首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
朱根发  郭振飞 《植物学报》2004,21(4):471-477
兰科植物是开花植物中最大的家族之一,分子标记技术应用于兰科植物的分类鉴定和品种鉴别,为兰花的分类提供了分子水平的证据,也为兰花保护策略和措施的制定提供了理论基础。兰科植物表现有高度特异的形态、结构和生理特性,是研究花着色机理和子房发育的理想对象。兰花离体培养开花系统的建立,可以用来探明兰花从营养生长向生殖生长的转变机制,是研究花的分化和发育的理想材料。兰花具有特异的查尔酮合成酶(CHS)基因和二氢叶酸还原酶(DFR)基因等控制花色素的合成,DOH1基因控制石斛兰花芽的形成和提早开花,PHAL.039基因和ACC合成酶基因在蝴蝶兰授粉后的子房发育中起着重要的调控作用,这些特异基因的分离和克隆为兰花花的分化、发育及着色机制提供了分子基础。蝴蝶兰属、大花蕙兰(Cymbidium hybridium)、石斛兰属、文心兰属、五唇兰属和万代兰属等兰科植物都有转基因的研究报道,主要以原球茎为材料采用基因枪或农杆菌法转化,部分研究获得了转化植株。  相似文献   

2.
蝴蝶兰花发育的分子生物学研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
蝴蝶兰花非常独特且高度进化,如萼片瓣化、瓣片特化为唇瓣、雌雄蕊合生成合蕊柱及子房发育须由授粉启动等,是单子叶植物花发育研究的理想材料。近年来蝴蝶兰花发育分子生物学取得了重要进展。该文就近年来国内外有关蝴蝶兰开花转换及花器官发育相关基因研究以及B类基因与兰花花被的进化发育关系方面的研究进展进行综述。研究表明:MADS基因在蝴蝶兰开花转换及花器官发育过程中起重要作用,推测其中的DEF(DE-FICIENS)-like基因早期经过2轮复制,形成了4类不同的DEF-like基因,进而决定兰花花被属性。蝴蝶兰花发育分子生物学的深入研究,将极大地利于通过基因工程手段提高蝴蝶兰花品质如花色改良及花期调控等,推动分子育种进程。  相似文献   

3.
兰科植物是开花植物中最大的家族之一,其花高度进化,具有花瓣状的萼片,特化的唇瓣和雌雄蕊合生的蕊柱,是单子叶植物花发育生物学研究的理想材料。近年来有关兰花花发育基因调控的研究已取得了一些进展,本文从兰花开花转换和兰花花器官的形成两方面综述了近年来国内外关于兰花花发育分子机理方面的研究进展,主要介绍了文心兰、蝴蝶兰和石斛兰的花发育相关基因,并推测了兰花花被的进化发育过程,认为兰花的DEFICIENS(DEF)类基因在早期经过两轮复制,形成了四类DEF基因,从而促进了花萼与花瓣的分离、侧瓣与唇瓣的分离。该文最后对今后兰花花发育研究的发展方向进行了展望。  相似文献   

4.
李璐 《广西植物》2023,43(8):1537-1552
兰科是被子植物中多样性最丰富的家族,其雄蕊形态和功能分化在亚科间变化明显,是该物种多样性形成及适应性传粉生物学的研究重点。基于现有研究资料,该文初步归纳了兰科雄蕊发育多样性的主要研究内容及现状,为野生兰花资源的保护与利用提供科学依据。结果如下:(1)可育雄蕊数目的减少和花粉愈合程度的增加在兰科分子系统树上呈明显的平行演化趋势。(2)兰科雄蕊数目的减少和功能分化与早期花器官发生中存在大量的滞后和缺失、次生融合与分裂现象等密切相关。(3)花药开裂时的4类散粉单元的花粉超微形态特征在亚科、族、亚族、属和种间差异明显。(4)兰科花药散粉单元可以为单花粉粒,也可以通过花药发育过程中源自绒毡层的三类黏性物质而聚合成不同的散粉单元,包括花粉鞘、弹性黏素和其他黏性物质。(5)花药发育揭示了兰亚科的花粉小块结构主要有三类(红门兰型、树兰型和过渡型),树兰亚科的不同数目(2、4、8)和形态(全缘、浅裂、深裂、孔裂)的花粉团是由于花药原基分化出的不育隔膜组织的数目、朝向和位置而形成的。(6)兰科花药发育中,花药室数目、花药壁发育类型、绒毡层细胞核数目、不育隔膜组织分化、胞质分裂类型、小孢子四分体排列形式、花粉细胞核数目等在亚科和属间差异明显。然而,由于种类繁多,现有研究资料难以为理解兰科雄蕊发育提供清晰的线索,包括雄蕊的发育模式、散粉单元的形成机制、花药发育的胚胎学特征等。因此,有必要重视兰科雄蕊发育研究,包括扩大取样范围和利用多学科技术方法和修订兰科花形态常用术语等。  相似文献   

5.
花分生组织的维持与终止在植物花器官发生和世代交替起着至关重要的作用。成功的花分生组织决定能够确保植物正常的生殖发育和生命周期进程。诸多研究表明AGAMOUS(AG)基因作为花器官分化和开花决定的主效调节因子,能够协调花发育过程中多种细胞命运决定。然而,关于AG参与调控植物世代交替及花分生组织维持与终止的分子调控机制尚不清晰。综述了近年来AG基因参与调控植物花分生组织维持与终止的研究进展及现状,以期为深入研究植物花器官分化过程中干细胞的维持和终止,以及干细胞活动与其他发育过程之间的分子调控过程提供参考。  相似文献   

6.
高黎贡山兰花的多样性   总被引:4,自引:0,他引:4  
对高黎贡山兰科植物的生物地理学和多样性进行了研究。1.兰科是高黎贡山种子植物中最大的科,包括75属265种。2.高黎贡山兰花起源于新、旧世界的热带和温带, 热带属占60%(45属),温带属占38.67%(29属),包括2个云南特有属。但是,高黎贡山兰科植物与地中海地区和中亚地区的联系十分微弱。3.高黎贡山的兰花以地生兰为主。这里,57.33%(43属)为地生兰,而附生兰和腐生兰仅分别为31属和3属。4.兰花物种的分布区式样表明高黎贡山兰花以温带兰为主 温带兰占总种数的69.43%(184种),包括东亚成分即滇西高黎贡山-东喜马拉雅分布的种和中国西南部特有种,它们是高黎贡山兰花区系的核心。5.高黎贡山兰科的特有现象在于1)具有云南二个特有属蜂腰兰Bulleyia和反唇兰Smithorchis;2)有高黎贡山特有种21个,如泸水兜兰Paphiopedilum markianum,贡山风兰Cymbidium gongshanense,贡山贝母兰Coelogyne gongshanense,热带附生兰——万带兰亚科在高黎贡山没有形成特有种;3)高黎贡山北段的特有种比南段丰富贡山有14种,腾冲仅有4种; 海拔1800~2100 m的梯度带特有种最多(13种);4)高黎贡山有云南特有种10种,其中小花槽舌兰Holcoglossum junceum是一个热带种,因为板块位移而来到了亚热带地域;5)高黎贡山的兰科植物中有19.25%(51种)是中国特有种,它们出现在高黎贡山,分布在云南其他地区和西南的一些省区。高黎贡山特有种,分布到高黎贡山的云南特有种和分布到高黎贡山的中国特有种一共为82种,占高黎贡山兰科总种数的30.91%, 兰科在高黎贡山是一个特有化程度很高的类群。  相似文献   

7.
蝴蝶兰PhalPI基因的克隆及在花器官突变体中的表达分析   总被引:1,自引:0,他引:1  
为深入研究兰科植物花器官发育的调控机理,从蝴蝶兰花瓣中克隆了一个B类MADS-box转录因子PhalPI(GenBank登录号为KY020416)。序列分析表明,该基因的cDNA全长为944 bp,含完整的开放阅读框,可编码210个氨基酸,属于BGLO/PI蛋白家族,与蝴蝶兰属的PhPI10和PeMADS6基因关系最近;表达模式分析表明,PhalPI基因在生殖器官中表达,在营养器官中不表达,在授粉后的子房中,该基因的表达水平降低。在5种花器官突变体中,PhalPI基因在萼片唇瓣化突变体的萼片和蕊柱中表达水平明显升高;在雄蕊花瓣化突变体的萼片和侧瓣中表达水平降低,在其唇瓣和蕊柱中显著升高;在侧瓣合柱化突变体的蕊柱中,PhalPI基因的表达也发生了显著升高;PhalPI基因表达的改变与花器官形态的突变相关;而在侧瓣唇瓣化和侧瓣花药化突变体中,PhalPI基因的表达水平没有变化。推测该基因在决定蝴蝶兰侧瓣和唇瓣的发育中起重要的调控作用。  相似文献   

8.
《兰花——中国兰科植物集锦》大型图册,由中国世界语出版社编辑,1992年出版.该书的絮语和附录中全面介绍了我国兰科植物种质资源.昆明植物所张启泰、杨增宏和云南省林科院冯志舟,还有十余位专家提供照片,共刊出照片184幅,计58属173种. 本书承蒙中科院昆明植物所和北京中科院植物所李恒、郎楷永二位先生作了属、种名称审定.中科院植物所刘金先生撰写了《兰花的栽培》一文,为识别属、种和家庭养兰提  相似文献   

9.
蝴蝶兰的组织培养和快速繁殖   总被引:46,自引:1,他引:45  
蝴蝶兰 ( Phalaenopsis)属热带气生兰 ,多产于热带亚州 ,其株型美观、色彩艳丽、花期持久 ,在热带兰中有“兰花皇后”之美称 ,是兰科植物中栽培最广泛、最普及的种类之一。它的原生种只有 2 0多种 ,观赏性较差。商业上用于大规模生产的品种多为杂交种 ,其品种繁多 ,易栽培 ,深受人们的喜爱。但由于蝴蝶兰是单茎性气生兰 ,很难进行分株繁殖 ,常规情况下种子发育不完全 ,极难萌发 ,因此世界上多采用组织培养来繁殖种苗。台湾及东南亚一些国家利用组织培养技术对蝴蝶兰进行了工厂化生产 ,并出口欧美获得了较大的经济效益〔1〕。近年来我国从国…  相似文献   

10.
朵丽蝶兰MADS-box基因DtpsMADS1的克隆与表达特性   总被引:1,自引:0,他引:1  
植物MADS-box基因家族编码高度保守的转录因子,参与了包括花器官发育和开花在内的多种发育进程。为阐释兰科植物成花的分子调控机制,根据MADS-box基因保守序列设计简并引物,用RACE方法从朵丽蝶兰花葶中克隆到1个MADS-box家族基因,该基因cDNA全长960 bp,包含37 bp 5'UTR,一个738 bp的开放阅读框(ORF)和185 bp 3'UTR,共编码245个氨基酸。序列和系统进化树分析表明,该基因与其他植物的MADS-box基因具有很高的同源性,属于AP1/FUL-like亚家族,命名为DtpsMADS1,GeneBank登录号为JQ065097。实时荧光定量PCR检测结果显示:DtpsMADS1具有明显的组织表达特异性;在根和叶中,DtpsMADS1在花前期和花后期表达量较高;苗期和盛花期表达量较低;DtpsMADS1在花葶中的表达趋势与根和叶相似;而在花器官中,DtpsMADS1只有痕量表达。由此推断,DtpsMADS1可能参与开花进程调控,而不参与花器官的形态建成。  相似文献   

11.
Fossil leaves of two Early Miocene orchids (Dendrobium and Earina) are reported from New Zealand. The distinctive, raised tetra- to cyclocytic stomatal subsidiary cells of Earina and characteristic papilla-like absorbing glands and "ringed" guard cells of Dendrobium support the placement of the fossils into these genera. These therefore represent the first Orchidaceae macrofossils with cuticular preservation, the oldest records for subfamily Epidendroideae, as well as the first New Zealand and southern hemisphere fossil records for Orchidaceae. These taxa belong in basal clades to the Vandeae/Cymbideae or Epidendreae (Earina) and the Australasian clade of Dendrobium sensu lato. This phylogenetic placement demonstrates expansion of epiphytic orchids into Zealandia by the mid-Cenozoic and an important role for southern continents in the diversification of Orchidaceae.  相似文献   

12.
Floral organ identity genes in the orchid Dendrobium crumenatum   总被引:1,自引:0,他引:1  
Orchids are members of Orchidaceae, one of the largest families in the flowering plants. Among the angiosperms, orchids are unique in their floral patterning, particularly in floral structures and organ identity. The ABCDE model was proposed as a general model to explain flower development in diverse plant groups, however the extent to which this model is applicable to orchids is still unknown. To investigate the regulatory mechanisms underlying orchid flower development, we isolated candidates for A, B, C, D and E function genes from Dendrobium crumenatum. These include AP2-, PI/GLO-, AP3/DEF-, AG- and SEP-like genes. The expression profiles of these genes exhibited different patterns from their Arabidopsis orthologs in floral patterning. Functional studies showed that DcOPI and DcOAG1 could replace the functions of PI and AG in Arabidopsis, respectively. By using chimeric repressor silencing technology, DcOAP3A was found to be another putative B function gene. Yeast two-hybrid analysis demonstrated that DcOAP3A/B and DcOPI could form heterodimers. These heterodimers could further interact with DcOSEP to form higher protein complexes, similar to their orthologs in eudicots. Our findings suggested that there is partial conservation in the B and C function genes between Arabidopsis and orchid. However, gene duplication might have led to the divergence in gene expression and regulation, possibly followed by functional divergence, resulting in the unique floral ontogeny in orchids.  相似文献   

13.
Orchidaceae are the largest family of flowering plants, with at least 24 000 species, and perhaps better than any other family of flowering plants, orchids represent the extreme specializations that are possible. As a result, they have long fascinated luminaries of the botanical world including Linnaeus and Darwin, but the size of the family has historically been an impediment to their study. Specifically, the lack of detailed information about relationships within the family made it difficult to formulate explicit evolutionary hypotheses for such a large group, but the advent of molecular systematics has revolutionized our understanding of the orchids. Their complex life histories make orchids particularly vulnerable to environmental change, and as result many are now threatened with extinction. In this Special Issue we present a series of 20 papers on orchid biology ranging from phylogenetics, floral evolutionary development, taxonomy, mycorrhizal associations, pollination biology, population genetics and conservation.  相似文献   

14.
The Orchidaceae family is the largest group of flowering plants in the Angiosperm monocotyledons spread on our planet. Its members, called orchids, are herbs or epiphytes with showy flowers distributed mainly in tropical regions. Several classes of phytoconstituents have been so far isolated from therapeutically‐used orchids showing a great chemical diversity. Among them, phenolic derivatives have been studied for their biological activities, especially in the field of cancer, inflammation, and neurodegeneration. On the other hand, limited information has been so far obtained on the numerous alkaloids and terpenoids isolated from several orchid species. Recent articles revealed pronounced effects of some alkaloids on the CNS. Published literature on orchids that are used in traditional medicine has been reviewed in this work indicating a great potential of such organisms as source of chemical entities for the development of new drugs.  相似文献   

15.
Here a screening method is described for transformed tissues and transgenic plants of Dendrobium (Orchidaceae) using the firefly luciferase gene ( luc ) as a combined marker/reporter gene. Protocorm-likebodies (PLB) were bombarded with tungsten particles (1.3 µm) coated with plasmids carrying a 35S-luc chimeric gene. Three weeks after bombardment 1 mM luciferin was added to the tissues and transformed cells were identified by virtue of their bioluminescence as monitored by low-light video microscopy in combination with a real-time photon imaging technique. Transformed tissues were excised, allowed to proliferate, and then subjected to a second round of screening. After three rounds of growth and screening, transformed Dendrobium tissues expressing luciferase were used to generate transgenic plants. Southern blot analysis of several transgenic lines confirmed the integration of the luciferase gene into the orchid genome. It is thought that this procedure can be used for transformation of not only orchids but other species as well.  相似文献   

16.
Aceto S  Gaudio L 《Current Genomics》2011,12(5):342-356
Since the time of Darwin, biologists have studied the origin and evolution of the Orchidaceae, one of the largest families of flowering plants. In the last two decades, the extreme diversity and specialization of floral morphology and the uncoupled rate of morphological and molecular evolution that have been observed in some orchid species have spurred interest in the study of the genes involved in flower development in this plant family. As part of the complex network of regulatory genes driving the formation of flower organs, the MADS-box represents the most studied gene family, both from functional and evolutionary perspectives. Despite the absence of a published genome for orchids, comparative genetic analyses are clarifying the functional role and the evolutionary pattern of the MADS-box genes in orchids. Various evolutionary forces act on the MADS-box genes in orchids, such as diffuse purifying selection and the relaxation of selective constraints, which sometimes reveals a heterogeneous selective pattern of the coding and non-coding regions. The emerging theory regarding the evolution of floral diversity in orchids proposes that the diversification of the orchid perianth was a consequence of duplication events and changes in the regulatory regions of the MADS-box genes, followed by sub- and neo-functionalization. This specific developmental-genetic code is termed the "orchid code."  相似文献   

17.
The new in situ seed baiting method using seed packets to assess germination of orchid species within soil provides a means of locating, collecting, and identifying specific fungi that are involved in the lifecycle of orchids in the wild and investigating their relationship with the orchids under natural field conditions. Two isolates (SHH44, SHH53) originating from the seedlings found in the seeds packets in situ were demonstrated to support seed germination and seedling development (in vitro) of two endangered Chinese endemic herbs, Dendrobium officinale and Dendrobium nobile (Orchidaceae). Advanced protocorm development (Stage 3 and greater) in this study of these species of Dendrobium only occurred under the 12/12 h L/D photo-period indicated that illumination may play an important role in seedling recruitment of terrestrial orchid species in their natural environment. The information provided in this study may prove invaluable in the conservation of D. officinale and D. nobile and congener species in China, especially given their rare status.  相似文献   

18.
Aims Food-deceptive pollination, in which plants do not offer any food reward to their pollinators, is common within the Orchidaceae. As food-deceptive orchids are poorer competitors for pollinator visitation than rewarding orchids, their occurrence in a given habitat may be more constrained than that of rewarding orchids. In particular, the success of deceptive orchids strongly relies on several biotic factors such as interactions with co-flowering rewarding species and pollinators, which may vary with altitude and over time. Our study compares generalized food-deceptive (i.e. excluding sexually deceptive) and rewarding orchids to test whether (i) deceptive orchids flower earlier compared to their rewarding counterparts and whether (ii) the relative occurrence of deceptive orchids decreases with increasing altitude.Methods To compare the flowering phenology of rewarding and deceptive orchids, we analysed data compiled from the literature at the species level over the occidental Palaearctic area. Since flowering phenology can be constrained by the latitudinal distribution of the species and by their phylogenetic relationships, we accounted for these factors in our analysis. To compare the altitudinal distribution of rewarding and deceptive orchids, we used field observations made over the entire Swiss territory and over two Swiss mountain ranges.Important findings We found that deceptive orchid species start flowering earlier than rewarding orchids do, which is in accordance with the hypotheses of exploitation of naive pollinators and/or avoidance of competition with rewarding co-occurring species. Also, the relative frequency of deceptive orchids decreases with altitude, suggesting that deception may be less profitable at high compared to low altitude.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号