首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Over the last two decades wild boar Sus scrofa Linnaeus, 1758 became the most intensively managed game species in Bulgaria. In order to delineate the population genetic structure, which is essential for sustainable wildlife management, we screened 10 porcine microsatellites across 289 wild boar samples originating from all relevant bioregions of the country. Results based on F ST values, Bayesian clustering methods and a multi-dimensional scaling analysis can be summarised as follows: (1) two main genetic groups were revealed for the Bulgarian data set: the first one included individuals collected from the Balkan Range Mountain and the northern part of the country and the second one comprised individuals from the Rhodope, Osogovo, Iskur Range and Rila mountains in southern and south-western Bulgaria; (2) all Bulgarian wild boar populations showed a higher level of genetic diversity compared to four populations from Germany which were included for outgroup comparison, and (3) wild boar sampled from a game enclosure were found to be genetically divergent from the other Bulgarian populations, indicating human impact on population genetic structure most likely resulted from fencing and former translocation actions. The evolutionary background leading to the two defined management units as well as conservation and management strategies are discussed.  相似文献   

2.
The Eurasian wild boar (Sus scrofa Linnaeus, 1758) was introduced into Argentina at the beginning of the twentieth century when individuals from Europe were taken to La Pampa province for hunting purposes. Starting from there, a dispersal process began due to the invasive characteristics of the species and to human-mediated translocations. The main objective of this study was to characterize for the first time, the phylogenetic relationships among wild boars from Argentina with those from Uruguay, Europe, Asia, and the Near East, along with diverse domestic pig breeds in order to corroborate the historical information about the origin of the local populations. To this end, we used mitochondrial Control Region and Cytochrome b sequences from sampled Argentinian wild boars and retrieved from GenBank. The results showed that the majority of the Argentinian wild boar populations descend from European lineages, in particular of the E1 clade, according to the historical records. Remarkably, the population of El Palmar National Park had Asian origin that could be attributed to hybridization with local domestic pigs or to unrecorded translocations. Finally, genetic diversity in Argentinian populations was lower than in Europe and Uruguay meaning that wild boar in Argentina is still under the influence of founder effect and has experienced minor genetic introgression from domestic pigs, representing in this sense a reservoir of the original wild boar genetic variability.  相似文献   

3.
  • 1 Despite the vast literature on genetic variation in the domestic pig Sus scrofa, little is known about genetic differentiation in wild boar populations.
  • 2 Here we present an up‐to‐date review of published data on the past and recent history of the European wild boar, its genetic diversity and the spatial distribution of genetic variation throughout the continent.
  • 3 The phylogeography of the species seems to be shaped mostly by past large‐scale events (like postglacial recolonization) rather than by more recent human manipulation. Genetic differentiation is observed both on a continental and a regional scale, and non‐intuitive barriers to gene flow occur.
  • 4 From an indirect estimate, hybridization between wild boar and domestic pigs is seemingly a minor source of genetic variation for wild boar populations, yet risks are still linked to the release of captive hybrids in some areas.
  • 5 Finally, we present future perspectives concerning the development of powerful molecular tools and their possible application to the study and management of this species.
  相似文献   

4.
The European wild boar is an important game species, subjected to local extinctions and translocations in the past, and currently enormously and worryingly expanding in some areas where management is urgently required. Understanding the relative roles of ancient and recent events in shaping the genetic structure of this species is therefore not only an interesting scientific issue, but it represents also the basis for addressing future management strategies. In addition, several pig breeds descend from the European wild boar, but the geographical location of the domestication area(s) and the possible introgression of pig genomes into wild populations are still open questions. Here, we analysed the genetic variation in different wild boar populations in Europe. Ten polymorphic microsatellites were typed in 252 wild boars and the mtDNA control region was sequenced in a subset of 145 individuals. Some samples from different pig breeds were also analysed. Our results, which were obtained considering also 612 published mtDNA sequences, suggest that (i) most populations are similarly differentiated, but the major discontinuity is found along the Alps; (ii) except for the Italian populations, European wild boars show the signature of a postglacial demographic expansion; (iii) Italian populations seem to preserve a high proportion of preglaciation diversity; (iv) the demographic decline which occurred in some areas in the last few centuries did not produce a noticeable reduction of genetic variation; (v) signs of human-mediated gene flow among populations are weak, although in some regions the effects of translocations are detectable and a low degree of pig introgression can be identified; (vi) the hypothesis of an independent domestication centre in Italy is not supported by our data, which in turn confirm that Central European wild boar might have represented an important source for domestic breeds. We can therefore conclude that recent human activities had a limited effect on the wild boar genetic structure. It follows that areas with high variation and differentiation represent natural reservoirs of genetic diversity to be protected avoiding translocations. In this context controlling some populations by hunting is not expected to affect significantly genetic variation in this species.  相似文献   

5.
We analysed 74 wild boars from Tunisia with respect to patterns of genetic differentiation and diversity based on sequences of the mitochondrial control region and genotypes at eight nuclear microsatellite loci. Analysis of molecular variance for both marker systems and Bayesian structure analysis of our microsatellite data revealed a clear break between northern and southern populations. Southern wild boar were monomorphic for one of three mtDNA haplotypes; the other two (one of which only occurred in three individuals) were confined to the north. A comparison with published sequences showed all three haplotypes to belong to the major European clade E1. Microsatellite diversity was similar to that found in earlier studies of wild boar (expected heterozygosity of 0.695 and 0.597 for the north and south, respectively). Contrary to the mtDNA results, we did not find unequivocal evidence of a bottleneck in Tunisian wild boar based on our microsatellite data. The clear distinction between northern and southern populations may be due to an Algerian origin of the southern animals.  相似文献   

6.
The giant grouper (Epinephelus lanceolatus) is a coral fish with high commercial value in Southeast Asia. In the present study, we isolated 11 microsatellite DNA markers, and analysed the genetic diversity and differentiation between cultured stocks and wild populations of the giant grouper originating from the South China Sea. A total of 390 alleles at 11 microsatellite loci were detected in 130 individuals from five different populations. The expected heterozygosity varied from 0.131 to 0.855 with a mean value of 0.623 and the observed heterozygosity varied from 0.145 to 0.869 with a mean value of 0.379. The allelic richness and heterozygosity studies revealed that the genetic diversity of the cultured population was significantly reduced when compared with that of the wild population. The Fis, pairwise Fst values, analysis of molecular variance (AMOVA), three-dimensional factorial correspondence analysis and structure analysis revealed significant population differentiation between the cultured stocks and the wild populations, among the three cultured populations and between the two wild populations. These differences may be caused by random genetic drift, the effects of artificial selection and founder effects. Our results will be useful in the management of cultured stocks and conservation of wild populations of the giant grouper.  相似文献   

7.
Understanding how some species may be able to evolve quickly enough to deal with anthropogenic pressure is of prime interest in evolutionary biology, conservation, and management. Wild boar (Sus scrofa scrofa) populations keep growing all over Europe despite increasing hunting pressure. In wild boar populations subject to male‐selective harvesting, the initially described polygynous mating system may switch to a promiscuous/polyandrous one. Such a change in the mating system, where potentially more males sire a litter at one reproductive event, may be associated with the retention of high genetic diversity and an increase of litter size. We tested these hypotheses by estimating the number of sires per litter based on a six‐year long monitoring of a wild boar population subject to particularly high harvesting pressure. Our results show a high and stable genetic diversity and high rates of multiple paternity compared to other populations, thus depicting a promiscuous/polyandrous mating system in this population. We also show that litter size is positively linked to the number of sires, suggesting that multiple paternity increases fecundity. We finally discuss that multiple paternity may be one of the factors allowing rapid evolution of this population by maintaining both genetic and phenotypic diversity.  相似文献   

8.
Hybridization between wild boar (Sus scrofa) and domestic pig occurred in the past and still occurs today, having great evolutionary and management implications. In fact, genetic introgression from the domestic form may alter traits like behavior, reproduction rate, and immunology in wild populations, with likely demographic impacts. Thus, it is crucial to understand under what conditions hybridization occurs in S. scrofa. Captive crosses with domestic pigs (released or escaped) have been suggested to constitute the major source of the spread of domestic genes into wild boar populations. However, to date, few studies have assessed the degree of admixture in farmed animals in comparison to the surrounding wild populations. With this purpose, we analyzed microsatellite loci in wild boar sampled in breeding stations and in the local wild population in two Italian regions (Sardinia and Piedmont). Both captive populations had lower allelic richness than the corresponding wild population, but a similar expected heterozygosity. In Piedmont, introgression from the domestic form into the wild population seems to be extremely low, while there are significant signs of admixture in the sampled breeding stations. In Sardinia, instead, the captive sample did not differ significantly from the wild population, which showed moderate signs of introgression. We conclude that hybridization in nature seems to play the key role in Sardinia, while intentional hybridization in captivity is the major source of introgression in Piedmont. Our findings emphasize the need for a routine genetic monitoring of wild boar captive populations, coupled with reference data on the neighboring wild populations.  相似文献   

9.
Small yellow croaker is one of the most important fishery species in China. The mass–scale artificial propagation of this fish species was initially developed in 2015 with the aim of facilitating the fish production stock enhancement and aquaculture programs in the future. In the present study, the wild broodfish and its corresponding progeny along with three other wild populations were sampled and subjected to sequence analysis of the mitochondrial cytochrome c oxidase subunit I gene. The genetic diversity and population genetic structure were evaluated with a total sample size of 141 individuals representing the populations of the Yellow Sea (Qingdao and Lvsi populations) and the East China Sea (Xiangshan and Ningde populations). The wild populations were characterized by high haplotype diversity (0.925–0.976) and low nucleotide diversity (0.376%–0.560%). The hierarchical analysis of molecular variance (AMOVA) analysis and the values of pairwise Ф-statistics (ФST) indicated non-significant genetic differentiation among the four wild populations. The hatchery stock XSH exhibited lower indices of genetic diversity compared with the wild populations that could be attributed to the small effective population size. The findings of the present study have valuable insight to the sustainable management and utilization of this resource.  相似文献   

10.
Many threatened species are bred in captivity for conservation purposes and some of these programmes aim at future reintroduction. The Northern Bald Ibis, Geronticus eremita, is a Critically Endangered bird species, with recently only one population remaining in the wild (Morocco, Souss Massa region). During the last two decades, two breeding programs for reintroduction have been started (in Austria and Spain). As the genetic constitution of the founding population can have strong effects on reintroduction success, we studied the genetic diversity of the two source populations for reintroduction (‘Waldrappteam’ and ‘Proyecto eremita’) as well as the European zoo population (all individuals held ex situ) by genotyping 642 individuals at 15 microsatellite loci. To test the hypothesis that the wild population in Morocco and the extinct wild population in the Middle East belong to different evolutionary significant units, we sequenced two mitochondrial DNA fragments. Our results show that the European zoo population is genetically highly structured, reflecting separate breeding lines. Genetic diversity was highest in the historic samples from the wild eastern population. DNA sequencing revealed only a single substitution distinguishing the wild eastern and wild western population. Contrary to that, the microsatellite analysis showed a clear differentiation between them. This suggests that genetic differentiation between the two populations is recent and does not confirm the existence of two evolutionary significant units. The European zoo population appears to be vital and suitable for reintroduction, but the management of the European zoo population and the two source populations for reintroductions can be optimized to reach a higher level of admixture.  相似文献   

11.
The Tokyo bitterling Tanakia tanago (Cyprinidae) was once found throughout the Kanto Plain, central Japan, but most of their habitats have been lost due to human activities such as urbanization and improvement of paddy fields. Subsequently, conservation efforts, including captive breeding and reintroduction, have been ongoing. However, the genetic relationships among populations of this species including captive and remnant wild populations have been uncertain and thus management units for this species have been unidentified. We examined the population differentiation among 12 populations, including four wild and eight captive populations, and their relative genetic diversities to assist in conservation management decisions. Phylogeographic analyses based on partial mitochondrial cytochrome b gene sequences and microsatellite polymorphisms revealed four geographically associated genetic groups in the populations. Northern Tochigi populations have diverged from other populations (0.77% of d A ), likely stemming from allopatric fragmentation following a change in the route of the Naka River, which occurred during the middle of the Pleistocene epoch. Microsatellite analysis has revealed that the genetic diversity of each population is generally low, and that most of the populations have experienced genetic bottlenecks. For future in- and ex-situ conservation programs to succeed, the population structure and genetic variability of remnant populations need to be taken into consideration.  相似文献   

12.
Wild sunflower Helianthus annuus originates from North America and has naturalised in Argentina where it is considered invasive. The present study attempts to assess the genetic diversity using two different molecular marker systems to study the wild genetic patterns and to provide data applicable to conservation and breeding uses. Ten natural populations sampled throughout the wild range and six inbred lines were studied using inter‐simple sequence repeat (ISSR) and simple sequence repeats (SSR) markers. A total of 64 ISSR bands and 29 SSR alleles were produced from 106 wild and cultivated plants. We found 9 ISSR private bands and 21 SSR private alleles in wild accessions, but no private bands/alleles were found in cultivated sunflowers. Molecular variability in wild populations was approximately 60% higher than in inbred lines. Local wild sunflowers kept considerable diversity levels in comparison with populations in the centre of origin (approximately 70%) and therefore they might possess a potential for adaptive evolutionary change. Analysis of molecular variance (AMOVA) indicated population structure with nearly 20% of genetic variability attributable to between‐population differentiation. Principal coordinate analyses (PCO) grouped wild populations from different geographic locations, and a Mantel test showed low congruence between genetic distance (GD) and geographic distances (GGD); hence, molecular data could not rule out multiple wild introduction events. Low correlations were found between ISSR and SSR GD at individual and population levels; thus, divergent evolutionary groups were not evident in local wild sunflowers. Several genetic diversity criteria were utilised to assign conservation value and certain wild populations emerged as interesting sites for more extensive sampling.  相似文献   

13.

Background

Domestic cultivation of medicinal plants is an important strategy for protecting these species from over harvesting. Some species of medicinal plants have been brought into cultivation for more than hundreds years. Concerns about severe loss of genetic diversity and sustainable cultivation can potentially limit future use of these valuable plants. Genetic studies with comprehensive sampling of multiple medicinal species by molecular markers will allow for assessment and management of these species. Here we examine the population genetic consequences of cultivation and domestication in Scrophularia ningpoensis Hemsl. We used chloroplast DNA and genomic AFLP markers to clarify not only the effects of domestication on genetic diversity, but also determine the geographic origins of cultivars and their genetic divergence from native populations. These results will allow both better management of cultivated populations, but also provide insights for crop improvement.

Results

Twenty-one cpDNA haplotypes of S. ningpoensis were identified. Wild populations contain all haplotypes, whereas only three haplotypes were found in cultivated populations with wild populations having twice the haplotype diversity of cultivated populations. Genetic differentiation between cultivated populations and wild populations was significant. Genomic AFLP markers revealed similar genetic diversity patterns. Furthermore, Structure analysis grouped all wild populations into two gene pools; two of which shared the same gene pool with cultivated S. ningpoensis. The result of Neighbor-Joining analysis was consistent with the structure analysis. In principal coordinate analysis, three cultivated populations from Zhejiang Province grouped together and were separated from other cultivated populations.

Conclusions

These results suggest that cultivated S. ningpoensis has experienced dramatic loss of genetic diversity under anthropogenic influence. We postulate that strong artificial selection for medicinal quality has resulted in genetic differentiation between cultivated and wild populations. Furthermore, it appears that wild populations in Jiangxi-Hunan area were involved in the origin of cultivated S. ningpoensis.  相似文献   

14.
利用改良FIASCO法(Fast Isolation by AFLP Sequences COntaining repeats)开发出的9对多态性SSR引物评价了薇菜(Osmunda japonica Thunb.)2个野生居群(庐山和恩施)、1个栽培居群(恩施)的遗传多样性和遗传分化水平。结果显示,9个SSR标记在3个薇菜居群中共检测到47个等位基因,每个SSR位点的平均等位基因数为5.222个,观测杂合度和期望杂合度分别为0.000~0.944和0.577~0.834,香农指数为0.962~1.860,表明各SSR位点多态性较高;各居群的平均期望杂合度均大于平均观测杂合度且种内近交系数均为正值,说明3个薇菜居群中都存在非随机交配现象;对各居群的相关遗传多样性参数分析表明,恩施野生居群遗传多样性最高,而其栽培居群最低;庐山野生居群与恩施野生居群间遗传分化系数为0.092,说明两地野生薇菜居群的遗传分化程度较低,AMOVA分析也表明遗传变异主要存在于野生居群内部。  相似文献   

15.
Crop germplasm collections are valuable resources for ongoing plant breeding efforts. To fully utilize such collections, however, researchers need detailed information about the amount and distribution of genetic diversity present within collections. Here, we report the results of a population genetic analysis of the primary gene pool of sunflower (Helianthus annuus L.) based on a broad sampling of 433 cultivated accessions from North America and Europe, as well as a range-wide collection of 24 wild sunflower populations. Gene diversity across the cultivars was 0.47, as compared with 0.70 in the wilds, indicating that cultivated sunflower harbors roughly two-thirds of the total genetic diversity present in wild sunflower. Population structure analyses revealed that wild sunflower can be subdivided into four genetically distinct population clusters throughout its North American range, whereas the cultivated sunflower gene pool could be split into two main clusters separating restorer lines from the balance of the gene pool. Use of a maximum likelihood method to estimate the contribution of the wild gene pool to the cultivated sunflower germplasm revealed that the bulk of the cultivar diversity is derived from two wild sunflower population genetic clusters that are primarily composed of individuals from the east-central United States, the same general region in which sunflower domestication is believed to have occurred. We also identified a nested subset of accessions that capture as much of the allelic diversity present within the sampled cultivated sunflower germplasm collection as possible. At the high end, a core set of 288 captured nearly 90% of the alleles present in the full set of 433, whereas a core set of just 12 accessions was sufficient to capture nearly 50% of the total allelic diversity present within this sample of cultivated sunflower.  相似文献   

16.
冯慧  黄原  任轶  冯成利  刘晓农 《生态学报》2014,34(20):5887-5895
林麝(Moschus berezovskii)曾广泛分布于中国,由于盗猎和栖息地缩小,秦岭地区野生种群数量迅速下降,圈养繁殖种群已成立了几十年,但大多数圈养种群的遗传背景不清,种群规模增长非常缓慢。为了给这一物种的保护和管理提供有用的信息,调查了陕西省林麝1个圈养种群3个野生种群线粒体DNA(mt DNA)D-Loop 632 bp片段的遗传多样性和种群结构。在69个个体中其碱基组成为A+T的平均含量63.2%高于G+C含量36.8%,共检测到变异位点171个(约占总位点数的27.05%)。核苷酸多样性(Pi)为0.04424,平均核苷酸差异数(K)为19.908。69个个体分属32个单倍型,单倍型间的平均遗传距离(P)为0.070。32个单倍型构建的NJ系统树聚为3个分支,4个林麝群体中的单倍型是随机分布的。4个群体的平均遗传距离为0.043(标准误SE为0.005),凤县养殖场群体与留坝和陇县群体的亲缘关系较远。单倍型间的平均遗传距离为0.043,可见其遗传分化尚未达到种群分化的水平。结果表明,陕西省林麝群体mt DNA D-loop区序列存在着较丰富的变异和遗传多样性,凤县野生群体和凤县养殖场群体的核苷酸多样性和单倍型多样较高,养殖场种群没有出现近亲繁殖及遗传多样性下降的情况。凤县野生群体和凤县养殖场群体两者遗传分化较小,存在着较高的基因流水平。  相似文献   

17.
小熊猫是亚洲特有的珍稀濒危动物,目前受到栖息地减少、片断化和人类活动干扰等威胁。中国圈养小熊猫已经有60 多年历史,约55 个机构曾经饲养过小熊猫,现今圈养数量有400 多只,评估小熊猫圈养种群的遗传多样性和遗传结构对科学维持圈养种群和保存遗传种质资源意义重大。本研究利用19 个微卫星座位,对中国境内11 个小熊猫圈养种群的116 只个体进行了遗传多样性评估及遗传结构分析。结果显示11 个种群都具有较高的遗传多样性,平均基因丰富度3.505 ± 1.033 (北京)至4.026 ± 1.219 (冕宁),期望杂合度0.631 ± 0.225(黄山)至0.782 ±0.171 (温岭)。其中福州和无锡种群极显著偏离Hardy-Weinberg 平衡。整个圈养群体内各个种群遗传分化系数为0.055,呈显著分化,表明11 个种群遗传分化水平较高。Bayesian 遗传聚类分析将11 个种群聚为三个遗传簇,与野生种群的遗传聚类结果一致。结论:小熊猫圈养种群与野生种群相比,同样具有较高的遗传多样性。因此,圈养小熊猫遗传管理的重点不再是引进野生个体充实圈养种群,应制订科学的繁殖计划,避免近交,从而维持圈养种群的遗传多样性。  相似文献   

18.
草鱼野生与选育群体线粒体DNA控制区D-loop遗传变异分析   总被引:4,自引:0,他引:4  
为探究经过2个选育世代后选育群体遗传多样性和遗传结构的变化, 研究对4个野生群体(邗江、九江、石首和吴江)和2个选育世代(F1和F2)进行了线粒体DNA控制区(D-loop)序列的遗传变异分析。实验结果表明, 4个野生群体在单倍型数目(H)、单倍型多样性(Hd)、核苷酸多样性(π)、平均核苷酸差异数(K)水平上均高于2个选育世代, 在2个选育世代内表现为F1代群体的核苷酸多样性(π)和平均核苷酸差异数(K)大于F2代群体, 但单倍型多样性(Hd)小于F2代群体; 单倍型分析结果表明, 6个群体间无共享单倍型, 4个野生群体间共发现2种共享单倍型(Hap1和Hap3), 石首群体和2个选育世代共享1种单倍型(Hap15); 遗传分化指数(Fst)分析结果表明, 邗江、九江、吴江3个野生群体和2个选育世代间存在较大的遗传分化(Fst范围为0.41475—0.55128), 石首群体与F1代群体之间存在较小的遗传分化, 与F2代群体之间存在中等水平的遗传分化, 同时F1代群体与F2代群体之间存在较小的遗传分化; 基于6个群体276个个体构建的邻接(Neighbor-Joining, NJ)进化树和基于27种单倍型构建的单倍型网络图也得到了相似的结论, 即邗江、九江、吴江3个野生群体和2个选育世代间的亲缘关系较远, 石首群体和2个选育世代两两之间的亲缘关系较近。以上结果表明, 经过2个世代的选择育种, 选育群体的遗传结构已发生了变化, 并且随着选育的进行, 选育世代的遗传多样性下降的较为明显, 这警示着我们在今后的育种工作中应适当改变现有的选育方案, 并实时监测选育群体的遗传多样性, 以便为今后进一步的选育工作打下坚实的基础。  相似文献   

19.
Y‐chromosome markers are important tools for studying male‐specific gene flow within and between populations, hybridization patterns and kinship. However, their use in non‐human mammals is often hampered by the lack of Y‐specific polymorphic markers. We identified new male‐specific short tandem repeats (STRs) in Sus scrofa using the available genome sequence. We selected four polymorphic loci (5–10 alleles per locus), falling in one duplicated and two single‐copy regions. A total of 32 haplotypes were found by screening 211 individuals from eight wild boar populations across Europe and five domestic pig populations. European wild boar were characterized by significantly higher levels of haplotype diversity compared to European domestic pigs (HD = 0.904 ± 0.011 and HD = 0.491 ± 0.077 respectively). Relationships among STR haplotypes were investigated by combining them with single nucleotide polymorphisms at two linked genes (AMELY and UTY) in a network analysis. A differentiation between wild and domestic populations was observed (FST = 0.229), with commercial breeds sharing no Y haplotype with the sampled wild boar. Similarly, a certain degree of geographic differentiation was observed across Europe, with a number of local private haplotypes and high diversity in northern populations. The described Y‐chromosome markers can be useful to track male inheritance and gene flow in wild and domestic populations, promising to provide insights into evolutionary and population genetics in Sus scrofa.  相似文献   

20.
The muriqui or woolly spider monkey (Brachyteles arachnoids) is an endangered primate endemic to the Atlantic Forest of Brazil, <5% of which remains. The known muriqui population consists of <700 individuals separated into approximately 15 geographically isolated forest fragments. I present data on the distribution of genetic variation within and between two such remnant populations (FE and FBR) and summarize the implications of these results for long-range management of species genetic diversity. Eleven of 32 allozyme loci were polymorphic, representing an overall level of polymorphism of 34.4% and a mean heterozygosity per locus of 11%. Both values are among the highest reported for New World monkeys. Genetic differentiation between the two localities is highly significant (FST = 0.413, p < 0.001). Genetic distance between them is an order of magnitude greater than that between other populations of platyrrhine subspecies, but this could be an artifact of the small sample size from FBR. High levels of genetic diversity apparently characteristic of this species persist because (1) fragmentation and size reduction of muriqui populations has occurred very rapidly relative to the muriqui life span—although both polymorphism and heterozygosity were lost between generations in the largest population, the high genetic diversity present in the parent population was still in evidence; and (2) genetic diversity before population fragmentation by human activity was not distributed uniformly throughout the species' historic distribution. Thus, remnant muriqui populations are important genetic reservoirs of alleles that are unique or rare in the species gene pool as a whole. These results emphasize the need for the integration of conservation management efforts throughout the species range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号