首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Economy-wide material flow analysis (MFA) and derived indicators have been developed to monitor and assess the metabolic performance of economies, that is, with respect to the internal economic flows and the exchange of materials with the environment and with other economies. Indicators such as direct material input (DMI) and direct material consumption (DMC) measure material use related to either production or consumption. Domestic hidden flows (HF) account for unused domestic extraction, and foreign HF represent the upstream primary resource requirements of the imports. DMI and domestic and foreign HF account for the total material requirement (TMR) of an economy. Subtracting the exports and their HF provides the total material consumption (TMC).
DMI and TMR are used to measure the (de-) coupling of resource use and economic growth, providing the basis for resource efficiency indicators. Accounting for TMR allows detection of shifts from domestic to foreign resource requirements. Net addition to stock (NAS) measures the physical growth of an economy. It indicates the distance from flow equilibrium of inputs and outputs that may be regarded as a necessary condition of a sustainable mature metabolism.
We discuss the extent to which MFA-based indicators can also be used to assess the environmental performance. For that purpose we consider different impacts of material flows, and different scales and perspectives of the analysis, and distinguish between turnover-based indicators of generic environmental pressure and impact-based indicators of specific environmental pressure. Indicators such as TMR and TMC are regarded as generic pressure indicators that may not be used to indicate specific environmental impacts. The TMR of industrial countries is discussed with respect to the question of whether volume and composition may be regarded as unsustainable.  相似文献   

2.
This article analyzes the mass of the materials that flowed through the Italian economy during 1994 and compares the results with a similar analysis of Germany, Japan, the Netherlands, and the United States published by a collaboration headed by the World Resources Institute. In order to perform this comparison, we have evaluated the mass of the materials produced within the country and the mass of the imported materials and commodities. For the domestic production, imports and exports, we have also evaluated the mass of the materials that accompany—as "hidden flows"—each physical flow.
Our analysis indicates that, in 1994, Italy experienced total material requirements (TMR) of 1,609 million metric tons (Mt), of which 727 Mt was used as direct material input (DMI). A comparison with other developed countries shows that the TMR and DMI flows, measured in mass per person and in mass per GDP unit, are, in Italy, lower than the corresponding figures evaluated for the United States, Germany, and the Netherlands. An interpretation of these results is presented. The analysis may give information useful for environmental considerations, although the limits of such an approach are made clear.  相似文献   

3.
With the rapid growth of highway mileage and vehicles, the Chinese highway traffic system (HTS) has become one of the great resource consumers. This article attempts to evaluate the material metabolism of China's HTS during 2001–2005 using the approach of material flow analysis (MFA) and to explore possible measures to promote circular economy throughout HTS. We measured a set of indicators to illustrate the whole material metabolism of China's HTS. The results indicated that the direct material input (DMI) of China's HTS increased from 1181.26 million tonnes (Mt) in 2001 to 1,874.57 Mt in 2005, and about 80% of DMI was accumulated in the system as infrastructure and vehicles. The domestic processed output (DPO) increased by 59.0% from 2001 to 2005. Carbon dioxide and solid waste accounted for 80.5% and 10.4% of DPO, respectively. The increase of resource consumption and pollutant emissions kept pace with the growth of transportation turnover. All these suggest that China's HTS still followed an extensive linear developing pattern with large resource consumption and heavy pollution emissions during the study period, which brought great challenges to the resources and the environment. Therefore, it's high time for China to implement a circular economy throughout the HTS by instituting resource and energy savings, by reducing emissions in the field of infrastructure construction and maintenance, by reducing vehicles’ energy and materials consumption, and by recycling waste materials.  相似文献   

4.
In 2007, imports accounted for approximately 34% of the material input (domestic extraction and imports) into the Austrian economy and almost 60% of the GDP stemmed from exports. Upstream material inputs into the production of traded goods, however, are not yet included in the standard framework of material flow accounting (MFA). We have reviewed different approaches accounting for these upstream material inputs, or raw material equivalents (RME), positioning them in a wider debate about consumption‐based perspectives in environmental accounting. For the period 1995–2007, we calculated annual RME of Austria's trade and consumption applying a hybrid approach. For exports and competitive imports, we used an environmentally extended input‐output model of the Austrian economy, based on annual supply and use tables and MFA data. For noncompetitive imports, coefficients for upstream material inputs were extracted from life cycle inventories. The RME of Austria's imports and exports were approximately three times larger than the trade flows themselves. In 2007, Austria's raw material consumption was 30 million tonnes or 15% higher than its domestic material consumption. We discuss the material composition of these flows and their temporal dynamics. Our results demonstrate the need for a consumption‐based perspective in MFA to provide robust indicators for dematerialization and resource efficiency analysis of open economies.  相似文献   

5.
This work aims to contribute to the number of urban metabolism case studies using a standardized methodology. An economy‐wide material flow analysis (EW‐MFA) was conducted on the Metropolitan Municipality of Cape Town (South Africa) for the year 2013, using the Eurostat framework. The study provides insights into the city's metabolism through various indicators including direct material input (DMI), domestic material consumption (DMC), and direct material output (DMO), among others. In order to report on the uncertainty of the data, a set of data quality indicators originating from the life cycle assessment literature was used. The results show that domestic extraction involves significant quantities of non‐metallic minerals, and that imports consist primarily of biomass and fossil fuels. The role of the city as a regional hub is also made clear from this study and illustrated by large quantities of food and other materials flowing through the city on their way to or from international markets. The results are compared with indicators from other cities and with previous metabolism work done on Cape Town. To fully grasp the impacts of the city's metabolism, more work needs to be done. It will be necessary to understand the upstream impact of local consumption, and consumption patterns should be differentiated on a more nuanced level (taking into account large differences between household income levels as well as separating the metabolism of industry and commerce from residential consumption).  相似文献   

6.
In this article, the development of natural resource use in Finland during the period 1970-1997 is analyzed. In measuring natural resource use, the concept of total material requirement (TMR) is applied. The focus is on the linkages of resource use with the changing structures of the economy. The linkages are studied using input-output analysis.
Using input-output analysis, the TMR is further partitioned into resources used for domestic final use or for total material consumption (TMC) and total material requirement of exports (TME). The analysis shows that TMR has the problem of double accounting: if the TMRs of all countries of the world are summed, then international trade would be accounted for twice in the world TMR, once in imports and once in exports of each country.
The TMC concept does not have this kind of defect. In a small, open economy like that of Finland, where the share of foreign trade is large, the difference between the TMR and the TMC is also large. We show that by 1997, the TME comprised about half of Finland's TMR and that the growth of the TMR over the study period has been due to the TME only as the TMC has stayed rather constant.  相似文献   

7.
The United States is not only the world's largest economy, but it is also one of the world's largest consumers of natural resources. The country, which is inhabited by some 5% of the world's population, uses roughly one‐fifth of the global primary energy supply and 15% of all extracted materials. This article explores long‐term trends and patterns of material use in the United States. Based on a material flow account (MFA) that is fully consistent with current standards of economy‐wide MFAs and covers domestic extraction, imports, and exports of materials for a 135‐year period, we investigated the evolution of the U.S. industrial metabolism. This process was characterized by an 18‐fold increase in material consumption, a multiplication of material use per capita, and a shift from renewable biomass toward mineral and fossil resources. In spite of considerable improvements in material intensity, no dematerialization has happened so far; in contrast to other high‐income countries, material use has not stabilized since the 1970s, but has continued to grow. This article compares patterns and trends of material use in the United States with those in Japan and the United Kingdom and discusses the factors underlying the disproportionately high level of U.S. per capita resource consumption.  相似文献   

8.
Coal Tar‐Containing Asphalt Resource or Hazardous Waste?   总被引:1,自引:0,他引:1  
Abstract: Coal tar was used in Sweden for the production of asphalt and for the drenching of stabilization gravel until 1973. The tar has high concentrations of polycyclic aromatic hydrocarbons (PAH), some of which may be strongly carcinogenic. Approximately 20 million tonnes of tar-containing asphalt is present in the public roads in Sweden. Used asphalt from rebuilding can be classified as hazardous waste according to the Swedish Waste Act. The cost of treating the material removed as hazardous waste can be very high due to the large amount that has to be treated, and the total environmental benefit is unclear. The transport of used asphalt to landfill or combustion will affect other environmental targets. The present project, based on three case studies of road projects in Sweden, evaluates the consequences of four scenarios for handling the material: reuse, landfill, biological treatment, and incineration. The results show that reuse of the coal tar-containing materials in new road construction is the most favorable alternative in terms of cost, material use, land use, energy consumption, and air emissions.  相似文献   

9.
建设生态海岛是海岛生态经济系统实现可持续发展的重要途径。运用物质流分析方法对长海县的物质输入与输出状况进行计算,并用物质消耗强度、废物排放强度和环境负荷强度3个指标衡量了该海岛县生态效率的变化,分析了技术进步对海岛生态经济系统生态压力变化的贡献状况。结果表明,2003—2009年间,长海县物质输入总量、物质输出总量和环境负荷总量呈增长态势;生态效率明显提高;技术进步对减轻海岛生态经济系统生态压力的贡献没有抵消经济增长所产生的生态压力的增加量。为了减少物质输入和废物输出,减轻经济活动对海岛生态系统产生的压力,建立创新型管理机制有效促进技术进步,不断提高生态效率具有特别重要的作用。  相似文献   

10.
This article applies a combined input−output and life cycle inventory (LCI) method to the calculation of emissions and material requirements of the Czech economy in 2003. The main focus is on materials and emissions embodied in the international trade of the Czech Republic. Emissions and material extraction avoided due to imports are calculated according to an input−output approach that assumes the same production technology for imports as for domestic production. Because not all products are provided by the domestic economy, the LCI data are incorporated into the monetary input−output model.
The results show that incorporating the LCI data into an input−output model is reasonable. The emissions embodied in the international trade of the Czech Republic are comparable to the domestic emissions. We compare the economy-wide material flow indicators, such as direct material input, domestic material consumption, and physical trade balance, to their raw material equivalents. The results of our calculation show that the Czech Republic exerts environmental pressure on the environment in other countries through international trade.
We argue that raw material equivalents should be used to express the flows across national boundaries. Furthermore, we recommend a raw material consumption indicator for international comparisons.  相似文献   

11.
This article aims at estimating the raw material equivalents (RMEs)—the upstream used material flows required along the production chain—of imports and exports for some Latin American countries: Brazil, Chile, Colombia, Ecuador, and Mexico. Furthermore, the United States is included in the analysis as a reference for a high‐income economy. The RME concept and the empirical evidence are articulated by use of an input?output methodology. Results are set out for the year 2003 for each of the countries and in time series for the years 1977, 1986, 1996, and 2003 in the case of Chile. The findings show not only the physical dimensions behind direct material traded but also how the previous exporter (importer) position of a country (based on standard material flow analysis indicators) deteriorates, alleviates, or changes. Implications for material consumption indicators, such as direct material consumption (DMC) and raw material consumption (RMC), are also drawn. The results suggest basing the discussion of material flows on a broader set of indicators to obtain a more comprehensive picture of the implications of international trade and its impacts on the environment.  相似文献   

12.
The study described in this article presents the first‐ever physical supply and use tables (PSUTs) based on the recently published methodological standard for the System of Environmental‐Economic Accounting (SEEA). The tables were compiled for the Czech Republic for 2014. The compilation procedure followed was described in detail so that it can serve as a source of inspiration and a benchmark for other researchers and/or statisticians. The major shortcoming of the PSUTs is that not all needed data were readily available in physical units and required estimations based on proxies. Some parts of the tables are therefore burdened with a degree of uncertainty. In order to address the price inhomogeneity of sectoral prices for commodity outputs, imports, and exports, which tends to be typical for monetary supply and use tables (MSUTs), the PSUTs and MSUTs were further used for the calculation of raw material equivalents of import, exports, and raw material input (RMI) and raw material consumption (RMC) indicators. A comparison of results showed that the total indicators do not differ that much: the largest difference of 5% was recorded for raw material equivalents of exports, while RMC, for instance, remained nearly the same. However, we still argue for the use of PSUTs for the calculation of raw material equivalents, as changes in total volume of the indicators were accompanied with changes in their material structure. This can have significant consequences for the assessment of environmental impacts related to material consumption, as environmental impacts are very material specific.  相似文献   

13.
The article presents a method for the calculation of selected economy‐wide material flow indicators (namely, direct material input [DMI] and raw material input [RMI]) for economic sectors. Whereas sectoral DMI was calculated using direct data from statistics, we applied a concept of total flows and a hybrid input‐output life cycle assessment method to calculate sectoral RMI. We calculated the indicators for the Czech Republic for 2000–2011. We argue that DMI of economic sectors can be used for policies aiming at decreasing the direct input of extracted raw materials, and imported raw materials and products, whereas sectoral RMI can be better used for justifying support for or weakening the role of individual sectors within the economy. High‐input material flows are associated in the Czech Republic with the extractive industries (agriculture and forestry, the mining of fossil fuels [FFs], other types of mining, and quarrying), with several manufacturing industries (manufacturing of beverages, basic metals, motor vehicles or electricity, and gas and steam supply) and with construction. Viable options for reducing inputs of agricultural biomass include changes in people's diet toward a lower amount of animal‐based food and a decrease in the wasting of food. For FFs, one should think of changing the structure of total primary energy supply toward cleaner gaseous and renewable energy sources, innovations in transportation systems, and improvements in overall energy efficiency. For metal ores, viable options include technological changes leading to smaller and lighter products, as well as consistent recycling and use of secondary metals.  相似文献   

14.
The article presents the results of a research project aimed at (1) examining the feasibility of material flow analysis (MFA) on a regional and urban scale in France, (2) selecting the most appropriate method, (3) identifying the available data, and (4) calculating the material balance for a specific case. Using the Eurostat method, the study was conducted for the year 2003 and for three regional levels: Paris, Paris and its suburbs, and the entire region. Applying the method on a local scale required two local indicators to be defined in order to take into account the impact of exported wastes on MFA: LEPO, local and exported flows to nature, and DMCcorr, a modified domestic material consumption (DMC) that excludes exported wastes (and imported ones if necessary). As the region extracts, produces, and transforms less material than the country as a whole, its direct material input (DMI) is lower than the national DMI. In all the areas, LEPO exceeds 50% of DMI; in contrast, recycling is very low. The multiscale approach reveals that urban metabolism is strongly impacted by density and the distribution of activities: the dense city center (Paris) exports all of its wastes to the other parts of the region and concentrates food consumption, whereas the agricultural and urban sprawl area consumes high levels of construction materials and fuel. This supports the use of MFA on an urban and regional scale as a basis for material flow management and dematerialization strategies and clearly reveals the important interactions between urban and regional planning and development, and material flows.  相似文献   

15.
Analysis of food consumption and agricultural production trends in Sweden has focused on domestic food production levels and yields, overlooking human dependence on ecosystem support. We estimate the ecosystem areas appropriated (ArEAs) for agricultural production (crop and animal feed production and grazing in arable land and marine production for fishmeal used in animal feed) to satisfy Swedish food consumption needs from 1962 to 1994. The total agroecosystem areas worldwide supporting Swedish food consumption (that is, domestic production less exports plus imports) have declined by almost one-third since the 1960s as a result of consumption changes and agricultural intensification. By 1994, Swedish consumption of domestic food crops was halved and consumers relied on agricultural areas outside Sweden to satisfy more than a third (35%) of food consumption needs. Surprisingly, 74% of manufactured animal feed ArEAs were from imported inputs. Moreover, marine ArEAs equal to 12% of the total appropriated areas were needed to support fishmeal usage in animal feed. The results show that domestic agricultural areas do not support Swedish food consumption and that the bulk of manufactured feed used in animal products’ production in Sweden is supplied by ecosystems of other nations. These are hidden subsidies of nature, not explicit in Swedish national agricultural policy. Sweden must recognize its high level of dependence on the capacity of ecosystems of other nations to supply its food needs. Ignorance of ecosystem support may increase vulnerability.  相似文献   

16.
韩瑞玲  朱绍华  李志勇 《生态学杂志》2015,26(12):3835-3842
利用物质流分析方法(MFA)建立物质流账户,分析唐山市在经济 环境系统运行中物质投入量与产出量的阶段特征及物质投入和产出强度对经济发展的影响程度;使用计量经济学模型,分别对国内生产总值(GDP)、直接物质投入(DMI)和直接废弃物排放(DPO)进行单位根检验、Johansen协整检验、向量误差修正分析、脉冲响应和方差分解分析,探索了各指标之间的双向作用机制和长期关系.结果表明: 1992—2011年,唐山市DMI和DPO 均呈增长趋势,DMI的增幅高于DPO.DMI投入强度呈增长趋势,DPO产出强度呈波动下降趋势.GDP与DMI、DPO之间存在着长期稳定协整关系,指标间的作用关系经历了由波动到逐步平稳的过程.DMI与DPO在短期内会对经济发展起到较强的正向冲击作用,但是经济-环境系统会逐步消化这些影响,并对系统内外指标进行短期的动态调整,最终使系统表现出一种长期的均衡关系;经济发展受到经济规模效应的影响逐步增加.将各指标对GDP的贡献度予以分解,其中,DMI的贡献度上升,GDP的贡献度下降,DPO的贡献度变化不大.总体上,唐山市的经济发展遵循了资源型城市的传统生产轨迹,较大程度上依赖于物质投入,高能源消耗又加剧了环境污染.  相似文献   

17.
Urban Metabolism     
Urban metabolism studies have been established for only a few cities worldwide, and difficulties obtaining adequate statistical data are universal. Constraints and peculiarities call for innovative methods to quantify the materials entering and leaving city boundaries. Such methods include the extrapolation of data at the country or the region level based, namely, on sales, population, commuters, workers, and waste produced.
The work described in this article offers a new methodology developed specifically for quantifying urban material flows, making possible the regular compilation of data pertinent to the characterization of a city's metabolism. This methodology was tested in a case study that characterized the urban metabolism of the city of Lisbon by quantifying Lisbon's material balance for 2004. With this aim, four variables were characterized and linked to material flows associated with the city: absolute consumption of materials/products per category, throughput of materials in the urban system per material category, material intensity of economic activities, and waste flows per treatment technology.
Results show that annual material consumption in Lisbon totals 11.223 million tonnes (20 tonnes per capita), and material outputs sum 2.149 million tonnes. Nonrenewable resources represent almost 80% of the total material consumption, and renewables consumption (biomass) constitutes only 18% of the total consumption. The remaining portion is made up of nonspecified materials.
A seemingly excessive consumption amount of nonrenewable materials compared to renewables may be the result of a large investment in building construction and a significant shift toward private car traveling, to the detriment of public transportation.  相似文献   

18.
费威  刘心  杨晨 《生态学报》2015,35(11):3797-3807
对经济与环境效率的科学评价是实现区域可持续发展的前提。运用物质流分析将辽宁省经济系统中数据进行物质化处理,再利用改进的数据包络分析模型对环境和经济效率进行综合评价。结果表明:辽宁省物资消费不主要依赖于进口,向其它地区物质输出量大;环境效率评价的综合效率主要受规模因素影响而显著低于纯技术效率,而整体经济的综合效率却主要受纯技术效率影响而下降。第二产业比重依然偏大的产业结构特征是导致上述结果的主因。进一步改造提升传统产业,发展战略性新兴产业,提高第三产业发展水平,扩大环保规模,促进居民生活质量水平全面提升,将是辽宁省以及与之相似的资源依赖型区域可持续发展的方向。  相似文献   

19.
张炳  黄和平  毕军 《生态学报》2009,29(5):2473-2480
区域生态效率(eco-efficiency)评价是考量区域可持发展的重要内容.基于物质流分析(material flow analysis, MFA)构建区域生态效率评价指标体系,并将污染物排放作为一种非期望输入引入到数据包络分析(data envelopment analysis, DEA)模型中,以江苏省(1990~2005年)为例进行生态效率分析评价.结果表明,江苏省的区域生态效率在1990~2005年期间呈现逐步上升的趋势.但是,同期的总物质投入(total material input, TMI)、物质需求总量(total material requirement, TMR)和污染物排放量也呈上升趋势.因此,江苏省社会经济发展和环境影响总体上呈现"弱脱钩(weak de-link)".  相似文献   

20.
The aim of this article is to quantify the drivers for the changes in raw material consumption (domestic material consumption expressed in the form of all materials extracted and used in the production phase) in terms of technology, which refers to the concept of sustainable production; the product structure of final demand, which refers to the concept of sustainable consumption; and the volume of final demand, which is related to economic growth. We also aim to determine to what extent the technological development and a shift in product structure of the final demand compensate for the growth in final consumption volume. Therefore, we apply structural decomposition analysis (SDA) to the change in raw material consumption (RMC) of the Czech Republic between 2000 and 2007. To present the study in a broader context, we also show other material flow indicators for the Czech Republic for 2000 and 2007. Our findings of SDA show that final demand structure has a very limited effect on the change in material flows. The rapid change in final demand volume was not compensated for crude oil, metal ores, construction materials, food crops, and timber. For the material category of non‐iron metal ores, even the change in technology contributes to an increase in material flows. The largest relative increases are reported for non‐iron metal ores (38%) and construction materials (30%). The main changes in material flows related to the Czech Republic are driven by exports and enabled by imports, the main source of these increased material flows. This emphasizes the increasing role of international trade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号