that might result from sampling only grasses within the monocots. We therefore sequenced the entire chloroplast genome (cpDNA) of Phalaenopsis aphrodite, Taiwan moth orchid. The cpDNA is a circular molecule of 148,964 bp with a comparatively short single-copy region (11,543 bp) due to the unusual loss and truncation/scattered deletion of certain ndh subunits. An open reading frame, orf91, located in the complementary strand of the rrn23 was reported for the first time. A comparison of nucleotide substitutions between P. aphrodite and the grasses indicates that only the plastid expression genes have a strong positive correlation between nonsynonymous (Ka) and synonymous (Ks) substitutions per site, providing evidence for a generation time effect, mainly across these genes. Among the intron-containing protein-coding genes of the sampled monocots, the Ks of the genes are significantly correlated to transitional substitutions of their introns. We compiled a concatenated 61 protein-coding gene alignment for the available 20 cpDNAs of vascular plants and analyzed the data set using Bayesian inference, maximum parsimony, and neighbor-joining (NJ) methods. The analyses yielded robust support for the Amborella/Amborella-Nymphaeales-basal hypothesis and for the orchid and grasses together being a monophyletic group nested within the remaining angiosperms. However, the NJ analysis using Ka, the first two codon positions, or amino acid sequences, respectively, supports the monocots-basal hypothesis. We demonstrated that these conflicting angiosperm phylogenies are most probably linked to the transitional sites at all codon positions, especially at the third one where the strong base-composition bias and saturation effect take place.  相似文献   

10.
Evolution of Reproductive Organs in Land Plants   总被引:4,自引:0,他引:4  
LEAFY gene is the positive regulator of the MADS-box genes in flower primordia. The number of MADS-box genes presumably increased by gene duplications before the divergence of ferns and seed plants. Most MADS-box genes in ferns are expressed similarly in both vegetative and reproductive organs, while in gymnosperms, some MADS-box genes are specifically expressed in reproductive organs. This suggests that (1) the increase in the number of MADS-box genes and (2) the subsequent recruitment of some MADS-box genes as homeotic selector genes were important for the evolution of complex reproductive organs. The phylogenetic tree including both angiosperm and gymnosperm MADS-box genes indicates the loss of the A-function genes in the gymnosperm lineage, which is presumably related to the absence of perianths in extant gymnosperms. Comparison of expression patterns of orthologous MADS-box genes in angiosperms, Gnetales, and conifers supports the sister relationship of Gnetales and conifers over that of Gnetales and angiosperms predicted by phylogenetic trees based on amino acid and nucleotide sequences. Received 30 July 1999/ Accepted in revised form 9 September 1999  相似文献   

11.
Summary Complete or partial nucleotide sequences of five different rRNA species, coded by nuclear (18S, 5.8S, and 5S) or chloroplast genomes (5S, 4.5S) from a number of seed plants were determined. Based on the sequence data, the phylogenetic dendrograms were built by two methods, maximum parsimony and compatibility. The topologies of the trees for different rRNA species are not fully congruent, but they share some common features. It may be concluded that both gymnosperms and angiosperms are monophyletic groups. The data obtained suggest that the divergence of all the main groups of extant gymnosperms occurred after the branching off of the angiosperm lineage. As the time of divergence of at least some of these gymnosperm taxa is traceable back to the early Carboniferous, it may be concluded that the genealogical splitting of gymnosperm and angiosperm lineages occurred before this event, at least 360 million years ago, i.e., much earlier than the first angiosperm fossils were dated. Ancestral forms of angiosperms ought to be searched for among Progymnospermopsida. Genealogical relationships among gymnosperm taxa cannot be deduced unambiguously on the basis of rRNA data. The only inference may be that the taxon Gnetopsida is an artificial one, andGnetum andEphedra belong to quite different lineages of gymnosperms. As to the phylogenetic position of the two Angiospermae classes, extant monocotyledons seem to be a paraphyletic group located near the root of the angiosperm branch; it emerged at the earliest stages of angiosperm evolution. We may conclude that either monocotyledonous characters arose independently more than once in different groups of ancient Magnoliales or that monocotyledonous forms rather than dicotyledonous Magnoliales were the earliest angiosperms. Judging by the rRNA trees, Magnoliales are the most ancient group among dicotyledons. The most ancient lineage among monocotyledons leads to modern Liliaceae.  相似文献   

12.
Molecular phylogenetic data have drastically changed the views on the phylogeny of higher plants. All the extant gymnosperms were asserted as a monophyletic group opposed to the highly isolated angiosperms. The 'Anthophyte Theory' was thus rejected. The identification and analysis of gymnosperm orthologues of genes regulating flower development in angiosperms resulted in the formulation of the 'Mostly Male Theory' of the evolutionary origin of flower; this theory does not contradict the concept of monophyly of all the extant gymnosperms. The Mostly Male Theory assumes that the origin of angiosperms was caused by a loss of the Needle family gene that effected ovuliferous (female) organs and the translocation of the ovules onto the adaxial side of some of the (male) leafy microsporangiophores. Having acquired ovules, the former microsporangiophores started evolving into the carpels. The prerequisite bisexual design of the ancestral fructification thus becomes unnecessary. Indeed, this assumption suggests the deriving of Angiosperms from any gymnosperm plant with leafy microsporangiophores. The problem of carpel origin has subsequently changed to some degree into the problem of the origin of the bitegmic anatropous ovule presumably inherent in ancestral Angiosperms. The Mostly Male Theory consideredeither Corystospermataceae (= Umkomasiaceae) or Caytoniaceae to be the forerunners of such an ovule. Yet the capsules of Corystospermataceae distinctly differ from angiosperm ovules in the locations of their adaxial/abaxial sides, while Caytoniaceae had no leafy microsporangiophores. This inconsistency suggests that functions of the Needle family regulatory genes in Gymnosperms should be much better understood to appraise properly both the possibilities and the consequences of their hypothetical loss by the emerging angiosperms. Moreover, the extant gymnosperm groups are actually held as monophyletic and contrasted to Angiosperms on the basis of analysing the unrepresentative scant remnants of these, mostly extinct, taxa. Therefore, traditional botanical and paleobotanical data should not be rejected. In any case, Meyen's idea angiosperms origin from Bennettitales is worth being retained as a hypothesis to be tested with new results of both paleobotany and molecular biology.  相似文献   

13.
Although conifers are of immense ecological and economic value, bioengineering of their chloroplasts remains undeveloped. Understanding the chloroplast genomic organization of conifers can facilitate their bioengineering. Members of the conifer II clade (or cupressophytes) are highly diverse in both morphologic features and chloroplast genomic organization. We compared six cupressophyte chloroplast genomes (cpDNAs) that represent four of the five cupressophyte families, including three genomes that are first reported here (Agathis dammara, Calocedrus formosana and Nageia nagi). The six cupressophyte cpDNAs have lost a pair of large inverted repeats (IRs) and vary greatly in size, organization and tRNA copies. We demonstrate that cupressophyte cpDNAs have evolved towards reduced size, largely due to shrunken intergenic spacers. In cupressophytes, cpDNA rearrangements are capable of extending intergenic spacers, and synonymous mutations are negatively associated with the size and frequency of rearrangements. The variable cpDNA sizes of cupressophytes may have been shaped by mutational burden and genomic rearrangements. On the basis of cpDNA organization, our analyses revealed that in gymnosperms, cpDNA rearrangements are phylogenetically informative, which supports the ‘gnepines’ clade. In addition, removal of a specific IR influences the minimal rearrangements required for the gnepines and cupressophyte clades, whereby Pinaceae favours the removal of IRB but cupressophytes exclusion of IRA. This result strongly suggests that different IR copies have been lost from conifers I and II. Our data help understand the complexity and evolution of cupressophyte cpDNAs.  相似文献   

14.
Class B floral homeotic genes play a key role in specifying the identity of male reproductive organs (stamens) and petals during the development of flowers. Recently, close relatives (orthologues) of these genes have been found in diverse gymnosperms, the sister group of the flowering plants (angiosperms). The fact that such genes have not been found so far, despite considerable efforts, in mosses, ferns or algae, has been taken as evidence to suggest that B genes originated 300–400 million years ago in a lineage that led to extant seed plants. Gymnosperms do not develop petals, and their male reproductive organs deviate considerably from angiosperm stamens. So what is the function of gymnosperm B genes? Recent experiments revealed that B genes from diverse extant gymnosperms are exclusively expressed in male reproductive organs (microsporophylls). At least for some of these genes it has been shown that they can partially substitute for the Arabidopsis B genes AP3 and PI in ectopic expression experiments, or even partially substitute these genes in different class B floral organ identity gene mutants. This functional complementation, however, is restricted to male organ development. These findings strongly suggest that gymnosperm and angiosperm B genes have highly related interaction partners and equivalent functions in the male organs of their different host species. It seems likely that in extant gymnosperms B genes have a function in specifying male reproductive organs. This function was probably established already in the most recent common ancestor of extant gymnosperms and angiosperms (seed plants) 300 million years ago and thus represents the ancestral function of seed plant B genes, from which other functions (e.g., in specifying petal identity) might have been derived. This suggests that the B gene function is part of an ancestral sex determination system in which B gene expression specifies male reproductive organ development, while the absence of B gene expression leads to the formation of female reproductive organs. Such a simple switch mechanism suggests that B genes might have played a central role during the origin of flowers. In the out-of-male and out-of-female hypotheses changes in B gene expression led to the origin of hermaphroditic flower precursors out of male or female gymnosperm reproductive cones, respectively. We compare these hypotheses with other recent molecular hypotheses on the origin of flowers, in which C/D and FLORICAULA/LEAFY-like genes is given a more prominent role, and we suggest how these hypotheses might be tested in the future.  相似文献   

15.
The cellular and molecular biology of conifer embryogenesis   总被引:4,自引:0,他引:4  
Gymnosperms and angiosperms are thought to have evolved from a common ancestor c. 300 million yr ago. The manner in which gymnosperms and angiosperms form seeds has diverged and, although broad similarities are evident, the anatomy and cell and molecular biology of embryogenesis in gymnosperms, such as the coniferous trees pine, spruce and fir, differ significantly from those in the most widely studied model angiosperm Arabidopsis thaliana. Molecular analysis of signaling pathways and processes such as programmed cell death and embryo maturation indicates that many developmental pathways are conserved between angiosperms and gymnosperms. Recent genomics research reveals that almost 30% of mRNAs found in developing pine embryos are absent from other conifer expressed sequence tag (EST) collections. These data show that the conifer embryo differs markedly from other gymnosperm tissues studied to date in terms of the range of genes transcribed. Approximately 72% of conifer embryo-expressed genes are found in the Arabidopsis proteome and conifer embryos contain mRNAs of very similar sequence to key genes that regulate seed development in Arabidopsis. However, 1388 loblolly pine (Pinus taeda) embryo ESTs (11.4% of the collection) are novel and, to date, have been found in no other plant. The data imply that, in gymnosperm embryogenesis, differences in structure and development are achieved by subtle molecular interactions, control of spatial and temporal gene expression and the regulating agency of a few unique proteins.  相似文献   

16.
Expression patterns from in situ hybridization of four MADS-box genes (GGM7, GGM9, GGM11, and GGM15) from the gymnosperm species Gnetum gnemon are presented. Together with previously published data about putative orthologs of floral homeotic genes from G. gnemon (GGM2, GGM3, GGM13), we describe seven temporally and spatially distinct expression patterns in male, female or both types of reproductive units which very likely reflect the diversity of MADS-box gene function in gymnosperm cones. There is evidence that some aspects of the observed differential expression have been conserved since the last common ancestor of extant angiosperms and gymnosperms about 300 million years ago.Edited by R.J. Sommer  相似文献   

17.
Pines provide a model system for the gymnosperms, an old and successful group of vascular plants that last shared a common ancestor with the angiosperms about 285 million years ago. Gymnosperms are distinct from angiosperms in their reproduction, development, metabolism, adaptations, and evolution. Pines cover vast areas of the globe, are one of the most important genera of forest trees, dominate the ecology of many temperate and subtropical forest ecosystems, and provide a major fraction of the world's wood. Here, we summarize many features of pine that make it a useful model for gymnosperms and woody plants. We also describe the influence of its reproductive system on methods for genetic analysis and the prospects for genomic studies and genetic engineering. Pines are limited as model systems by their long generation times, large size, large genomes, and the long time from fertilization to seed set.  相似文献   

18.
Unlignified primary cell walls containing ester-linked ferulic acid fluoresce blue in ultraviolet radiation which changes to green with increased intensity on treatment with ammonium hydroxide. Using this fluorescence behaviour, we detected ester-linked ferulic acid in the primary cell walls of all 41 species of gymnosperms we examined. These species were in 17 families representing all four extant classes of gymnosperms. In addition, we obtained cell-wall preparations containing >95% primary cell walls from nine gymnosperm species in nine families, representing all four extant classes. These preparations were analysed for ester-linked monomeric phenolic acids. We found ferulic acid (mostly trans) (88-1,561μg/g cell walls) in all of the preparations and p-coumaric acid (mostly trans) (0-106μg/g cell walls) in all except one of them. Ferulic acid ester-linked to primary cell walls has previously been found in angiosperms: in the commelinoid monocotyledons and in the dicotyledon order Caryophyllales, both monophyletic groups. From the present results, we postulate that the extant classes of gymnosperms are monophyletic and no class is sister to the angiosperms.  相似文献   

19.
20.
Although many SINE families have been identified in the animal kingdom, only a few SINE families have been identified in plants, and their distribution is somewhat limited. The Au SINE (Au) has been found discontinuously in basal angiosperms, monocots, and eudicots. In this study, we examined the presence of the Au in gymnosperms and ferns by PCR using internal primers for Au. As a result, we found Au in a gymnosperm species, Ephedra ciliata. Therefore, Au was supposed to be present in the common ancestor of angiosperms and gymnosperms. The Au in E. ciliate was 15 bp shorter than the consensus sequence, which is similar to the Au SINE found in Glycine. However, the 3'end of the Au found in E. ciliate was more similar to the 3'end of the Medicago-type Au than that of the Glycine-type Au. A phylogenetic tree indicated that the Au sequence from E. ciliate is more closely related to the sequence found in Glycine than that found in Medicago/Lotus. These results indicated that Au were present in both angiosperms and gymnosperms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号