首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The geoecological conditions of Xizang (Tibet) are very complicated. An approach on the floristic phytogeographical differentiation of Xizang has been made in the present paper with a quantitative floristic method. According to areal types of the species the flora of Xizang may be classified under five major geoelements: the north temperate zone geo-element (N), the Central Asiatic geoelemcnt (C), the Qinghai-Xizang Tibetan Plateau geo-element (T), the Sino-Himalayan geo-element (SH) and the tropical geo-element (Tr). Different diagrams of spectra of floristic elements of Xizang are presented. Four cross-sections were chosen for illustrating the regional differentiation of spectra of floristic elements of Xizang. It is obvious that the SH-geo-element prevails in the Eastern and Southeastern Xizang and the Trgeo-element is confined at lower elevation of the southern flanks of the Himalayas. On the contrary, on the Plateau proper the Tgeoelement dominates and the C-geo-element plays a significant role in the northwestern part of Xizang. It corresponds to the following horizontal zones of vegetation from southeast to northwest: montane forest-alpine meadow-alpine steppe-alpine desert. An example at the southern slopes of the Eastern Himalayas has been taken to investigate the vertical variation of the spectra of floristic elements, the boundary between the both subbelts of the montane evergreen broad-leaved forest belt at an elevation of 1,800 m has been proposed as the upper limit dominated by the tropical geo-element. On the basis of dominance spectra of the fioristic elements in the grid-square system floristic boundaries are defined, which separate different floristic regions from one another, thereafter a floristic division of Xizang has been discussed. There are the sub-region of the "Himalayan flanks belonging to the Indo-Malaysian sub-kingdom of the Palaeotropical kingdom, the Sino-Himalayan sub-kingdom and the Qinghai-Xizang Plateau sub-kingdom of the Holarctic kingdom.  相似文献   

2.
西双版纳森林植被研究   总被引:1,自引:0,他引:1       下载免费PDF全文
西双版纳是世界生物学多样性保护的关键和热点地区,倍受国际学术界的关注。笔者依据30多年来对西双版纳植被的调查,结合植物群落生态学与植物区系地理学研究,并参考世界类似热带植被的研究成果,对西双版纳植被的分类、物种组成、群落生态表现和植物区系特征等作了系统探讨,还进一步分析比较了其与世界类似热带森林植被的关系。结果显示,西双版纳的森林植被共包括32个较为典型的群系,且分属于7个主要的植被型,即热带雨林、热带季节性湿润林、热带季雨林、热带山地(低山)常绿阔叶林、热带棕榈林、暖热性针叶林和竹林。本文对西双版纳植被进行的全面记录和系统归纳,可为科学研究、生物多样性保护和自然保护区的管理提供参考。  相似文献   

3.
A new scheme of altitudinal and latitudinal vegetation zonation is proposed for eastern Asia. The latitudinal patterns of mountain vegetation zonation show a clear boundary at ca. 20°–30° N. For the tropical mountains south of 20° N, the altitudinal series includes tropical lowland, tropical lower montane, and tropical upper montane zones. For the temperate mountains north of 30° N, the series includes temperate lowland, temperate lower montane, and temperate upper montane zones. The mountains located between 20° and 30° N show a transitional zonation pattern; the lower two zones are comparable to the lower two of the tropical zonation (tropical lowland and tropical lower montane), and the upper two zones are comparable to those of the temperate zonation (temperate lower montane and temperate upper montane). The tropical upper montane zone is not found north of 20°–30° N, while the tropical lower montane zone reaches down to sea level and constitutes the temperate lowland zone. Thus the zonation between 20° and 30° N includes tropical lowland, tropical lower montane/temperate lowland, temperate lower montane, and temperate upper montane zones. The latitudinal series of lowland rain forests follows the scheme of climatic division into tropical, subtropical/warm-temperate, cool-temperate and cold-temperate, with a shift of the respective life forms, evergreen, evergreen notophyllous, deciduous, and evergreen needle-leaved. The tropical lower montane forest can be correlated to the horizontal subtropical/ warm-temperate zone. The temperate altitudinal and latitudinal zonations above 30° N are correlated and show an inclined parallel pattern from high altitudes in the south to low altitudes down to sea level in the north.  相似文献   

4.
全东丽  宋亮  沈婷  吴毅  李苏  卢华正 《广西植物》2021,41(3):404-417
为探讨西双版纳热带雨林和热带山地常绿阔叶林附生苔藓的组成、多样性格局及其维持机制,该文对两种植被的树干附生苔藓植物进行了调查与分析。所选择的样地位于西双版纳勐腊县,每种植被类型选择10个20 m×20 m的样方,每个样方选择约10棵样树。结果表明:(1)本调查共记录到附生苔藓20科39属60种,其中热带雨林附生苔藓有19科33属48种,热带山地常绿阔叶林附生苔藓有9科14属19种,共有种6种。(2)热带雨林最优势科为平藓科,热带山地常绿阔叶林最优势科为锦藓科。(3)热带雨林比热带山地常绿阔叶林具有更高的物种丰富度、β多样性和γ多样性。(4)不同径级和不同树皮粗糙度宿主上附生苔藓植物的盖度差异显著,而物种丰富度差异不显著。(5)苔藓植物的生活型对植被类型有所偏好,表现为悬垂型、扇型、交织型、粗平铺型集聚于热带雨林,丛集型、垫状型、细平铺型集聚于热带山地常绿阔叶林。(6)直接排序结果表明,宿主特性特别是树皮粗糙度显著影响苔藓植物生活型的组成和分布。热带雨林比热带山地常绿阔叶林能提供更多样的微生境,因而孕育了物种更丰富的附生苔藓植物。考虑到不同的植被类型或宿主特性条件下孕育着不同生活型组成的苔藓植物,因此可将苔藓生活型作为今后森林监测的一项重要指标。  相似文献   

5.
Mount Kenya is of ecological importance in tropical east Africa due to the dramatic gradient in vegetation types that can be observed from low to high elevation zones. However, species richness and phylogenetic diversity of this mountain have not been well studied. Here, we surveyed distribution patterns for a total of 1,335 seed plants of this mountain and calculated species richness and phylogenetic diversity across seven vegetation zones. We also measured phylogenetic structure using the net relatedness index (NRI) and the nearest species index (NTI). Our results show that lower montane wet forest has the highest level of species richness, density, and phylogenetic diversity of woody plants, while lower montane dry forest has the highest level of species richness, density, and phylogenetic diversity in herbaceous plants. In total plants, NRI and NTI of four forest zones were smaller than three alpine zones. In woody plants, lower montane wet forest and upper montane forest have overdispersed phylogenetic structures. In herbaceous plants, NRI of Afro‐alpine zone and nival zone are smaller than those of bamboo zone, upper montane forest, and heath zone. We suggest that compared to open dry forest, humid forest has fewer herbaceous plants because of the closed canopy of woody plants. Woody plants may have climate‐dominated niches, whereas herbaceous plants may have edaphic and microhabitat‐dominated niches. We also proposed lower and upper montane forests with high species richness or overdispersed phylogenetic structures as the priority areas in conservation of Mount Kenya and other high mountains in the Eastern Afro‐montane biodiversity hotspot regions.  相似文献   

6.
青藏高原高山植被的初步研究   总被引:6,自引:0,他引:6       下载免费PDF全文
青藏高原是我国高山植被类型最丰富、独特和分布最广泛的区域,发育有大面积的高山灌丛、高寒草甸、高寒草原,高寒荒漠、高山流石坡稀疏植被及零散分布的高山垫状植被。它们占据着森林上线至永久雪线之间的高山带和广阔的高原面,从高原东南部至西北部有水平方向的地域分异。联系高山带以下各垂直带的植被特征及各地的气候条件分析,初步认为高原东南部的山地植被垂直带谱属于湿润型山地垂直带结构类型,高原腹地及西北部的山地植被垂直带谱属于干旱型山地垂直带结构类型。此外,还对青藏高原高山植被类型的丰富性及高山垫状植被的生态地理分布特点进行了初步探讨。  相似文献   

7.
就南海北部海域17940孔的孢粉资料,利用孢粉生物群区化方法和因子分析方法,对南海北部周边地区4万年以来的植被演替序列进行研究。结果表明:对于深海沉积物,在排除远距离搬运的花粉尤其是松属(Pinus L.)花粉的噪音后,可以利用孢粉生物群区化方法恢复周边大陆古植被演替序列。因子分析表明,湿度和温度的变化是影响南海北部周边大陆植被演化的主要因子。在40500-11100aBP南海北部沿海大陆地区的古植被,主要为常绿阔叶林(WAMF),山地针叶林(MRGF)分布于低山、丘陵、而广泛出露的大陆架上则发育了以蒿属(Artemisia L.)为主的草原(STEP)景观:末次冰期时环境变化的突出特征山地针叶林(MRGF)、常绿阔叶林(WAMF)与草原(STEP)之间的频繁交替,反映了气候冷湿和温干的千年级尺度的迅速变化,可以与Heinrich事件以及Dansggard-Oscherge事件进行对比。其中在7.0m处(12700aBP)所恢复的山地针叶林(MRGF)景观反映了一次气候变冷变湿的事件,可能与新仙女木事件相对应。全新世早期和末期较多出现热带雨林(TRFO0以及热带季雨林(TSFO)景观,而全新世中期以常绿阔叶林(WAMF)为主,缺乏热带雨林(TRFO)以及热带季雨林(TSFO)景观,可能表明在全新世中期尽管温度升高,但湿度有可能降低。  相似文献   

8.
A study on the vegetation in the east side of Helan Mountain   总被引:7,自引:0,他引:7  
Yuan  Jiang  Muyi  Kang  Shuo  Liu  Lianshu  Tian  Mingde  Lei 《Plant Ecology》2000,149(2):119-130
This paper analyzed the vegetation data obtained from a field survey conducted in the East Side of Helan Mountain, China, to reveal the features of mountainous vegetation growing in a transitional zone between the steppe and desert regions. Detrended correspondence analysis (DCA) was applied to the process of analysis, to clarify the spatial variation of floristic composition of the vegetation in the lower mountain range.The preliminary results obtained from the analysis are: (1) There are 53 vegetation formations existing in the area, following the China's criteria of vegetation classification system. (2) Those vegetation types compose a vertical vegetation spectrum in the East Side of Helan Mountain due to the climatic gradient caused by elevation variation. The spectrum consists of 4 zones. They are, from the foot up to the peak in turn, mountain steppe zone, mountain open forest and steppe zone, mountain coniferous forest zone, and alpine bush and meadow zone. The mountain coniferous forest zone can be further divided into two subzones: Pine forest subzone and Spruce forest subzone. (3) Most of the vegetation types show clear xeromorphic features due to the base zone of the vertical vegetation spectrum lying in the arid region of China. (4) The distribution of vegetation types and flora is sensitive and susceptible to the moisture condition that the vertical vegetation spectrum has quite different expressions between northern and southern exposures. (5) Floristic composition of the vegetation shows a northern temperate feature. The families that are rich in species in the area include Gramineae, Compositae, Leguminosae, Chenopodiaceae, Rosaceae and others, most of which are abundant in herbaceous species. (6) The variation of the ecological conditions from the north to the south also leads to the differentiation of vegetation and its floristic composition in the area. (7) The broad-leaved forest can not form a forest zone in the vertical vegetation spectrum. This may be a special characteristic of the spectrum sitting on a transitional zone between the steppe and desert regions.  相似文献   

9.
Aim This modern pollen‐rain study documents the spatial and quantitative relationships between modern pollen and vegetation in Mongolia, and explores the potential for using this relationship in palaeoclimatic reconstructions. Location East‐central Mongolia. Methods We collected 104 pollen surface samples along a south–north transect across five vegetation zones in Mongolia. Discriminant analysis was used to classify the modern pollen spectra into five pollen assemblages corresponding to the five vegetation zones. Hierarchical cluster analysis was used to divide the main pollen taxa into two major groups and seven subgroups representing the dry and moist vegetation types and the main vegetation communities within them. Results Each vegetation zone along the transect can be characterized by a distinctive modern pollen assemblage as follows: (1) desert zone: Chenopodiaceae–Zygophyllaceae–Nitraria–Poaceae pollen assemblage; (2) desert‐steppe zone: Poaceae–Chenopodiaceae pollen assemblage; (3) steppe zone: ArtemisiaAster‐type–Poaceae–Pinus Haploxylon‐type pollen assemblage; (4) forest‐steppe zone: Pinus Haploxylon‐type–PiceaArtemisiaBetula, montane forb/shrub and pteridophyte pollen assemblage; and (5) mountain taiga zone: Pinus Haploxylon‐type–Picea–Poaceae–Cyperaceae, montane forb/shrub and Pteridophyte pollen assemblage. Main conclusions Based on the ratio between the major pollen taxon groups and subgroups, we propose two pollen–climate indices that represent the precipitation and temperature conditions in the study region. When plotted along our south–north transect, the moisture indices (M) and temperature indices (T) mimic the regional gradients of precipitation and temperature across Mongolia very closely. These pollen–climate indices can be used for palaeoclimatic reconstruction based on fossil pollen data.  相似文献   

10.
egetation evolution in the northern South China Sea region since 40 500 a BP is reconstructed using biomization procedure based on pollen data from deep sea core 17940. The result shows that, it is feasible to reconstruct palaeovegetation using biomization procedure, when pollen, particularly Pinus pollen, transported by wind over long distance is excluded. Results from factor analysis suggest that humidity and temperature are the two main factors determining vegetation evolution on land around the northern South China Sea. From 40 500 a BP to 11 100 a BP, broad-leaved evergreen forest (WAMF), and montane conifers(MGRF) occurred on hills and low mountains; while steppe (STEP) predominated on the exposed shelf. The main feature of the vegetation evolution is the frequent alternation between MGRF (or WAMF) and STEP, implying abrupt changes in millennium scale between humid/cold and dry/temperate climate. All abrupt climate events could be broadly correlated with Henrich events and Dansggard-Oscherge events. One of the events around 12 700 a BP, sees the occurrence of MGRF, suggesting that climate turned humid and cold rapidly. This may be correlated with the Younger Dryas event; Broad-leaved evergreen (WAMF) predominates since 11 000 a BP. During the early Holocene and late Holocene tropical rainforest (TRFO) or tropical seasonal forest (TSFO ) occurred several times.  相似文献   

11.
Georg Miehe 《Plant Ecology》1988,79(1-2):21-32
The vegetation of Mt Everest is described by means of the dominant plant formations and characteristic features of biotopes. Climatic data givenin connection with weather observations show evidence that the extreme asymmetry of the altitudinal vegetation belt on the south and north slope is induced by heavy rainfall on the south slope and the desiccating effect of the Himalaya föhn in the valleys of the north slope. Biotope shift from hypsozonal distribution on the south slope to extrazonal distribution on the north slope is described, the patterns of the actual timber line are discussed in order to reconstruct the natural upper forest limit, and regressive plant successions during the last 400 years of man's impact are summarized. The dominant vegetation pattern of the alpine belt is compared with that in the European Alps. On the arid north slope alpine steppe communities occur up to 5 500 m. The highest altitudinal vegetation belt and the highest plant communities at 5 960 m are dominated by periglacial processes. The highest records of flowering plants (6 100/6 200 m) and lichens (7 400 m) are discussed in light of the present knowledge on high-altitude vegetation ecology.  相似文献   

12.
Ningxia Hui Autonomous Region is situated in 30;14′–30;14′ and 30;33′–30;39′.Though its area. Is only 67000km2, it has many various ecosystem categories. The vegetation is the core of the ecosystem, so it is very important to research. The vegetation in Ningxia is the combination of many various vegetation types which have certain egularity of ecogeographical distribution. The zonal vegetation types in Ningxia arc the semi-desert, the steppe and the meadow-steppe from north to south. And there are the spectrums of the vertical belts of the vegetation in Helan mountain and Lupan mountain. There are also many intrazonal vegetation types—the saline-meadow, the grass-swamp, the salt vegetation, etc. Every vegetation type exists many various plant communities. And each vegetation type or plant community can reflect the comprehensive ecological factors. According to the regularity, we may put forward a principle of plan of the "Sanbei’(northeast, north and northwest China)shelter-forest in Ningxia:l. It is suitable to establish the scrub belts in Ningxia. In the semi-desert, the steppe, the meadow-steppe and the grass-tuft, the soil erosion on the slopes may be controled by the scrub belts following contour-line and the wind-sand-harm on the plateau plain may be prevented by the scrub networks; 2. To plant the shrubs, the semi-shrubs and the therophytes is suitable for fixing the sanddrift; 3. It isn’t difficult to plant the shelter-forest in the irrigation farmland. But it is very important to choose the tree species adapting various soil; 4. All of the forest and the scrub in the mountains must be closed and tended. The mixed-forest may be expanded on the meadow slope.  相似文献   

13.
Based on cartography, floristic inventory and vegetation analysis in the north and south of the Eastern Domain of Madagascar we identified three original tropical rainforest types which are among the world's most biodiverse known sites for plants: the littoral forest on sand, the lowland forest on gneiss and the lowland forest on basalt. Floristic and structural comparisons were conducted on 37 plots of 50×10m. Multivariate analysis indicates that floristic composition is correlated with abiotic factors of rainfall, latitude, soil composition, and marine influence; the structure of the undergrowth is generally homogeneous and the canopy is more or less open. Many reserves must be created on gneiss, sand and basalt all along the eastern coast to preserve biodiversity from the deforestation process. On basalt, this is especially urgent because about only 10 000 ha of a very ancient forest that shelters numerous botanical novelties remain today.  相似文献   

14.
Abstract. Questions: What is the relationship between alpine vegetation patterns and climate? And how do alpine vegetation patterns respond to climate changes? Location: Tibetan Plateau, southwestern China. The total area is 2500000 km2 with an average altitude over 4000 m. Methods: The geographic distribution of vegetation types on the Tibetan Plateau was simulated based on climatology using a small set of plant functional types (PFTs) embedded in the biogeochemistry‐biography model BIOME4. The paleoclimate for the early Holocene was used to explore the possibility of simulating past vegetation patterns. Changes in vegetation patterns were simulated assuming continuous exponential increase in atmospheric CO concentration, based on a transient ocean‐atmosphere simulation including sulfate aerosol effects during the 21st century. Results: Forest, shrub steppe, alpine steppe and alpine meadow extended while no desert vegetation developed under the warmer and humid climate of the early Holocene. In the future climate scenario, the simulated tree line is farther north in most sectors than at present. There are also major northward shifts of alpine meadows and a reduction in shrub‐dominated montane steppe. The boundary between montane desert and alpine desert will be farther to the south than today. The area of alpine desert would decrease, that of montane desert would increase. Conclusions: The outline of changes in vegetation distribution was captured with the simulation. Increased CO2 concentration would potentially lead to big changes in alpine ecosystems.  相似文献   

15.
西双版纳勐宋山区热带山地雨林的群落学研究   总被引:11,自引:0,他引:11  
王洪  朱华  李保贵 《广西植物》2001,21(4):303-314
首次报道了云南西双版纳勐宋的热带山地雨林群落 ,该群落植物区系组成特殊 ,森林上层乔木组成中以古老的单室茱萸科 (Mastixiaceae)和紫树科 (Nyssaceae)植物为优势 ,亦富有木兰科 (Magnoliaceae)的长蕊木兰、云南拟单性木兰 ,红花木莲等系统发育上较原始的植物以及一些典型东南亚热带山地雨林群落的代表植物。通过对该热带山地雨林群落组成与结构的调查研究 ,认为该热带山地雨林可区分为沟谷和山坡 2个类型。沟谷群落类型以八蕊单室茱萸和大萼楠为乔木层优势种 ,可定义为八蕊单室茱萸—大萼楠林。山坡群落类型以云南拟单性木兰和云南裸花为优势 ,可定义为云南拟单性木兰—云南裸花林。  相似文献   

16.
Colombian vegetation, at the ecological level of the biome, is reconstructed at six sites using pollen data assigned a priori to plant functional types and biomes. The chosen sites incorporate four savanna sites (Laguna Sardinas, Laguna Angel, El Piñal and Laguna Carimagua), a site on the transition between savanna and Amazon rainforest (Loma Linda) and a site within the Amazon rainforest (Pantano de Monica). The areal extent of tropical moist forest, tropical dry forest and steppe have been subject to significant change: differential responses of the vegetation to climatic shifts are related to changes in plant available moisture, duration of dry season and edaphic controls on the vegetation. The record from El Piñal shows that the present-day savanna vegetation, dominated by steppe (Poaceae) with little occurrence of woody savanna taxa (e.g. Curatella, Byrsonima), was present since the last glacial period of the northern hemisphere. Unfortunately, El Piñal is located on an edaphic savanna and is not particularly responsive to registering change. Most records cover the early Holocene; one site records the El Abra stadial (Younger Dryas equivalent), when forest expansion reflects more humid climatic conditions and higher plant available moisture. During the early and middle Holocene, the maximum expansion of steppe and tropical dry forest occurred, indicating that dry climatic conditions continued to around 4000 14C BP. The following period, from shortly before 4000 14C BP, is characterised by an increase in forest and gallery forests, reflecting a wetter period probably with a shorter annual dry season. Anthropogenic influence on the vegetation is recorded by all the records over the last millennial, particularly characterised by a reduction in forest cover and high amplitude changes in vegetation.Biome transitions from one type to another, and the environmental controls on this shift, are investigated by applying a vegetation model (BIOME-3). The model uses climatic data from six meteorological stations that, encompass a range of environments within lowland Colombia, which are similar to the pollen data. The signals of vegetation change can be translated to the main environmental controls of temperature and moisture to indicate the degree of change needed in these parameters to record the vegetation change depicted by the pollen data. Moisture balance is the dominant control on driving vegetation change whether under seasonal or annual control. The combined reconstruction from pollen data and model output of biome-scale vegetation dynamics for lowland Colombia allows an understanding of the environmental controls to be developed.  相似文献   

17.
论滇南西双版纳的森林植被分类   总被引:3,自引:0,他引:3  
朱华 《云南植物研究》2007,29(4):377-387
本文基于多年研究成果的总结,对西双版纳森林植被的分类、主要植被类型及其特征进行了系统归纳,并讨论了它们与世界类似热带森林植被的关系。以群落的生态外貌与结构、种类组成和生境特征相结合作为植被分类的原则和依据,可以将西双版纳的热带森林植被分类为热带雨林、热带季节性湿润林、热带季雨林和热带山地常绿阔叶林四个主要的植被型,包括有至少二十个群系。热带雨林包括热带季节雨林和热带山地(低山)雨林二个植被亚型。热带季节雨林具有与赤道低地热带雨林几乎一样的群落结构和生态外貌特征,是亚洲热带雨林的一个类型,但由于发生在季风热带北缘纬度和海拔的极限条件下,受到季节性干旱和热量不足的影响,在其林冠层中有一定比例的落叶树种存在,大高位芽植物和附生植物较逊色而藤本植物和在叶级谱上的小叶型植物更丰富,这些特征又有别于赤道低地的热带雨林。热带山地雨林是热带雨林的山地亚型,是该地区热带山地较湿润生境的一种森林类型,它在植物区系组成和生态外貌特征上类似于热带亚洲的低山雨林,隶属于广义热带雨林植被型下的低山雨林亚型。热带季节性湿润林分布在石灰岩山坡中、上部,在群落外貌上类似热带山地常绿阔叶林但在植物区系组成上与后者不同,它是石灰岩山地垂直带上的一种植被类型。热带季雨林是分布在该地区开阔河谷盆地及河岸受季风影响强烈的生境的一种热带落叶森林,是介于热带雨林与萨王纳之间的植被类型。热带山地常绿阔叶林(季风常绿阔叶林)是西双版纳的主要山地植被类型,它分布在热带季节雨林带之上偏干的山地生境。它在植物区系组成上不同于该地区的热带季节雨林,在生态外貌特征上亦不同于热带山地雨林,是发育在受地区性季风气候强烈影响的热带山地的一种森林植被类型。  相似文献   

18.
ZHU Hua 《Plant Diversity》2007,29(4):377-387
Xishuangbanna of southern Yunnan is a region of extremely interest to biologists and also a hotspot for biodiversity conservation . It is located in a transitional zone from tropical Southeast Asia to temperate East Asia biogeographically. The present paper reviewed vegetation types of Xishuangbanna and suggested a revised classification system based on theupdated study results over the last two decades . By combining physiognomic and floristic characteristics with ecological performances and habitats , the primary forest vegetation in Xishuangbanna can be organized into four main vegetation types: tropical rain forest, tropical seasonal moist forest, tropical montane evergreen broad-leaved forest and tropical monsoon forest. The tropical rain forest can be classified into two subtypes , i. e. tropical seasonal rain forest in the lowlands and tropical montane rain forest on higher elevations. The tropical seasonal rain forest in this region shows similar forest profile and physiognomic characteristics to those of equatorial lowland rain forests and is a type of world tropical rain forest. Because of conspicuous similarity on floristic composition , the tropical seasonal rain forest in Xishuangbanna is a type of tropical Asian rain forest . However , since the tropical seasonal rain forest occurs at the northern edge of tropical SE Asia, it differs from typical lowland rain forests in equatorial areas in maintaining some deciduous trees in the canopy layer , fewer megaphanerophytes and epiphytes but more abundant lianas and more plants with microphyll . It is a type of semi-evergreen rain forest at the northern edge of the tropical zone . The tropical montane rain forest occurs in wet montane habitats and is similar to the lower montane rain forests in equatorial Asia in floristic composition and physiognomy . It is a variety of lower montane rain forests at the northern tropical edges of tropical rain forests . The tropical seasonal moist forest occurs on middle and upper limestone mountains and is similar to the tropical montane evergreen broad-leaved forest of the region in physiognomy, but it differs from the latter in floristic composition. The monsoon forest in Xishuangbanna is a tropical deciduous forest under the influence of a strong monsoon climate and is considered to be a transitional vegetation type between tropical rain forest and savanna in physiognomy and distribution. The tropical montane evergreen broad- leaved forest is the main vegetation type in mountain areas . It is dominated by the tree species of Fagaceae , Euphorbiaceae , Theaceae and Lauraceae in majority. It differs from the tropical montane rain forests in lack of epiphytes and having more abundant lianas and plants with compound leaves . It is considered to be a distinct vegetation type in the northern margin of mainland southeastern Asia controlling by a strong monsoon climate, based on its floristic and physiognomic characteristics.  相似文献   

19.
《Flora》2005,200(4):376-397
World distribution of 488 out of 619 vascular plant species known from an area of 500 km2 within the western Khentey Mountains, northern Mongolia is analyzed. Most species belong to Eastern Asian (29%) or Asian, Eurasian, or circumpolar temperate species (24%) supporting the classification of the Khentey Mountains as part of the temperate zone of Eurasia. Seventeen percent of species are boreal plants. Circumpolar temperate-boreal (9%), Central (-Eastern) Asian (9%), Continental mountain species (5%), Middle-Central Asian (3%), arctic-alpine (3%) as well as Western Eurasian and western Siberian species are of lower significance for the flora of the western Khentey Mountains. Eastern Asian species occur in all types of habitats, whereas plants of other distribution types are focused on certain habitats. Boreal species preferably grow in the dark taiga, which prevails in the upper montane belt and on northern and eastern slopes of the most humid parts of the lower montane belt. Temperate and temperate-boreal species prefer subtaiga forests, which are found on northern and eastern slopes in drier parts of the lower montane belt as well as in upper parts of sun-exposed, southern and western slopes of the lower montane belt. Central (-Eastern) Asian and Middle-Central Asian species primarily inhabit forest steppe habitats, such as meadow and mountain steppes, Ulmus pumila open woodlands and dry Pinus sylvestris forests on steep, southern slopes.  相似文献   

20.
The steppe vegetation of the Xizang (Tibet) Plateau is somewhat similar to the temperate steppe of our country, but it possesses its own characteristics: 1. The elements of the Qinghai-Xizang floral region or plant species taking the Qinghai-Xizang Plateau as their chief distribution center play a dominant part in tile constitution of the steppe communities. In these communities, the plants are usually sparse and dwarf, their growth period is shorter and the biological productivity is lower than the steppe in the temperate zone. They possess synusia consisting of herbaceous plants fit for cold climate, synusia consisting of kobresia and synusia consisting of cushion plants. 2. There are 4 types of steppe vegetation in the Xizang Plateau. And the tussock-grass steppe is the most typical. According to their different ecological characteristics, they may be divided into 3 types. Of these, the most widely distributed type is the cold temperate-weak semiarid steppe. And there are many characteristical steppe communities. 3. Distributionally, the steppe in the Xizang Plateau belongs to a special type of vertical distribution in the subtropical latitude zone, it is different from the gene- rally known montane vertical belt, and possesses a vertical-horizontal distributive nature, i.e. "zonation of plateau". Within the Plateau steppe region, steppe eommunities with different ecological characteristics have clearly marked areal differentiaton, and which has determined the nature of the vertical belts in these areas. According to different basal belts of the vertical belt spectrum, such belts may be divided into 3 types. There are no forests in the montane vertical belt spectra in the Plateau steppe region, and the upper distributional limit of the steppe vegetation reaches an altitude of about 5200 (5400) m., which is the highest distributional limit of steppe on the earth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号