首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The molecular structure of poly (I).poly (A).poly (I) has been determined and refined using the continuous intensity data on layer lines in the x-ray diffraction pattern obtained from an oriented fiber of this polymorphic RNA complex. The polymer forms a 12-fold right-handed triple-helix of pitch 39.7A and each base-triplet is stabilized by quasi Crick-Watson-Hoogsteen hydrogen bonds. The ribose rings in all the three strands have C3'-endo conformations. The final R-value for this best structure is 0.24 and the x-ray fit is significantly superior to all the alternative structures where the different chains might have different furanose conformations. This all-purine triple-helix, counter-intuitively, has a diameter roughly 3A shorter than that of DNA and RNA triple-helices containing a homopurine and two complementary homopyrimidine strands. Its compact, grooveless cylindrical shape is consistent with the lack of lateral organization.  相似文献   

2.
The molecular structure of poly (dT).poly (dA).poly (dT) has been determined and refined using the continuous x-ray intensity data on layer lines in the diffraction pattern obtained from an oriented fiber of the DNA. The final R-value for the preferred structure is 0.29 significantly lower than that for plausible alternatives. The molecule forms a 12-fold right-handed triple-helix of pitch 38.4 A and each base triplet is stabilized by a set of four Crick-Watson-Hoogsteen hydrogen bonds. The deoxyribose rings in all the three strands have C2'-endo conformations. The grooveless cylindrical shape of the triple-helix is consistent with the lack of lateral organization in the fiber.  相似文献   

3.
Using Raman spectroscopy, we examined the ribose-phosphate backbone conformation, the hydrogen bonding interactions, and the stacking of the bases of the poly(U).poly(A).poly(U) triple helix. We compared the Raman spectra of poly(U).poly(A).poly(U) in H2O and D2O with those obtained for single-stranded poly(A) and poly(U) and for double-stranded poly(A).poly(U). The presence of a Raman band at 863 cm-1 indicated that the backbone conformations of the two poly(U) chains are different in the triple helix. The sugar conformation of the poly(U) chain held to the poly(A) by Watson-Crick base pairing is C3' endo; that of the second poly(U) chain may be C2' endo. Raman hypochromism of the bands associated with base vibrations demonstrated that uracil residues stack to the same extent in double helical poly(A).poly(U) and in the triple-stranded structure. An increase in the Raman hypochromism of the bands associated with adenine bases indicated that the stacking of adenine residues is greater in the triple helix than in the double helical form. Our data further suggest that the environment of the carbonyls of the uracil residues is different for the different strands.  相似文献   

4.
Structure of the beta-form of poly d(A).poly d(U)   总被引:1,自引:0,他引:1  
The crystalline beta-form of the sodium salt of poly d(A).poly d(U) trapped in oriented fibers forms a Watson-Crick base-paired, 10(1) double-helix of pitch 3.2 nm. Two molecules are present in a monoclinic unit cell apparently isomorphous with beta-poly d(A).poly d(T). The two chains in each molecule both carry C2'-endo puckered furanose rings but are conformationally not identical. The orientations of the A:U base-pairs relative to the helix-axis are distinctly different from those in classical B-DNA and the overall morphology of the duplex in which they reside resembles that of the alpha-forms of poly (purine).poly (pyrimidine) DNA duplexes previously reported.  相似文献   

5.
The propeller DNA conformation of poly(dA).poly(dT).   总被引:7,自引:6,他引:1       下载免费PDF全文
Physical properties of the DNA duplex, poly(dA).poly(dT) differ considerably from the alternating copolymer poly(dAT). A number of molecular models have been used to describe these structures obtained from fiber X-ray diffraction data. The recent solutions of single crystal DNA dodecamer structures with segments of oligo-A.oligo-T have revealed the presence of a high propeller twist in the AT regions which is stabilized by the formation of bifurcated (three-center) hydrogen bonds on the floor of the major groove, involving the N6 amino group of adenine hydrogen bonding to two O4 atoms of adjacent thymine residues on the opposite strand. Here we show that it is possible to incorporate the features of the single crystal analysis, specifically high propeller twist, bifurcated hydrogen bonds, and a narrow minor groove, as well as the close interstrand NMR signal between adenine HC2 and ribose HC1' of the opposite strand, into a model that is fully compatible with the diffraction data obtained from poly(dA).poly(dT).  相似文献   

6.
J K Barton  S J Lippard 《Biochemistry》1979,18(12):2661-2668
The cationic complex (2-hydroxyethanethiolato)(2,2',2'-terpyridine)platinum(II), [(terpy)Pt(HET)]+, binds cooperatively to poly(A).poly(U) by intercalation. The melting temperature of poly(A).poly(U) in low-salt buffer is increased by 6 degrees C in the presence of [(terpy)Pt(HET)]+, indicating stabilization of the duplex structure by the bound platinum reagent. Viscosity measurements provide evidence for comparable lengthening of the polynucleotide in the presence of [(terpy)Pt(HET)]+ and the intercalating dye, ethidium bromide. Scatchard plots of the binding of [(terpy)Pt(HET)]+ to poly(A).poly(U) and poly(I).poly(C), determined through ultracentrifugation pelleting methods, show large positive curvature, reflecting the strong cooperativity associated with the platinum complex-RNA interaction. The characteristics of the binding isotherms are interpreted in terms of a model where cooperative pair units of [(terpy)Pt(HET)]+ intercalate into the double-stranded polymer. At saturation, two platinum molecules are bound for every three base pairs. This stoichiometry may be compared with the nearest-neighbor-exclusion binding observed previously in the interaction of [(terpy)Pt(HET)]+ and the ethidium cation with DNA, in which one intercalator occupies every other interbase-pair site at saturation. The striking differences observed in the interaction of [(terpy)Pt(HET)]+ with DNA and RNA suggest that drug recognition is sensitive to the constraints imposed by nucleic acid secondary structure.  相似文献   

7.
The formation of the triple helix of poly(A).poly(U).poly(U) was studied by using antibodies specific to poly(A).poly(U).poly(U). the 10-11 base chain length for oligo(A) and the 20-30 base chain length for oligo(U) may be the minimum sizes required to maintain a stable triple helix. Double-stranded poly(A).poly(U) which was the core of triple-stranded poly(A).poly(U).poly(U) could bind poly(U) and produce an analogue of poly(A).poly(U).poly(U) reactive with the antibodies even if the poly(A) or poly(U) was brominated or acetylated to the extent of 35-55%. However, brominated or acetylated poly(U) did not produce a stable triple helix with double-stranded poly(A).poly(U).  相似文献   

8.
The self-complementary oligonucleotides [r(CGC)d(CGC)]2 and [d(CCCCGGGG)]2 in single-crystal and solution forms have been investigated by Raman spectroscopy. Comparison of the Raman spectra with results of single-crystal X-ray diffraction and with data from polynucleotides permits the identification of a number of Raman frequencies diagnostic of the A-helix structure for GC sequences. The guanine ring frequency characteristic of C3'-endo pucker and anti base orientation is assigned at 668 +/- 2 cm-1 for both dG and rG residues of the DNA/RNA hybrid [r(GCG)d(CGC)]2. The A-helix backbone of crystalline [r(GCG)d(CGC)]2 is altered slightly in the aqueous structure, consistent with the conversion of at least two residues to the C2'-endo/anti conformation. For crystalline [d(CCCCGGGG)]2, the Raman and X-ray data indicate nucleosides of alternating 2'-endo-3'-endo pucker sandwiched between terminal and penultimate pairs of C3'-endo pucker. The A-A-B-A-B-A-A-A backbone of the crystalline octamer is converted completely to a B-DNA fragment in aqueous solution with Raman markers characteristic of C2'-endo/anti-G (682 +/- 2) and the B backbone (826 +/- 2 cm-1). In the case of poly(dG).poly(dC), considerable structural variability is detected. A 4% solution of the duplex is largely A DNA, but a 2% solution is predominantly B DNA. On the other hand, an oriented fiber drawn at 75% relative humidity reveals Raman markers characteristic of both A DNA and a modified B DNA, not unlike the [d-(CCCCGGGG)]2 crystal. A comparison of Raman and CD spectra of the aqueous [d(CCCCGGGG)]2 and poly(dG).poly(dC) structures suggests the need for caution in the interpretation of CD data from G clusters in DNA.  相似文献   

9.
采用近红外付立叶拉曼光谱研究了三螺旋RNA(rU).poly(rA).poly(rU)在溶液中的构象和在银胶中的表面增强拉曼散行为。结果表明在溶液中,该三螺旋RNA分子中以Watson-Crick碱基酸对的两条链处于A-构型,而第二条嘧啶链处于C2’-endo/anti构象。在银胶中,该三螺旋RNA的表面增强拦曼效应明显。与溶液状态下相比,835和819cm^-1谱带的出现暗示该三螺旋RNA吸附到  相似文献   

10.
In the presence of two or polyvalent cations, e. g., Mg2+, protonated ethylenediamine, protonated spermidine, and protonated spermine, poly U forms an ordered structure in aqueous solution. At elevated temperatures, the secondary structure is lost by a cooperative process. The melting temperature Tm rises with the size of the cations. Using IR-spectroscopy, we could show that the secondary structure of poly U is stabilized by hydrogen bonds. Both carbonyl groups of the uracil are involved in the hydrogen bonding. This experimental result enables us to choose the right arrangement for UU base pairing.  相似文献   

11.
The conformational changes of poly(d2NH2A-dT) in aqueous solution, induced by increasing the NaCl concentration from 0.1M to 4M, have been monitored by ultraviolet resonance Raman spectroscopy, in using the 222-, 257- and 281 nm excitation wavelengths. These changes have been interpreted in comparing the polymer spectra to those of the mononucleotide compounds on one hand, and to those of other alternating purine-pyrimidine polymers on the other hand, i.e. poly(dG-dC) and poly(dA-dT) which showed a B to Z transition in going from low- to high salt concentrations. The high salt poly(d2NH2A-dT) spectra do not show any Raman marker line of the Z conformation. The spectroscopic results indicate that most of the ribose puckering goes from C2'-endo/anti to C3'-endo/anti in increasing the salt concentration. In addition the base stacking interactions, to which the resonance Raman effect is very sensitive, are not drastically changed upon salt variations. Thus the high salt structure of poly(d2NH2A-dT) remains a right-handed helix, likely under a dominant A conformation.  相似文献   

12.
X-ray diffraction in fibres revealed that the calcium salt of poly(dA).poly(dT) is a 10-fold double helix with a pitch of 3.23 nm. The opposite sugar-phosphate chains in the refined model are characterized by a complete conformational equivalence and contain sugars in a conformation close to C2'-endo. As a result a new model of the sodium salt of poly(dA).poly(dT) has been constructed, which is different from the Heteronomous DNA proposed earlier (S. Arnott et al., Nucl. Acids Res. 11, 4141 (1983)). The new model of Na-poly(dA).poly(dT) has conformationally similar opposite chains; it is a structure of the B-type, rather like that of Ca-poly(dA).poly(dT).  相似文献   

13.
We introduce the use of commercially available locked nucleic acids (LNAs) as a functional probe in RNA. LNA nucleotides contain a covalent linkage that restricts the pseudorotation phase of the ribose to C3'-endo (A-form). Introduction of an LNA at a single site thus allows the role of ribose structure and dynamics in RNA function to be assessed. We apply LNA probing at multiple sites to analyze self-cleavage in the lead-dependent ribozyme (leadzyme), thermodynamic stability in the UUCG tetraloop, and the kinetics of recognition of U1A protein by U1 snRNA hairpin II. In the leadzyme, locking a single guanosine residue into the C3'-endo pucker increases the catalytic rate by a factor of 20, despite the fact that X-ray crystallographic and NMR structures of the leadzyme ground state reported a C2'-endo conformation at this site. These results strongly suggest that a conformational change at this position is critical for catalytic function. Functional insights obtained in all three systems demonstrate the highly general applicability of LNA probing in analysis of the role of ribose orientation in RNA structure, dynamics, and function.  相似文献   

14.
One-dimensional nuclear Overhauser effect (NOE) in nuclear magnetic resonance spectroscopy along with stereochemically sound model building was employed to derive the structure of the hybrid poly(rA).poly(dT) in solution. Extremely strong NOE was observed at AH2' when AH8 was presaturated; strong NOEs were observed at TH2'TH2' when TH6 was presaturated; in addition the observed NOEs at TH2' and TH2' were nearly equal when TH6 was presaturated. There was no NOE transfer to AH3' from AH8 ruling out the possibility of (C-3'-endo, low anti chi approximately equal to 200 degrees to 220 degrees) conformation for the A residues. The observed NOE data suggest that the nucleotidyl units in both rA and dT strands have equivalent conformations: C-2'-endo/C-1'-exo, anti chi approximately equal to 240 degrees to 260 degrees. Such a nucleotide geometry for rA/dT is consistent with a right-handed B-DNA model for poly(rA).poly(dT) in solution in which the rA and dT strands are conformationally equivalent. Molecular models were generated for poly(rA).poly(dT) in the B-form based upon the geometrical constraints as obtained from the NOE data. Incorporation of (C-2'-endo pucker, chi congruent to 240 degrees to 260 degrees) into the classical B-form resulted in severe close contacts in the rA chain. By introducing base-displacement, tilt and twist along with concomitant changes in the backbone torsion angles, we were able to generate a B-form for the hybrid poly(rA).poly(dT) fully consistent with the observed NOE data. In the derived model the sugar pucker is C-1'-exo, a minor variant of C-2'-endo and the sugar base torsion is 243 degrees, the remaining torsion angles being: epsilon = 198 degrees, xi = 260 degrees, alpha = 286 degrees, beta = 161 degrees and gamma = 72 degrees; this structure is free of any steric compression and indicates that it is not necessary to switch to C-3'-endo pucker for rA residues in order to accommodate the 2'-OH group. The structure that we have proposed for the polynucleotide RNA-DNA hybrid in solution is in complete agreement with that proposed for a hexamer hybrid in solution from NOE data and is inconsistent with the heteronomous model proposed for the fibrous state.  相似文献   

15.
Starting from the observation that double-stranded ribonucleic acids are hydrolyzed more rapidly by bovine pancreatic ribonuclease that has been cross-linked to polyspermine, we have made an initial examination of the kinetics of the process. The addition of eight residues of the polyamine serves to strengthen the binding to poly(A).poly(U) 100-fold (Km changes from 2.7 . 10(-4) to 2.7 . 10(-6) M in total U) and to increase V for hydrolysis of the susceptible poly(U) strand from 2.5 to 16.2 delta A250 . min-1 per mg enzyme. There is evidence for inhibition by the RNAase-resistant poly(A) tracts in the substrate; free poly(A) shows a Ki of about 8 . 10(-6) M in total A.  相似文献   

16.
R W Behling  D R Kearns 《Biochemistry》1986,25(11):3335-3346
The structure of poly(dA).poly(dT) in aqueous solution has been studied by using 1H two-dimensional nuclear Overhauser effect (2D NOE) spectroscopy and relaxation rate measurements on the imino and nonexchangeable protons. The assignments of the 1H resonances are determined from the observed cross-relaxation patterns in the 2D NOE experiments. The cross-peak intensities together with the measured relaxation rates show that the purine and pyrimidine strands in poly(dA).poly(dT) are equivalent in aqueous solution. The results are consistent with a right-handed B-form helix where the sugars on both strands are in the C2'-endo/anti configuration. These observations are inconsistent with a proposed heteronomous structure for poly(dA).poly(dT) [Arnott, S., Chandrasekaran, R., Hall, I. H., & Puigjaner, L. C. (1983) Nucleic Acids Res. 11, 4141-4155]. The measured relaxation rates also show that poly(dA).poly(dT) has fast, large-amplitude local internal motions (+/- 20-25 degrees) in solution and that the amplitudes of the base and sugar motions are similar. The motion of the bases in poly(dA).poly(dT) is also similar to that previously reported for poly(dA-dT).poly(dA-dT) and poly(dG-dC).poly(dG-dC) [Assa-Munt, N., Granot, J., Behling, R. W., & Kearns, D. R. (1984) Biochemistry 23, 944-955; Mirau, P. A., Behling, R. W., & Kearns, D. R. (1985) Biochemistry 24, 6200-6211].  相似文献   

17.
M H Sarma  G Gupta  R H Sarma 《Biochemistry》1986,25(12):3659-3665
Secondary structures of poly(dG).poly(dC) and poly(dG).poly(dm5C) in solution are determined by nuclear Overhauser effect (NOE) measurements on GH8-deuterated and -nondeuterated DNAs with low presaturation pulse lengths (10-25 ms) and low-power and prolonged accumulations in the range of 50,000-72,000 scans. Under these conditions, the NOE difference spectra were free from diffusion. Primary NOEs between base protons GH8/CH6 and sugar protons H1', H2'/H2', and H3' suggest that in poly(dG).poly(dC) both guanine and cytosine nucleotides adopt a C3'-endo, low anti X = 200-220 degrees conformation. Computer modeling of the NOE data enable identification for the first time, in terms of the geometry of the nucleotide repeat, handedness, and helix geometry, of the structure of poly(dG).poly(dC) to be the A form, and the derived structure for the polymer duplex is very close to the single crystal structure of the double-helical d-GGGGCCCC [McCall, M., Brown, T., & Kennard, O. (1985) J. Mol. Biol. 183, 385-396]. Similar nuclear Overhauser effect data on poly(dG).poly(dm5C) revealed that G and m5C adopt a C2'endo, anti X = 240-260 degrees conformation, which indicates that this DNA exhibits the B form in solution. In summary, the results presented in this paper demonstrate that methylation of cytosines in poly(dG).poly(dC) causes A----B transition in the molecule.  相似文献   

18.
The crystal structure of 5-nitrouridine was determined by X-ray analysis. The pyrimidine ring is slightly non-planar, showing a shallow boat conformation. The nitro group has no influence on the C4 - O4 bond length as compared to uridine. The ribose shows the C3'-endo conformation and the base is in the anti orientation to the sugar with a torsion angle of 25.6 degrees. This conformation is stabilized by a hydrogen bond from the base to the ribosyl moiety (H6 ... 05'). Stacking interactions between neighboring bases are almost negligible in the crystal. A water molecule is involved in a bifurcated donating hydrogen bond to 04 and to 052 of the nitro group of the one base and an accepting bond from the H3 of the other base. Two more hydrogen bonds are formed between the water molecule and the ribose. The structural aspects of 5-nitrouridine are discussed with respect to the special stacking features found for 5-nitro-1-(beta-D-ribosyluronic acid)-uracil monohydrate in the crystal (1).  相似文献   

19.
The technique of photoaffinity labeling has been applied to the double-stranded RNA (dsRNA)-dependent enzyme 2',5'-oligoadenylate (2-5A) synthetase to provide a means for the examination of RNA-protein interaction(s) in the dsRNA allosteric binding domain of this enzyme. The synthesis, characterization, and biological properties of the photoaffinity probe poly[( 32P]I,8-azidoI).poly(C) and its mismatched analog poly[( 32P]I,8-azidoI).poly(C12U), which mimic the parent molecules poly(I).poly(C) and poly(I).poly(C12U), are described. The efficacy of poly[( 32P]I,8-azidoI).poly(C) and poly[( 32P]I,8-azidoI).poly(C12U) as allosteric site-directed activators is demonstrated using highly purified 2-5A synthetase from rabbit reticulocyte lysates and from extracts of interferon-treated HeLa cells. The dsRNA photoprobes activate these two 2-5A synthetases. Saturation of 2-5A synthetase is observed at 6 x 10(-4) g/ml poly[( 32P]I,8-azidoI).poly(C) following photolysis for 20 s at 0 degrees C. The photoincorporation of poly[( 32P]I,8-azidoI).poly(C) is specific, as demonstrated by the prevention of photoincorporation by native poly(I).poly(C). DNA, poly(I), and poly(C) are not competitors of poly[( 32P]I,8-azidoI).poly(C). Following UV irradiation of 2-5A synthetase with poly[( 32P]I,8-azidoI).poly(C), the reaction mixture is treated with micrococcal nuclease to hydrolyze azido dsRNA that is not cross-linked to the enzyme. A radioactive band of 110 kDa (the same as that reported for native rabbit reticulocyte lysate 2-5A synthetase) is observed following sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The specific photolabeling of the 2-5A synthetase suggests that the azido dsRNA is intrinsic to the allosteric binding domain. The utility of poly[( 32P]I,8-azidoI).poly(C) for the detection of dsRNA-dependent binding proteins and the isolation of peptides at or near the allosteric binding site is discussed.  相似文献   

20.
gamma-Radiation-induced single-strand break formation (ssb) in polyadenylic acid (poly(A] has been determined in Ar and N2O-saturated aqueous solution in the presence of different concentrations of t-butanol. Strand breaks were monitored by a low-angle laser light-scattering technique. The efficiencies for strand breakage caused by solvated electrons, hydrogen atoms and OH radicals have been found to be 0.25, 0.20 and 7.8 per cent, respectively. The efficiency of OH radicals depends only slightly on pH (pH 5.0, 7.5 and 9.0) and is independent of the presence of salt (0.01 mol dm-3 NaC1O4) and of the irradiation temperature (20 degrees C and 70 degrees C). The efficiency of OH for ssb formation obtained in this work with poly(A) is much smaller than that of poly(dA). This is explained by the different molecular conformations of the sugar moiety of poly(A) (3'-endo) and poly(dA) (2'-endo). With increasing t-butanol concentration more strand breaks are formed than expected from simple homogeneous competition kinetics of poly(A) and t-butanol for OH radicals. This result is considered to be due to nonhomogeneous reaction kinetics in the above-mentioned competition. The rate constants for the reaction of OH and H with poly(A) have been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号