首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
机械应力敏感信号HIPPO通路由上游MST1/2、中游LATS1/2和下游YAP三个核心组件构成,参与调控细胞增殖、分化、凋亡、蛋白质合成和干细胞自我更新等生理过程。在维持骨骼肌再生、能量代谢稳态、骨骼肌结构和功能重塑过程中发挥重要作用。已证实,通过抑制HIPPO通路的下游效应因子YAP磷酸化可促进YAP在细胞核内积累并形成复合物,从而促进相关基因的转录过程。本文对HIPPO通路的调控机制及其介导骨骼肌再生和蛋白质稳态调控的研究进展进行综述,重点分析运动干预下HIPPO通路在骨骼肌线粒体功能、凋亡和蛋白质合成中的可能作用,为深入研究运动干预改善骨骼肌再生和结构功能重塑的机制研究提供理论参考。  相似文献   

2.
骨骼肌损伤后的修复包括炎症反应期、修复期、组织重塑期三个阶段。而骨骼肌卫星细胞的激活、增殖与分化和骨骼肌伤后的修复有着密切的关系。骨骼肌损伤后,肝细胞生长因子(HGF)可以自分泌、旁分泌或内分泌的形式,调控肌卫星细胞功能,从而影响损伤骨骼肌的再生。其机制研究表明,HGF可能通过与其受体c-met结合,启动相关信号途径,参与骨骼肌卫星细胞激活、增殖、分化和迁移,从而影响骨骼肌再生进程。  相似文献   

3.
刘辰东  杨露  蒲红州  杨琼  黄文耀  赵雪  朱砺  张顺华 《遗传》2017,39(10):888-896
DNA甲基化、组蛋白修饰和miRNA表达调控是表观遗传调控的3种重要方式,其在基因表达调控中发挥着关键作用。适当运动有益于身心健康。骨骼肌作为运动的主体组织,运动可以提高其代谢能力,改善其线粒体生物学功能,调控肌纤维类型转化,增加骨骼肌力量。近年来越来越多的研究表明,表观遗传调控在机体适应运动过程中发挥着重要作用,DNA甲基化、组蛋白修饰和miRNA表达调控等表观遗传调控方式通过调控骨骼肌基因表达来改变骨骼肌代谢能力、线粒体生物学功能和肌纤维类型,从而适应运动变化。本文对近年来运动对骨骼肌基因DNA甲基化、组蛋白修饰和相应miRNA表达调控等3种表观遗传调控方式的研究现状进行了综述,以期为进一步研究运动改善机体机能和健康提供参考。  相似文献   

4.
成体骨骼肌细胞的数量基本保持恒定,骨骼肌的再生主要依赖肌卫星细胞的增殖与分化。骨骼肌卫星细胞是能够被激活、进而分化为肌细胞的一类成肌细胞。现对肌卫星细胞的发生、体外培养以及增殖与分化的调控进行综述,并对能否通过激活肌卫星细胞的增殖来实现肌肉组织生长的调控进行探讨。  相似文献   

5.
骨骼肌是人体运动系统的主要器官,骨骼肌受损会降低生活质量、加重疾病恶化,探究骨骼肌再生和修复对恢复和维持肌肉功能至关重要。N6-甲基腺苷(N6-methyladenosine,m6A)修饰是真核生物中重要的mRNA甲基化修饰,其在调控骨骼肌生成中的作用与中医药健脾补肾法滋养肌肉生长相契合。本文总结了m6A甲基化修饰相关同源因子甲基转移酶、去甲基化酶和识别蛋白在骨骼肌生成中的作用,并探讨了其与中医理论的相关性,以及中医药疗法在骨骼肌生成中的应用,为深入研究骨骼肌修复与再生的相关分子机制及中医药介导m6A修饰调控骨骼肌生成提供理论依据和研究思路。  相似文献   

6.
骨骼肌良好的再生能力是由于肌卫星细胞的存在,然而肌卫星细胞的数量仅占骨骼肌细胞数量的1%~ 5%,当肌肉损伤时,仅依靠这些卫星细胞还不足以促进骨骼肌修复与再生,并且这种再生能力会随着年龄的增大而衰减,并不能修复损伤严重的骨骼肌。骨髓间充质干细胞(BMSC)因其多向分化潜能,旁分泌潜能,免疫调节能力及容易获取等特点广泛用于损伤骨骼肌的修复与再生。但在某种程度上,仅仅采用BMSC治疗损伤的骨骼肌仍不能达到满意的效果。因此,大量研究采用药物、生物材料、细胞及细胞因子对BMSC进行预处理不仅可改善它的移植率,还可显著促进其向骨骼肌分化,从而最大限度的发掘骨骼肌间充质干细胞的成肌分化潜能以促进骨骼肌的修复。因此,本篇综述旨在概括BMSC成肌分化在骨骼肌再生中的应用。  相似文献   

7.
正我们都知道,Prox1基因在胚胎发育过程中扮演着重要的角色,日前,一项刊登在国际杂志Nature Communications上的研究报告中,来自芬兰的研究人员通过研究发现,Prox1基因或许对于骨骼肌干细胞的分化也非常关键。骨骼肌不仅对于运动非常重要,而且对于整个机体新陈代谢的调节也很关键,在机体损伤之后肌肉有着强大的能力进行再生,同时还能够不断适应运动训练。  相似文献   

8.
胰岛素样生长因子-1(IGF-1)作为一种生长因子,在骨骼肌损伤后治疗过程中发挥重要的作用。局部注射外源性IGF-1或通过转基因技术使损伤处骨骼肌细胞过表达IGF-1,均能促进损伤骨骼肌再生。IGF-1促进损伤骨骼肌修复的机制可能与如下因素有关:激活骨骼肌卫星细胞,促进成肌细胞增殖与分化,促进蛋白质合成并抑制蛋白分解;抑制骨骼肌炎症反应,并调节巨噬细胞极化;抑制细胞表达胶原蛋白,减少骨骼肌纤维化;作为一种潜在的神经营养因子和生血管因子,促进损伤后的神经和血管再生。因此,IGF-1在骨骼肌损伤后的治疗中具有重要的应用前景。  相似文献   

9.
本研究旨在探索巨噬细胞在骨骼肌损伤修复中的作用及其机制。将小鼠随机分为损伤组、未损伤对照组、剔除组和剔除对照组。损伤组和剔除组小鼠用钝物击打构建骨骼肌挫伤模型,剔除组和剔除对照组小鼠用氯膦酸盐脂质体腹腔注射构建巨噬细胞剔除模型。骨骼肌钝挫伤后1、3、7和14 d取双侧腓肠肌,HE和Masson染色观察损伤骨骼肌再生和纤维化瘢痕愈合过程,real-time PCR及Western blotting检测骨骼肌中炎症因子、趋化因子和氧化应激因子表达变化。结果显示,骨骼肌损伤后14 d,损伤组组只存在少量再生肌纤维,而剔除组存在大量再生肌纤维,两组肌纤维直径差异具有显著性(P0.05)。伤后14 d,剔除组胶原纤维面积所占百分比显著高于损伤组(P0.01)。与未损伤对照组相比,损伤组多种促炎细胞因子、趋化因子和氧化应激因子表达均显著上调。与损伤组相比,剔除组中多种促炎细胞因子、趋化因子和氧化应激因子的表达在损伤后期(损伤后7~14 d)均显著增加。以上结果提示,骨骼肌损伤修复过程中多种炎症因子、趋化因子和氧化应激因子表达上调,剔除巨噬细胞后,上述因子的表达在损伤后期进一步上调,且骨骼肌再生能力受损,纤维化修复加剧。这些结果表明巨噬细胞在骨骼肌损伤修复过程中发挥了重要作用,炎症和氧化应激可能参与了剔除巨噬细胞损害骨骼肌再生这一过程。  相似文献   

10.
组织器官损伤修复和再生是生命科学领域最为复杂和重要的科学问题之一,任何组织器官都能快速响应损伤,通过内源性基因转录调控改变多种细胞命运属性实现创伤的修复与再生。绝大部分人体组织器官都不具备完美再生能力,然而,进化早期的许多动物以及绝大部分植物具有强大修复和再生能力。经年来,通过对这些模式生物的研究,随着单细胞测序技术的发展,通过遗传示踪、活体显微实时成像,对组织器官再生的关键细胞及其发生调控过程的认识有了显著的进步。该综述将针对损伤修复和再生关键细胞来源、损伤后基因转录调控以及快速损伤应激能力进行简单总结。由于篇幅有限,非常抱歉不能涵盖损伤修复和再生领域的所有研究。  相似文献   

11.
运动诱导骨骼肌损伤,会由于临时性丧失肌肉功能,如果不能进行恰当处理,继续过度训练则会造成更严重的损伤,甚至导致运动员运动寿命的缩短。对体育运动训练所造成的骨骼肌微损伤进行深入研究,将有助于指导运动员训练过程中避免或减少意外情况带来的骨骼肌负面影响。  相似文献   

12.
为分析miR-222在骨骼肌损伤修复中的表达水平,本研究选取跑台诱导骨骼肌损伤模型,参照Armstrong的实验动物模型,选取2月龄健康雄性SD大鼠,建立股直肌损伤模型,在下坡跑运动结束后的不同时刻取材,对血清CK水平进行检测,对股直肌冰冻切片(HE染色;横切)进行组织形态学分析,采用RT-PCR试验对miR-222水平进行检测。血清CK在股直肌运动后损伤过程中的表达水平持续增高;HE染色发现:安静对照组显示肌纤维排列紧密规律,大小均匀,呈多边形;与对照组相比,运动后不同时刻取材的组织切片染色显示肌纤维之间间隙变大,形状不规律,呈肿胀状态;miR-222在运动后表达较对照组整体上调。一次性长时间下坡跑运动可导致大鼠股直肌损伤,损伤后2周肌纤维细胞结构基本恢复正常,通过血清CK的变化特点,血清CK可作为运动性骨骼肌损伤评价的敏感指标之一。一次性下坡跑诱导的运动性骨骼肌损伤中miR-222表达上调,促进了骨骼肌损伤的修复。  相似文献   

13.
运动训练通过诱导骨骼肌适应提高运动机能和健康水平。在此过程中,线粒体具有显著的可塑性,不断地重塑自身的网络结构,并对骨骼肌收缩所引发的一系列信号刺激做出相应的应答反应,以适应骨骼肌对代谢的需求。当线粒体功能失调时,机体通过特定的细胞内系统对这类线粒体进行清除及再利用。因此,运动适应过程中线粒体的应答包括线粒体数量和质量的协同调控。本文着重关注骨骼肌适应中的线粒体质量控制应答,并总结目前对运动调节这些应答机制的理解。  相似文献   

14.
规律性耐力运动对收缩器官(骨骼肌)及远隔器官(心脏、脑、肝脏、脂肪等)均有健康促进效应。在骨骼肌中,运动通过调控PPARδ、AMPK、SIRT1及PGC-1α等一系列信号通路促进骨骼肌重塑。此外,收缩的骨骼肌合成"运动因子"(如IL-6、BDNF、Irisin等)并以内分泌方式释放入血,扩散并作用于远隔器官,是运动防治多种慢性疾病的重要途径。上述信号通路及"运动因子"成为开发"运动模拟"药物的靶向。本综述中,我们讨论了运动促进健康的生物学靶位及"运动模拟"药物开发的研究进展。  相似文献   

15.
衰老性肌萎缩症是由于衰老所致的骨骼肌质量减少及功能减退的增龄性机能退化症,运动干预是其防治的最有效措施之一。研究表明,microRNAs (miRNAs)作为基因表达的调控因子,通过调节骨骼肌发育(增殖、分化)、线粒体生物发生、蛋白质合成与降解、炎症反应和代谢途径来维持衰老骨骼肌细胞稳态。此外,运动可改变miRNAs表达水平,调节骨骼肌细胞的代谢平衡,从而改善衰老相关的骨骼肌质量、组成和功能的变化。本文综述了miRNAs在衰老性肌萎缩症中的调节机制,阐述在运动条件下miRNAs在衰老性肌萎缩症中的调控作用和分子机制,以期为预防和治疗衰老性肌萎缩症提供新的思路。  相似文献   

16.
白血病抑制因子(LIF)是一种肌肉因子(myokines),在损伤骨骼肌和运动后骨骼肌中高丰度表达,它可能通过JAK2和STAT3信号通路调节肌卫星细胞和成肌细胞增殖,通过PI3K信号通路抑制成肌细胞凋亡,也可以通过LIF受体信号通路调节骨骼肌局部炎症反应,同时与多种细胞因子相互作用抑制成肌细胞过早分化,从而在骨骼肌损伤修复和骨骼肌肥大中发挥重要作用。外源性补充重组LIF可促进骨骼肌损伤修复和促进骨骼肌肥大,这具有非常重要的临床应用价值。LIF可能成为治疗急性肌肉损伤和促进骨骼肌肥大的一种新手段,有关LIF在骨骼肌方面的研究也将会成为一个新的研究热点。  相似文献   

17.
随着全球老龄化进程加剧,老年人口剧增,伴随着工作和生活方式的改变,导致体育锻炼减少与生活作息不规律等问题愈发严重。这样的结果显著增加了骨骼肌萎缩的发病率,降低了老年和慢性疾病人群机体健康,影响其生活质量。与此同时,饮食不均衡和运动量降低以及激素水平波动等进一步加剧骨骼肌萎缩的发生,其病理机制主要为慢性炎症加重、线粒体功能障碍、自噬功能状态低下、细胞凋亡增加、肌卫星细胞功能受损以及昼夜节律紊乱等。其中,随着昼夜节律相关研究的深入,骨骼肌作为机体最大的外周生物钟,可通过调控昼夜节律核心基因BMAL1以及CLOCK基因,对骨骼肌纤维结构、线粒体功能、肌肉质量等产生影响。运动锻炼作为改善骨骼肌质量的重要干预策略,还可激活昼夜节律信号通路,调控其相位,进而改善肌肉再生、提高肌肉力量,发挥延缓肌萎缩作用。为此,本文从昼夜节律的角度去阐述其与肌萎缩发生以及潜在运动干预的分子机制,以期为肌萎缩的预防、治疗及康复提供新的靶向思路。  相似文献   

18.
骨骼肌具有一定的再生能力,肌卫星细胞和多种免疫细胞在骨骼肌再生中发挥重要作用。随年龄的增长,骨骼肌再生能力呈现下降趋势,并伴随着机体免疫及自我修复能力的下降,这是肌少症发生发展的重要原因。对老年骨骼肌再生能力受损机制的研究表明,肌卫星细胞、中性粒细胞、巨噬细胞等功能的改变与这一过程密切相关。此外,Notch和Wnt信号通路及生长因子的变化也是影响老年骨骼肌再生能力的重要因素。本文对老年骨骼肌再生能力受损的机制进行了综述。  相似文献   

19.
Nrf2可调节多种抗氧化酶的表达,Nrf2的缺失可能影响机体的运动能力,而低氧可提高机体的抗氧化能力并改善运动能力。为了考察低氧运动对Nrf2基因敲除大鼠运动能力和氧化应激的影响,本研究分别在常氧和低氧环境(12%氧浓度)中对野生型大鼠和Nrf2敲除大鼠进行4周的跑台运动。研究显示,低氧运动可提高野生型大鼠的跑台运动力竭时间,Nrf2敲除可缩短大鼠的力竭时间;低氧运动可上调大鼠的Nrf2 m RNA表达量;Nrf2敲除明显抑制HIF-1α蛋白表达,而低氧运动可上调野生型和Nrf2敲除大鼠的HIF-1α蛋白表达;Nrf2敲除大鼠的骨骼肌ROS水平明显升高,并且低氧均可降低野生型和Nrf2敲除大鼠骨骼肌ROS水平。低氧运动可上调Nrf2敲除大鼠的CAT和GSH-PX蛋白表达。苏木精和伊红(HE)染色显示,Nrf2敲除大鼠在力竭跑台运动完成后出现更严重的骨骼肌病理改变,而低氧运动可减轻骨骼肌损伤。本研究认为,Nrf2敲除导致了大鼠骨骼肌中抗氧化酶的抑制及ROS的过量累积,从而造成了骨骼肌损伤并降低了运动能力。此外,低氧可通过上调Nrf2的表达,进而激活HIF-1α及抗氧化酶活性,从而提高运动能力,并防止骨骼肌损伤。  相似文献   

20.
非编码RNA在骨骼肌发育中的功能   总被引:1,自引:0,他引:1  
张勇  朱大海 《生命科学》2010,(7):668-673
近几年的研究表明,非编码RNA的功能几乎涉及生命活动的各个方面。非编码RNA在骨骼肌发育中的功能研究揭示了骨骼肌发育调控的复杂性。该文总结了骨骼肌发育中非编码RNA的系统发现与鉴定以及非编码RNA在骨骼肌发育和再生中的功能研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号