首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

We investigated changes in the activity of the autonomic nervous system (ANS) in the relaxed condition in subjects who felt sleepy, but were unable to sleep. A total of 1021 subjects underwent daytime polysomnography. The sleep latency (SL) and the visual analog scale (VAS) were used to assess “immediate” objective and subjective sleepiness, respectively. The subjects were assigned to an “Alert-Alert” group (VAS ≤ 25 mm, SL ≥ 8 min), a “Sleepy-Alert” group (VAS ≥ 75 mm, SL ≥ 8 min), or a “Sleepy-Sleepy” group (VAS ≥ 75 mm, SL ≤ 4 min). In order to assess the ANS, the spectral analysis and the geometric method were used. The ANS data collected during the relaxed condition (after lights off, post-LO) was compared to that obtained during the control condition (before lights off, pre-LO). From the spectral analysis, a significant decrease of sympathetic function and an increase of parasympathetic function at post-LO in the Sleepy-Sleepy group, a tendency for sympathetic function decrease at post-LO in the Alert-Alert group, and no significant changes to sympathetic and parasympathetic function in the Sleepy-Alert group were observed. The results from the geometric method supported the results of the spectral analysis in the Alert-Alert group and the Sleepy-Sleepy group. The results of this study suggest that the ANS plays a role in individuals who are unable to sleep even though they feel sleepy and are given the opportunity to sleep.

  相似文献   

2.
Objective: Body fatness is partly under hypothalamic control with effector limbs, which include the endocrine system and the autonomic nervous system (ANS). In previous studies we have shown, in both obese and never‐obese subjects, that weight increase leads to increased sympathetic and decreased parasympathetic activity, whereas weight decrease leads to decreased sympathetic and increased parasympathetic activity. We now report on the involvement of such ANS mechanisms in the action of anti‐obesity drugs, independent of change in weight. Research Methods and Procedures: Normal weight males (ages 22 to 38 years) were fed a solid food diet, carefully measured to maintain body weight, for at least 2 weeks, as inpatients at the Rockefeller University General Clinical Research Center. In a single‐blind, placebo/drug/placebo design, eight subjects received dexfenfluramine, seven phentermine (PHE), and seven sibutramine (SIB). ANS measures of parasympathetic and sympathetic activity included: determination of amount of parasympathetic control (PC) and sympathetic control (SC) of heart period (interbeat interval), using sequential pharmacological blockade by intravenous administration of atropine and esmolol. These autonomic controls of heart period are used to estimate the overall level of parasympathetic and sympathetic activities. Norepinephrine, dopamine, and epinephrine levels in 24‐hour urine collections were measured and also resting metabolic rate (RMR). Results: Sufficient food intake maintained constant body weight in all groups. PHE and SIB produced significant increases in SC but no change in PC or in RMR. In contrast, dexfenfluramine produced marked decreases in SC, PC, and RMR. For all three drugs, the effects on urine catecholamines directly paralleled changes in cardiac measures of SC. Discussion: ANS responses to PHE and SIB were anticipated. The large, and unanticipated, response to dexfenfluramine suggests further study to determine whether there could be any relation of these ANS changes to the adverse cardiovascular effects of treatment with dexfenfluramine.  相似文献   

3.
The study of psychophysiological indices in children aged six to eight years under information loads of various complexity showed that anxious subjects were characterized by a high level of nonspecific activation at rest and a shift of the autonomic balance towards a relative domination of the tone of the sympathetic division of the autonomic nervous system (ANS). The information load in the “auto-rate” mode caused in children aged six to eight years an increase in the level of nonspecific activation and the activity of sympathetic regulation and an inhibition of parasympathetic regulation. An information load in the “maximum rate of work” mode caused a decrease in the quantitative and qualitative indices of mental activity in comparison with that under comfortable conditions and a subsequent increase in autonomic shifts and the level of situational anxiety. The decrease in the efficiency of intellectual work performed at a maximum rate against the background of a high level of nonspecific activation and an increase in situational anxiety in both groups apparently reflected an increase in the activity of the modulating cerebral system due to the domination of the nonproductive activation system related to defensive behavior. At the same time, in children with a high personal anxiety, autonomic manifestations of activation and situational anxiety in both modes of work were more distinct and the efficiency of work lower than in subjects with a low anxiety. This indicates that, in anxious children, due to the excess activation of the sympathetic division of the ANS, the information load has a higher physiological cost. Thus, children with a high level of personal anxiety under intense information loads are characterized by a larger increase in the activity of the sympathetic division of the ANS and the attenuation of the effect of the parasympathetic division; a considerable increase in situational anxiety; low efficiency of activity; and, hence, its high physiological cost.  相似文献   

4.
We established characteristics of power spectral analysis of heart rate variability, and assessed the diurnal variations of autonomic nervous function in guinea pigs. For this purpose, an electrocardiogram (ECG) was recorded for 24 hr from conscious and unrestrained guinea pigs using a telemetry system. There were two major spectral components, at low frequency (LF) and high frequency (HF) bands, in the power spectrum of HR variability. On the basis of these data, we defined two frequency bands of interest: LF (0.07-0.7 Hz) and HF (0.7-3.0 Hz). The power of LF was higher than that of HF in the normal guinea pigs. Atropine significantly reduced power at HF. Propranolol also significantly reduced power at LF. Furthermore, the decrease in the parasympathetic mechanism produced by atropine was reflected in a slight increase in the LF/HF ratio. The LF/HF ratio appeared to follow the reductions of sympathetic activity produced by propranolol. Autonomic blockade studies indicated that the HF component reflected parasympathetic activity and the LF/HF ratio seemed to be a convenient index of autonomic balance. Nocturnal patterns, in which the values of heart rate in the dark phase (20:00-06:00) were higher than those in the light phase (06:00-20:00), were observed. However, the HF, LF and the LF/HF ratio showed no daily pattern. These results suggest that the autonomic nervous function in guinea pigs has no clear circadian rhythmicity. Therefore, this information may be useful for future studies concerning the autonomic nervous function in this species.  相似文献   

5.
This paper introduces a modified technique based on Hilbert-Huang transform (HHT) to improve the spectrum estimates of heart rate variability (HRV). In order to make the beat-to-beat (RR) interval be a function of time and produce an evenly sampled time series, we first adopt a preprocessing method to interpolate and resample the original RR interval. Then, the HHT, which is based on the empirical mode decomposition (EMD) approach to decompose the HRV signal into several monocomponent signals that become analytic signals by means of Hilbert transform, is proposed to extract the features of preprocessed time series and to characterize the dynamic behaviors of parasympathetic and sympathetic nervous system of heart. At last, the frequency behaviors of the Hilbert spectrum and Hilbert marginal spectrum (HMS) are studied to estimate the spectral traits of HRV signals. In this paper, two kinds of experiment data are used to compare our method with the conventional power spectral density (PSD) estimation. The analysis results of the simulated HRV series show that interpolation and resampling are basic requirements for HRV data processing, and HMS is superior to PSD estimation. On the other hand, in order to further prove the superiority of our approach, real HRV signals are collected from seven young health subjects under the condition that autonomic nervous system (ANS) is blocked by certain acute selective blocking drugs: atropine and metoprolol. The high-frequency power/total power ratio and low-frequency power/high-frequency power ratio indicate that compared with the Fourier spectrum based on principal dynamic mode, our method is more sensitive and effective to identify the low-frequency and high-frequency bands of HRV.  相似文献   

6.
Glucagon-like peptide-1 (GLP-1), an incretin, which is used to treat diabetes mellitus in humans, inhibited vagal activity and activated nitrergic pathways. In rats, GLP-1 also increased sympathetic activity, heart rate, and blood pressure (BP). However, the effects of GLP-1 on sympathetic activity in humans are unknown. Our aims were to assess the effects of a GLP-1 agonist with or without alpha(2)-adrenergic or -nitrergic blockade on autonomic nervous functions in humans. In this double-blind study, 48 healthy volunteers were randomized to GLP-1-(7-36) amide, the nitric oxide synthase (NOS) inhibitor N(G)-monomethyl-l-arginine acetate (l-NMMA), the alpha(2)-adrenergic antagonist yohimbine, or placebo (i.e., saline), alone or in combination. Hemodynamic parameters, plasma catecholamines, and cardiac sympathetic and parasympathetic modulation were measured by spectral analysis of heart rate. Thereafter, the effects of GLP-1-(7-36) amide on muscle sympathetic nerve activity (MSNA) were assessed by microneurography in seven subjects. GLP-1 increased (P = 0.02) MSNA but did not affect cardiac sympathetic or parasympathetic indices, as assessed by spectral analysis. Yohimbine increased plasma catecholamines and the low-frequency (LF) component of heart rate power spectrum, suggesting increased cardiac sympathetic activity. l-NMMA increased the BP and reduced the heart rate but did not affect the balance between sympathetic and parasympathetic activity. GLP-1 increases skeletal muscle sympathetic nerve activity but does not appear to affect cardiac sympathetic or parasympathetic activity in humans.  相似文献   

7.
Spectral analysis of heart rate variability (HRV) during overnight polygraphic recording was performed in 11 healthy subjects. The total spectrum power, power of the VLF, LF and HF spectral bands and the mean R-R were evaluated. Compared to Stage 2 and Stage 4 non-REM sleep, the total spectrum power was significantly higher in REM sleep and its value gradually increased in the course of each REM cycle. The value of the VLF component (reflects slow regulatory mechanisms, e.g. the renin-angiotensin system, thermoregulation) was significantly higher in REM sleep than in Stage 2 and Stage 4 of non-REM sleep. The LF spectral component (linked to the sympathetic modulation) was significantly higher in REM sleep than in Stage 2 and Stage 4 non-REM sleep. On the contrary, a power of the HF spectral band (related to parasympathetic activity) was significantly higher in Stage 2 and Stage 4 non-REM than in REM sleep. The LF/HF ratio, which reflects the sympathovagal balance, had its maximal value during REM sleep and a minimal value in synchronous sleep. The LF/HF ratio significantly increased during 5-min segments of Stage 2 non-REM sleep immediately preceding REM sleep compared to 5-min segments of Stage 2 non-REM sleep preceding the slow-wave sleep. This expresses the sympathovagal shift to sympathetic predominance occurring before the onset of REM sleep. A significant lengthening of the R-R interval during subsequent cycles of Stage 2 non-REM sleep was documented, which is probably related to the shift of sympathovagal balance to a prevailing parasympathetic influence in the course of sleep. This finding corresponds to a trend of a gradual decrease of the LF/HF ratio in subsequent cycles of Stage 2 non-REM sleep.  相似文献   

8.
Premenopausal women have a lower risk of cardiovascular disease (CVD) compared with men of a similar age. Furthermore, the regulation of factors that influence CVD appears to differ between the sexes, including control of the autonomic nervous system (ANS) and the renin-angiotensin system. We examined the cardiac ANS response to angiotensin II (Ang II) challenge in healthy subjects to determine whether differences in women and men exist. Thirty-six healthy subjects (21 women, 15 men, age 38 ± 2 years) were studied in a high-salt balance. Heart-rate variability (HRV) was calculated by spectral power analysis [low-frequency (LF) sympathetic modulation, high-frequency (HF) parasympathetic/vagal modulation, and LF:HF as a measure of overall ANS balance]. HRV was assessed at baseline and in response to graded Ang II infusions (3 ng·kg(-1)·min(-1) × 30 min; 6 ng·kg(-1)·min(-1) × 30 min). Cardiac ANS tone did not change significantly in women after each Ang II dose [3 ng·kg(-1)·min(-1) mean change (Δ)LF:HF (mean ± SE) 0.5 ± 0.3, P = 0.8, vs. baseline; 6 ng·kg(-1)·min(-1) ΔLF:HF (mean ± SE) 0.5 ± 0.4, P = 0.4, vs. baseline], whereas men exhibited an unfavorable shift in overall cardiac ANS activity in response to Ang II (ΔLF:HF 2.6 ± 0.2, P = 0.01, vs. baseline; P = 0.02 vs. female response). This imbalance in sympathovagal tone appeared to be largely driven by a withdrawal in cardioprotective vagal activity in response to Ang II challenge [ΔHF normalized units (nu), -5.8 ± 2.9, P = 0.01, vs. baseline; P = 0.006 vs. women] rather than an increase in sympathetic activity (ΔLF nu, -4.5 ± 5.7, P = 0.3, vs. baseline; P = 0.5 vs. women). Premenopausal women maintain cardiac ANS tone in response to Ang II challenge, whereas similarly aged men exhibit an unfavorable shift in cardiovagal activity. Understanding the role of gender in ANS modulation may help guide risk-reduction strategies in high-risk CVD populations.  相似文献   

9.
Objective: The autonomic nervous system (ANS) plays an important role in regulating energy expenditure and body fat content; however, the extent to which the ANS contributes to pediatric obesity remains inconclusive. The aim of this study was to evaluate whether sympathetic and/or the parasympathetic nerve activities were altered in an obese pediatric population. We further examined a physiological association between the duration of obesity and the sympatho‐vagal activities to scrutinize the nature of ANS alteration as a possible etiologic factor of childhood obesity. Research Methods and Procedures: Forty‐two obese and 42 non‐obese healthy sedentary school children were carefully selected from 1080 participants initially recruited to this study. The two groups were matched in age, gender, and height. The clinical records of physical characteristics and development of the obese children were retrospectively reviewed to investigate the onset and progression of obesity. The ANS activities were assessed during a resting condition by means of heart rate variability power spectral analysis, which enables us to identify separate frequency components, i.e., total power (TP), low‐frequency (LF) power, and high‐frequency (HF) power. The spectral powers were then logarithmically transformed for statistical testing. Results: The obese children demonstrated a significantly lower TP (6.77 ± 0.12 vs. 7.11 ± 0.04 ln ms2, p < 0.05), LF power (6.16 ± 0.12 vs. 6.42 ± 0.05 ln ms2, p < 0.05), and HF power (5.84 ± 0.15 vs. 6.34 ± 0.07 ln ms2, p < 0.01) compared with the non‐obese children. A partial correlation analysis revealed that the LF and HF powers among 42 obese children were negatively associated with the duration of obesity independent of age (LF: partial r = ?0.55, p < 0.001; HF: partial r = ?0.40, p < 0.01). The obese children were further subdivided into two groups based on the length of their obesity. All three spectral powers were significantly reduced in the obese group with obesity of >3 years (n = 18) compared to the group with obesity of <3 years. Discussion: Our data indicate that obese children possess reduced sympathetic as well as parasympathetic nerve activities. Such autonomic depression, which is associated with the duration of obesity, could be a physiological factor promoting the state and development of obesity. These findings further imply that preventing and treating obesity beginning in the childhood years could be an urgent and crucial pediatric public health issue.  相似文献   

10.
The effect of deep breathing controlled in both rate and amplitude on the heart rate variability (HRV) and respiration-dependent blood flow oscillations was studied in the forearm and finger-pad skin of healthy 18- to 25-year-old volunteers. In order to reveal the effects of the divisions of the autonomic nervous system on the amplitudes of respiratory sinus arrhythmia (RSA) and skin blood flow oscillations, we studied the indices of the cardiovascular system in two groups of subjects with respectively lower and higher values of the sympatho-vagal balance. This index was calculated as a ratio of low frequency and high frequency HRV spectral power (LF/HF) under the conditions of spontaneous breathing. It was found that, in subjects with a predominant parasympathetic tone, the amplitudes of RSA and the rate of blood flow in the finger-pad skin were higher compared to subjects with a predominant sympathetic tone during respiration with the frequency lower than 4 cycle/min. In the forearm skin, where sympathetic innervation is weaker compared to the finger-pad skin, there were no significant differences in respiration-dependent oscillations of the rate of blood flow in two groups of subjects.  相似文献   

11.
Autism spectrum disorder (ASD) is a developmental disorder marked by difficulty in social interactions and communication. ASD also often present symptoms of autonomic nervous system (ANS) functioning abnormalities. In individuals with autism the sympathetic branch of the ANS presents an over-activation on a background of the parasympathetic activity deficits, creating an autonomic imbalance, evidenced by a faster heart rate with little variation and increased tonic electrodermal activity. The objective of this study was to explore the effect of 12 sessions of 0.5 Hz repetitive transcranial magnetic stimulation (rTMS) over dorsolateral prefrontal cortex (DLPFC) on autonomic activity in children with ASD. Electrocardiogram and skin conductance level (SCL) were recorded and analyzed during each session of rTMS. The measures of interest were time domain (i.e., R–R intervals, standard deviation of cardiac intervals, NN50-cardio-intervals >50 ms different from preceding interval) and frequency domain heart rate variability (HRV) indices [i.e., power of high frequency (HF) and low frequency (LF) components of HRV spectrum, LF/HF ratio]. Based on our prior pilot studies it was proposed that the course of 12 weekly inhibitory low-frequency rTMS bilaterally applied to the DLPFC will improve autonomic balance probably through improved frontal inhibition of the ANS activity, and will be manifested in an increased length of cardiointervals and their variability, and in higher frequency-domain HRV in a form of increased HF power, decreased LF power, resulting in decreased LF/HF ratio, and in decreased SCL. Our post-12 TMS results showed significant increases in cardiac intervals variability measures and decrease of tonic SCL indicative of increased cardiac vagal control and reduced sympathetic arousal. Behavioral evaluations showed decreased irritability, hyperactivity, stereotype behavior and compulsive behavior ratings that correlated with several autonomic variables.  相似文献   

12.
The present study was designed to investigate the effects of clothing skin pressures exerted by two different types of brassieres (a conventional higher skin-pressured brassiere and a newly devised low skin-pressured brassiere) on the autonomic nervous system (ANS) activity. Six healthy young women (22.8 +/- 1.4 yrs.) with regular menstrual cycles participated in this study. The ANS activities were assessed by means of heart rate variability power spectral analysis. The skin pressures exerted by the brassieres were measured with an air-pack type contact surface pressure sensor at five different points. The total amount of clothing pressure, and the pressures at the center and the side regions of the brassieres were significantly greater in the high than in the low skin-pressured brassiere (Total 9816.1 +/- 269.0 vs. 6436.8 +/- 252.4 Pa, P < 0.01; Center 2212.1 +/- 336.3 vs. 353.8 +/- 85.8 Pa, P < 0.01; Side 2556.8 +/- 316.1 vs. 1747.2 +/- 199.2 Pa, P < 0.05). Concerning the ANS activity, the Total power, and the very low frequency (VLF) and the high frequency (HF) components were significantly decreased in the high skin-pressured brassiere than those in the low skin-pressured brassiere (Total 531.6 +/- 57.3 vs. 770.5 +/- 54.2 ms2, P < 0.01; VLF 60.7 +/- 14.6 vs. 179.2 +/- 38.1 ms2, P < 0.05; HF 209.5 +/- 33.2 vs. 283.2 +/- 61.5 ms2, P < 0.01). Our data indicate that the higher clothing pressures exerted by a conventional brassiere have a significant negative impact on the ANS activity, which is predominantly attributable to the significant decrease in the parasympathetic as well as the thermoregulatory sympathetic nerve activities. Since the ANS activity plays an important role in modulating the internal environment in the human body, excess clothing pressures caused by constricting types of foundation garments on the body would consequently undermine women's health.  相似文献   

13.
A variable number tandem repeat polymorphism in the coding region of the circadian clock PERIOD3 (PER3) gene has been shown to affect sleep. Because circadian rhythms and sleep are known to modulate sympathovagal balance, we investigated whether homozygosity for this PER3 polymorphism is associated with changes in autonomic nervous system (ANS) activity during sleep and wakefulness at baseline and after sleep deprivation. Twenty-two healthy participants were selected according to their PER3 genotype. ANS activity, evaluated by heart rate (HR) and HR variability (HRV) indexes, was quantified during baseline sleep, a 40-h period of wakefulness, and recovery sleep. Sleep deprivation induced an increase in slow-wave sleep (SWS), a decrease in the global variability, and an unbalance of the ANS with a loss of parasympathetic predominance and an increase in sympathetic activity. Individuals homozygous for the longer allele (PER3(5/5)) had more SWS, an elevated sympathetic predominance, and a reduction of parasympathetic activity compared with PER3(4/4), in particular during baseline sleep. The effects of genotype were strongest during non-rapid eye movement (NREM) sleep and absent or much smaller during REM sleep. The NREM-REM cycle-dependent modulation of the low frequency-to-(low frequency + high frequency) ratio was diminished in PER3(5/5) individuals. Circadian phase modulated HR and HRV, but no interaction with genotype was observed. In conclusion, the PER3 polymorphism affects the sympathovagal balance in cardiac control in NREM sleep similar to the effect of sleep deprivation.  相似文献   

14.
The characteristics of autonomic nervous activity were examined on captive great cormorants Phalacrocorax carbo hanedae, using a power spectral analysis of heart rate variability. Heart rates were calculated from recordings of the electrocardiograms of the birds via embarked data loggers. We investigated the effects of blockades of the sympathetic or parasympathetic nervous systems using the indices of autonomic nervous activity such as high frequency (0.061–1.5 Hz) component, low frequency (0.02–0.060 Hz) component and the low frequency power component to high frequency power component ratio. Resting heart rate (85.5 ± 6.1 bpm) was lower than the intrinsic heart rate (259.2 ± 15.3 bpm). The heart rate drastically increased after the injection of the parasympathetic nervous blocker, on the other hand it slightly decreased after the injection of the sympathetic nervous blocker. The sympathetic, parasympathetic and net autonomic nervous tones calculated from heart rate with and without blockades were 40.9 ± 27.6, −44.5 ± 7.4 and −29.5 ± 9.0%, respectively. The effect of the parasympathetic nervous blockade on low frequency and high frequency power was greater than that of the sympathetic nervous blockade. Those data suggested that the parasympathetic nervous activity was dominant for great cormorants.  相似文献   

15.
The aim of this study was to examine the changes in autonomic control of the heart associated with classical appetitive conditioning in rats. We trained rats to learn that a movement into a test chamber was followed by delivery of reward (contextual conditioning) and performed power spectral analysis of heart rate variability from electrocardiograms recorded using the telemetry system. We investigated the sympathovagal balance of autonomic regulation of the heart in response to not only the conditioned stimulus (the movement into the test chamber), but also the unconditioned stimulus (reward), and compared the results of these two kinds of emotional states; it might be considered that "the reward-expecting state" is evoked by the conditioned stimulus and "the reward-receiving state" is evoked by the unconditioned stimulus in rats. The reward-expecting state resulted in a significant increase in both low frequency (LF) power and high frequency (HF) power with no change in heart rate (HR) and LF/HF ratio, indicating that both sympathetic and parasympathetic activity increased with no change in sympathovagal balance. The reward-receiving state resulted in a significant increase in HR and a significant decrease in LF power, HF power, and LF/HF ratio, indicating that both sympathetic and parasympathetic activity decreased with predominance in the parasympathetic activity. These results suggest that the method performed in our present study might be useful for distinguishing between two different emotional states evoked by classical appetitive conditioning in rats.  相似文献   

16.
17.
Objective: Body fatness is partly under hypothalamic control with effector limbs that include the endocrine system and the autonomic nervous system (ANS). In previous studies of both obese and never‐obese subjects, we have shown that weight increase leads to increased sympathetic and decreased parasympathetic activity, whereas weight decrease leads to decreased sympathetic and increased parasympathetic activity. We now report on the effect of leptin, independent of weight change, on the ANS. Research Methods and Procedures: Normal weight males (ages 20–40 years) were fed a solid food diet, measured carefully to maintain body weight, for 3 weeks, as inpatients at the Rockefeller University General Clinical Research Center. In a single‐blind, 22‐day, placebo/drug/placebo design, six subjects received leptin 0.3 mg/kilogram subcutaneously for 6 days. ANS measures of amount of parasympathetic control and sympathetic control of heart period (interbeat interval) were made by sequential pharmacological blockade with intravenous atropine and esmolol. Norepinephrine, dopamine, and epinephrine levels in 24‐hour urine collections were also measured as well as resting metabolic rate. Results: Sufficient food intake maintained constant body weight in all subjects. There was no evidence that leptin administration led to changes in energy metabolism sufficient to require additional food intake or to alter resting metabolic rate. Likewise, leptin administration did not alter autonomic activity. Parasympathetic control and sympathetic control, as well as the urinary catecholamines, were not significantly affected by leptin administration. Glucose and insulin levels were increased by food intake as expected, but leptin had no affect on these levels before or after food intake. Discussion: ANS responses to changes in energy metabolism found when food intake and body weight are altered were not found in these never‐obese subjects given leptin for 6 days. Although exogenous leptin administration has profound effects on food intake and energy metabolism in animals genetically deprived of leptin, we found it to have no demonstrable effect on energy metabolism in never‐obese humans. The effects of longer periods of administration to obese individuals and to those who have lost weight demand additional investigation.  相似文献   

18.
19.
Nakamura T  Horio H  Miyashita S  Chiba Y  Sato S 《Bio Systems》2005,79(1-3):117-124
Heartbeat intervals, which are determined basically by regular excitations of the sinoatrial node, show significant fluctuation referred to as the heart rate variability (HRV). The HRV is mostly due to nerve activities through the sympathetic and parasympathetic branches of the autonomic nervous system (ANS). In recent years, it has been recognized that the HRV shows a greater complexity than ever expected, suggesting that it includes much information about ANS activities. In this study, we investigated relationship between HRV and development in preterm infants. To this end, heartbeat intervals were continuously recorded from 11 preterm infants in NICU. The recording periods were ranging from several days to weeks depending on the individuals. The HRV at various ages was then characterized by several indices. They include power spectrum as well as the mean and standard deviation of the series. For the power spectrum, the low-frequency band power (LF), high-frequency band power (HF), LF/HF (the ratio between LF and HF), beta (scaling exponent of the spectrum) were estimated. The detrended fluctuation analysis (DFA) was also employed to obtain short- and long-range scaling exponents. Each of these indices showed a correlation with the age. We showed that the long-range scaling exponent, derived from the DFA, was most significantly correlated with the age, suggesting that it could be a robust index to characterize the development of preterm infants.  相似文献   

20.
The purpose of the study was to determine whether mothers’ adversities experienced during early pregnancy are associated with offspring’s autonomic nervous system (ANS) reactivity trajectories from 6 months to 5 years of age. This cohort study of primarily Latino families included maternal interviews at 13–14 weeks gestation about their experience of a range of adversities: father’s absence, general social support, poverty level, and household density. ANS measures of heart rate, respiratory sinus arrhythmia (parasympathetic nervous system) and preejection period (sympathetic nervous system) were collected during resting and challenging conditions on children at 6 months and 1, 3.5 and 5 years of age. Reactivity measures were calculated as the mean of the responses to challenging conditions minus a resting condition. Fixed effects models were conducted for the 212 children with two or more timepoints of ANS measures. Interactions between maternal prenatal adversity levels and child age at time of ANS protocol were included in the models, allowing the calculation of separate trajectories or slopes for each level of adversity. Results showed no significant relations between mothers’ prenatal socioeconomic or social support adversity and offspring’s parasympathetic nervous system trajectories, but there was a statistically significant relationship between social support adversity and offspring’s heart rate trajectories (p<.05) and a borderline significant relationship between socioeconomic adversity and offspring’s sympathetic nervous system trajectories (p = .05). Children whose mothers experienced one, not two, social support adversity had the smallest increases in heart rate reactivity compared to children whose mothers experienced no adversity. The children whose mothers experienced no social support and no socioeconomic adversity had the largest increases in heart rate and preejection period respectively from 6 months to 5 years showing the most plasticity. Mothers’ prenatal adverse experiences may program their children’s physiologic trajectory to dampen their heart rate or sympathetic responsivity to challenging conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号