首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dinophyceaen genus Gymnodinium was established with the freshwater species G. fuscum as type. According to Thessen et al. (2012), there are 268 species, with the majority marine species. In recently published molecular phylogenies based on ribosomal DNA sequences, Gymnodinium is polyphyletic. Here, a new freshwater Gymnodinium species, G. plasticum, is described from Plastic Lake, Ontario, Canada. Two strains were established by incubating single cysts, and their morphology was examined with light microscopy and scanning electron microscopy. The cyst had a rounded epicyst and hypocyst with a wide cingulum and smooth surface. Vegetative cells were characterized by an elongated nucleus running vertically and a deep sulcal intrusion. The apical structure complex was horseshoe‐shaped and consisted of two pronounced ridges with a deep internal groove, encircling 80% of the apex. Small subunit ribosomal DNA (SSU rDNA), large subunit ribosomal DNA (LSU rDNA) and internal transcribed spacer (ITS) sequences were obtained from cultured strains. Molecular phylogeny based on concatenated SSU, LSU and ITS sequences supports the monophyly of the Gymnodiniales sensu stricto clade but our results suggest that many Gymnodinium species might need reclassification. Gymnodinium plasticum is closest to Dissodinium pseudolunula in our phylogeny but distant from the type species G. fuscum, as are the other gymnodiniacean taxa.  相似文献   

2.
The phytoplankton species Gymnodinium catenatum is responsible for major worldwide losses in aquaculture due to shellfish toxicity. On the West coast of the Iberian Peninsula, toxic blooms have been reported since the mid-1970s. While the recent geographical spread of this species into Australasia has been attributed to human-mediated introduction, its origin in the Northeast Atlantic is still under debate. Gymnodinium catenatum forms a highly resistant resting stage (cyst) that can be preserved in coastal sediments, building-up an historical record of the species. Similar cyst types (termed microreticulate) are produced by other non-toxic Gymnodinium species that often co-occur with G. catenatum. We analysed the cyst record of microreticulate species in dated sediment cores from the West Iberian shelf covering the past ca. 150 years. Three distinct morphotypes were identified on the basis of cyst diameter and paracingulum reticulation. These were attributed to G. catenatum (35.6–53.3 μm), G. nolleri (23.1–36.4 μm), and G. microreticulatum (20.5–34.3 μm). Our results indicate that G. catenatum is new to the NE Atlantic, where it appeared by 1,889 ± 10, expanding northwards along the West Iberian coast. The earliest record is from the southernmost sample, while in the central Portuguese shelf the species appears in sediments dated to 1,933 ± 3, and in the North, off Oporto, in 1,951 ± 4. On the basis of the cyst record and toxic bloom reports, we reconstruct the invasive pathway of G. catenatum in the NE Atlantic. Although human-mediated introduction cannot be discarded, the available evidence points towards natural range expansion, possibly from NW Africa.  相似文献   

3.
The genus Gymnodinium includes many morphologically similar species, but molecular phylogenies show that it is polyphyletic. Eight strains of Gymnodinium impudicum, Gymnodinium dorsalisulcum and a novel Gymnodinium‐like species from Chinese and Malaysian waters and the Mediterranean Sea were established. All of these strains were examined with light microscopy, scanning electron microscopy and transmission electron microscopy. SSU, LSU and internal transcribed spacers rDNA sequences were obtained. A new genus, Wangodinium, was erected to incorporate strains with a loop‐shaped apical structure complex (ASC) comprising two rows of amphiesmal vesicles, here referred to as a new type of ASC. The chloroplasts of Wangodinium sinense are enveloped by two membranes. Pigment analysis shows that peridinin is the main accessory pigment in W. sinense. Wangodinium differs from other genera mainly in its unique ASC, and additionally differs from Gymnodinium in the absence of nuclear chambers, and from Lepidodinium in the absence of Chl b and nuclear chambers. New morphological information was provided for G. dorsalisulcum and G. impudicum, e.g., a short sulcal intrusion in G. dorsalisulcum; nuclear chambers in G. impudicum and G. dorsalisulcum; and a chloroplast enveloped by two membranes in G. impudicum. Molecular phylogeny was inferred using maximum likelihood and Bayesian inference with independent SSU and LSU rDNA sequences. Our results support the classification of Wangodinium within the Gymnodiniales sensu stricto clade and it is close to Lepidodinium. Our results also support the close relationship among G. dorsalisulcum, G. impudicum, and Barrufeta. Further research is needed to assign these Gymnodinium species to Barrufeta or to erect new genera.  相似文献   

4.
The bloom forming marine dinoflagellate Gymnodinium catenatum Graham has been linked to paralytic shellfish poisoning (PSP) outbreaks in humans. Along the Portuguese coast (NE Atlantic), G. catenatum shows a complex bloom pattern, raising questions about the origin and affinities of each bloom population. In this work, the variability within six cultured strains of G. catenatum isolated from Portuguese coastal waters (S coast, W coast and NW coast), between 1999 and 2011, was investigated. The strains were analyzed for toxin profiling and intra-specific genetic diversity. Regarding the toxin profile, differences recorded between strains could not be assigned to the time of isolation or geographical origin. The parameter that most influenced the toxin profile was the life-cycle stage that originated the culture: vegetative cell versus hypnozygote (resting cyst). At the genetic level, all strains showed similar sequences for the D1–D2 region of the large subunit (LSU) of the nuclear ribosomal DNA (rDNA) and shared complete identity with strains from Spain, Algeria, China and Australia. Conversely, we did not find a total identity match for the ITS-5.8S nuclear rDNA fragment. After sequence analysis, two guanine/adenine (R) single nucleotide polymorphisms (SNP 1 and 2) were detected for all strains, in the ITS1 region. This species has been reported to present very conservative LSU and ITS-5.8S rDNA regions, though with few SNP, including SNP1 of this study, already attributed to strains from certain locations. The SNP here described characterize G. catenatum populations from Portuguese waters and may represent valuable genetic markers for studies on the phylogeography of this species.  相似文献   

5.
The marine phototrophic dinoflagellate Gymnodinium smaydae n. sp. is described from cells prepared for light, scanning, and transmission electron microscopy. Also, sequences of the small (SSU) and large subunits (LSU) and the internal transcribed spacer region (ITS1–5.8S–ITS2) of ribosomal DNA were analyzed. This newly isolated dinoflagellate possessed nuclear chambers, nuclear fibrous connective, an apical groove running in a counterclockwise direction around the apex, and a major accessory pigment peridinin, which are four key features for the genus Gymnodinium. The epicone was conical with a round apex, while the hypocone was ellipsoid. Cells growing photosynthetically were 6.3–10.9 μm long and 5.1–10.0 μm wide, and therefore smaller than any other Gymnodinium species so far reported except Gymnodinium nanum. Cells were covered with polygonal amphiesmal vesicles arranged in 11 horizontal rows, and the vesicles were smaller than those of the other Gymnodinium species. This dinoflagellate had a sharp and elongated ventral ridge reaching half way down the hypocone, unlike other Gymnodinium species. Moreover, displacement of the cingulum was 0.4–0.6 × cell length while in other known Gymnodinium species it is less than 0.3 × cell length. In addition, the new species possessed a peduncle, permanent chloroplasts, pyrenoids, trichocysts, pusule systems, and small knobs along the apical furrow, but it lacked an eyespot, nematocysts, and body scales. The sequence of the SSU, ITS1–5.8S–ITS2, and LSU rDNA region differed by 1.5–3.8%, 6.0–17.4%, and 9.1–17.5%, respectively, from those of the most closely related species. The phylogenetic trees demonstrated that the new species belonged to the Gymnodinium clade at the base of a clade consisting of Gymnodinium acidotum, Gymnodinium dorsalisulcum, Gymnodinium eucyaneum, etc. Based on morphological and molecular data, we suggest that the taxon represents a new species, Gymnodinium smaydae n. sp.  相似文献   

6.
Grammatodinium Li & Shin is a monospecific genus described from the Tongyeong Bay area in Korea. In the current study, we describe its presence in the American Eastern Pacific coast for the first time, particularly in Acapulco Bay, Mexico, using morphological, molecular and environmental data. Sequences generated in this study with SSU and LSU formed a monophyletic group with other sequences from GenBank belonging to Gr. tongyeonginum, the only species known for the genus; however, genetic distance values between this species and our specimens (8.5% SSU; 2.8% LSU) were equivalent or even greater than those reported in other genera of dinoflagellates. Our phylogeny clearly showed the relationship of Grammatodinium with the families Pyrocystaceae and Gonyaulacaceae. In our specimens, cells appeared individually and in colonies of up to 16 cells, which were observed mainly during the dry season, so they could be confused with Gymnodinium catenatum, a common dinoflagellate in Acapulco with which they can coexist and share their general appearance, but they are clearly differentiated by the presence of longitudinal furrows throughout the body and a yellowish-green coloration, both absent in Gymnodinium catenatum. Although our evidence strongly suggests the presence of a new species for the region, more detailed morphological examinations are needed to confirm this statement.  相似文献   

7.
The occurrence and abundance of the toxic, chain-forming dinoflagellateGymnodinium catenatum in a Tyrrhenian coastal lagoon, the Fusaro,during an annual sampling cycle are reported. Peak abundanceswere observed from late spring until early autumn Although veryhigh cell numbers were recorded, up to 1 5 x 106 cells l–1,no monospecific bloom of this species occurred. The first observationof G.catenatum in the Mediterranean occurred in the Fusaro andthe appearance of this species in a traditional shellfish farmingarea, where no shellfish intoxication has been reported to date,is discussed in relation to human interventions in the basin.In particular, intensive dredging in recent years with resuspensionof bottom sediments may have seeded the water body with cysts.A Gymnodinium n d species, illustrated using scanning electronmicroscopy, caused a monospecific bloom in concomitance withmaximum abundances of G.catenatum, apparently outcompeting thislatter species  相似文献   

8.
Gymnodinium catenatum is a bloom forming dinoflagellate that has been known to cause paralytic shellfish poisoning (PSP) in humans. It is being reported with increased frequency around the world, with ballast water transport implicated as a primary vector that may have contributed to its global spread. Major limitations to monitoring and management of its spread are the inability for early, rapid, and accurate detection of G. catenatum in plankton samples. This study explored the feasibility of developing a PCR-based method for specific detection of G. catenatumin cultures and heterogeneous ballast water and environmental samples. Sequence comparison of the large sub unit (LSU) ribosomal DNA locus of several strains and species of dinoflagellates allowed the design of G. catenatum specific PCR primers that are flanked by conserved regions. Assay specificity was validated through screening a range of dinoflagellate cultures, including the morphologically similar and taxonomically closely related species G. nolleri. Amplification of the diagnostic PCR product from all the strains of G. catenatum but not from other species of dinoflagellates tested imply the species specificity of the assay. Sensitivity of the assay to detect cysts in ballast water samples was established by simulated spiked experiments. The assay could detect G. catenatum in all ‘blank’ plankton samples that were spiked with five or more cysts. The assay was used to test environmental samples collected from the Derwent river estuary, Tasmania. Based on the results we conclude that the assay may be utilized in large scale screening of environmental and ballast water samples.  相似文献   

9.
The green dinoflagellate Gymnodinium chlorophorum (BAH ME 100, the type culture) was reexamined with emphasis on the structure of the flagellar apparatus and nuclear envelope. Like other Gymnodinium species, G. chlorophorum possessed a nuclear fibrous connective linking the flagellar apparatus and the nucleus, albeit in a very reduced and unique form. Microtubules nucleated from the R3 flagellar root associated with the nuclear fibrous connective and terminated at the nucleus, a novel arrangement not known in any other dinoflagellate. Although overlooked by previous researchers, nuclear chambers were present in G. chlorophorum similar to those reported in Gymnodinium aureolum and Gymnodinium nolleri. In contrast to the type species of Gymnodinium, Gymnodinium fuscum, only one nuclear pore was present per chamber. The presence of a feeding tube (peduncle) suggests that G. chlorophorum is mixotrophic. Although the fine structure of G. chlorophorum revealed its affiliation to the Gymnodinium group the above discrepancies set it apart, indicating that it might belong in a different genus.  相似文献   

10.
The dinoflagellate genus Chytriodinium, an ectoparasite of copepod eggs, is reported for the first time in the North and South Atlantic Oceans. We provide the first large subunit rDNA (LSU rDNA) and Internal Transcribed Spacer 1 (ITS1) sequences, which were identical in both hemispheres for the Atlantic Chytriodinium sp. The first complete small subunit ribosomal DNA (SSU rDNA) of the Atlantic Chytriodinium sp. suggests that the specimens belong to an undescribed species. This is the first evidence of the split of the Gymnodinium clade: one for the parasitic forms of Chytriodiniaceae (Chytriodinium, Dissodinium), and other clade for the free‐living species.  相似文献   

11.
A new species of the dinoflagellate genus Gymnodinium Stein, previously considered a member of Katodinium Fott, is characterized from two marine benthic habitats in tropical northern Australia. Gymnodinium dorsalisulcum comb. nov. was found to be very abundant at times, and in culture produced large quantities of mucus. We analyzed two regions of ribosomal DNA from this species (partial large subunit and complete small subunit sequences), using Bayesian analysis and phylogenetic models appropriate to alignments of ribosomal RNA genes. We compared it to eight species of the ‘true’Gymnodinium clade and to other dinoflagellates. The results show that it is a member of the Gymnodinium clade, and is closely related to Gymnodinium impudicum and G. chlorophorum. Katodinium was originally defined as having cells with an epitheca that is much larger than the hypotheca. However, this character is clearly inadequate, and the genus requires a re‐investigation to determine the apomorphies of the type species.  相似文献   

12.
The ultrastructure of the green dinoflagellate Lepididodinium viride M. M. Watanabe, S. Suda, I. Inouye Sawaguchi et Chihara was studied in detail. The nuclear envelope possessed numerous chambers each furnished with a nuclear pore, a similar arrangement to that found in other gymnodinioids. The flagellar apparatus was essentially identical to Gymnodinium chlorophorum Elbrächter et Schnepf, a species also containing chloroplasts of chlorophyte origin. Of particular interest was the connection of the flagellar apparatus to the nuclear envelope by means of both a fiber and a microtubular extension of the R3 flagellar root. This feature has not been found in other dinoflagellates and suggests a close relationship between these two species. This was confirmed by phylogenetic analysis based on partial sequences of the large subunit (LSU) rDNA gene of L. viride, G. chlorophorum and 16 other unarmoured dinoflagellates, including both the ‘type’ culture and a new Tasmanian isolate of G. chlorophorum. These two isolates had identical sequences and differed from L. viride by only 3.75% of their partial LSU sequences, considerably less than the difference between other Gymnodinium species. Therefore, based on ultrastructure, pigments and partial LSU rDNA sequences, the genus Lepidodinium was emended to encompass L. chlorophorum comb. nov.  相似文献   

13.
ABSTRACT. The mixotrophic dinoflagellate Paragymnodinium shiwhaense n. gen., n. sp. is described from living cells and from cells prepared by light, scanning electron, and transmission electron microscopy. In addition, sequences of the small subunit (SSU) and large subunit (LSU) rDNA and photosynthetic pigments are reported. The episome is conical, while the hyposome is hemispherical. Cells are covered with polygonal amphiesmal vesicles arranged in 16 rows and containing a very thin plate‐like component. There is neither an apical groove nor apical line of narrow plates. Instead, there is a sulcal extension‐like furrow. The cingulum is as wide as 0.2–0.3 × cell length and displaced by 0.2–0.3 × cell length. Cell length and width of live cells fed Amphidinium carterae were 8.4–19.3 and 6.1–16.0 μm, respectively. Paragymnodinium shiwhaense does not have a nuclear envelope chamber nor a nuclear fibrous connective (NFC). Cells contain chloroplasts, nematocysts, trichocysts, and peduncle, though eyespots, pyrenoids, and pusules are absent. The main accessory pigment is peridinin. The sequence of the SSU rDNA of this dinoflagellate (GenBank AM408889) is 4% different from that of Gymnodinium aureolum, Lepidodinium viride, and Gymnodinium catenatum, the three closest species, while the LSU rDNA was 17–18% different from that of G. catenatum, Lepidodinium chlorophorum, and Gymnodinium nolleri. The phylogenetic trees show that this dinoflagellate belongs within the Gymnodinium sensu stricto clade. However, in contrast to Gymnodinium spp., cells lack nuclear envelope chambers, NFC, and an apical groove. Unlike Polykrikos spp., which have a taeniocyst–nematocyst complex, P. shiwhaense has nematocysts without taeniocysts. In addition, P. shiwhaense does not have ocelloids in contrast to Warnowia spp. and Nematodinium spp. Therefore, based on morphological and molecular analyses, we suggest that this taxon is a new species, also within a new genus.  相似文献   

14.
A naked dinoflagellate with a unique arrangement of chloroplasts in the center of the cell was isolated from the northern Baltic proper during a spring dinoflagellate bloom (March 2005). Morphological, ultrastructural, and molecular analyses revealed this dinoflagellate to be undescribed and belonging to the genus Gymnodinium F. Stein. Gymnodinium corollarium A. M. Sundström, Kremp et Daugbjerg sp. nov. possesses features typical of Gymnodinium sensu stricto, such as nuclear chambers and an apical groove running in a counterclockwise direction around the apex. Phylogenetic analyses based on partial nuclear‐encoded LSU rDNA sequences place the species in close proximity to G. aureolum, but significant genetic distance, together with distinct morphological features, such as the position of chloroplasts, clearly justifies separation from this species. Temperature and salinity experiments revealed a preference of G. corollarium for low salinities and temperatures, confirming it to be a cold‐water species well adapted to the brackish water conditions in the Baltic Sea. At nitrogen‐deplete conditions, G. corollarium cultures produced small, slightly oval cysts resembling a previously unidentified cyst type commonly found in sediment trap samples collected from the northern and central open Baltic Sea. Based on LSU rDNA comparison, these cysts were assigned to G. corollarium. The cysts have been observed in many parts of the Baltic Sea, indicating the ecologic versatility of the species and its importance for the Baltic ecosystem.  相似文献   

15.
This paper reported the isolation and the phylogenetic analysis of a free-living Gymnodinium-like dinoflagellates (G. sp. (15)) from the sea water collected at Jiaozhou bay, Qingdao, Shandong Province, P.R. China. Phylogenetic reconstruction analysis with Neighbor-Joining (NJ) method using sequences of variable regions (V1+V2+V3) of the small subunit (SSU) rDNA indicated that G. sp. (15) was a Symbiodinium sp., which was closely related to a symbiont of anemones, S. californium, and the free-living strain, Gymnodinium varians. These three strains formed a new clade (which had been designated as clade F) with 100% bootstrap support. Sequence comparison showed that sequences of the internal transcribed spacer (ITS) of these three strains were highly homologous, suggesting that they might belong to one species.  相似文献   

16.
Increasing scientific awareness since the 1980s of the chain-forming dinoflagellate Gymnodinium catenatum has led to this species being reported with increased frequency in a globally increasing number of countries (23 at present). G. catenatum exhibits little molecular genetic variation in rDNA over its global range, in contrast to RAPD fingerprinting which points to high genetic variation within regional populations even between estuaries 50 km apart. All Australian and New Zealand strains possess a thymine nucleotide (T-gene) near the start of the 5.8S rRNA whereas all other global populations examined to date possess cytosine-nucleotide (C-gene), except for southern Japan which harbours both C-gene and T-gene strains. Together with cyst and plankton evidence this strongly suggests that both Australian and New Zealand populations have derived from southern Japan. Global dinoflagellate populations and cultures exhibit an extraordinary variation in PST profiles (STX and 21 analogues), but consistent regional patterns are evident with regard to the production of C1,2; C3,4; B1,2; and neoSTX analogues. PST profiles of cyst-derived cultures are deemed unrepresentative. Distinct ecophysiological differences exist between tropical (21–32 °C) and warm-temperate ecotypes (12–18 °C), but these appear unrelated to ITS genotypes and PST toxin phenotypes. On current evidence, cyst germination appears to play a minimal role in the bloom dynamics of this species, while seasonal and inter-annual bloom variations result from the physical constraints (temperature and light) on the growth of the dinoflagellates in the water column. G. catenatum exhibits a capacity to utilize many forms of nitrogen. Its chain formation and strong motility allow it to undergo retrieval migrations to exploit light and nutrient resource gradients in both stratified and mixed environments. Subtle strain-level variations in micronutrient (Se, humics) requirements and interaction with associated bacterial flora may provide a partial explanation for the contrasting inshore (Tasmanian), and offshore (Spain, Mexico) bloom patterns by the same species in different geographic regions.  相似文献   

17.
Recurrent high-biomass blooms of a gymnodinioid species have been periodically recorded at different sites in the NW Mediterranean Sea (Catalan and Sardinian coast), causing intense discolorations of the water. In this study, several strains of the causative organism were isolated and subsequently studied with respect to the morphology of the vegetative cells and different life cycle stages, pigments profile, and molecular phylogeny. Based on phylogenetic analyses, the strains were placed within the Gymnodinium sensu stricto clade. The species possessed a horseshoe-shaped apical groove running anticlockwise around the apex and the major accessory pigment was identified as peridinin. These characteristics place the organism within the Gymnodinium genus, as defined today, although some other characteristics, such as vesicular chambers in the nuclear envelope and a nuclear fibrous connective were not observed. Morphologically, the isolates highly resemble Gyrodinium vorax (Biecheler) but major differences with the latter suggest that they comprise a new species, Gymnodinium litoralis sp. nov. The resting cyst of this species is described herein from field samples of the Catalan and Sardinian coast; pellicle cysts were observed in field samples and also in cultures. This species recurrently produces high biomass blooms (>106 cell L−1) in summer along several beaches and coastal lagoons in the NW Mediterranean Sea (L’Estartit, La Muga River mouth, and Corru S’Ittiri). Knowledge about its geographic distribution is limited, since the precise identification of G. litoralis from the field or fixed samples can be difficult. Therefore we expect that molecular studies will reveal a much wider distribution of the species.  相似文献   

18.
Living populations of Gymnodinium baicalense Ant. from Lake Baikal were studied. It has been shown that G. baicalense var. minor Ant. is a life stage of G. baicalense, whose species size is smaller than it is given in the diagnosis. Morphology of the living vegetative cells of G. baicalense is close to that of G. wigrense Wolosz. These species share ecological features. The vegetative cells form endogenous resting cysts. The sexual reproduction takes place in the period of the mass development of the species. The author believes that it is a relict species, which formed in the Ice age.  相似文献   

19.
Gymnodinium catenatum Graham (Dinophyceae)in Europe: a growing problem?   总被引:1,自引:0,他引:1  
The microreticulate resting cyst of the potentially toxic, chain-forming,unarmoured neritic dinoflagellate Gymnodinium catenalum Graham1943. the planktonic stage of which is not known from NorthEuropean waters, is reported for the first time from recentGerman coastal sediments of the North Sea and Baltic Sea. Insandy mud sediments of the German Bight, a maximum of 8 5 livingcysts cm–3 were found. In Kiel Bight sediments G.catenalumwas found in maximum concentrations of 17.0 living cysts cm–3.In surface waters of the German Bight resuspended G catenatumcysts were observed at concentrations of up to 3.6 cysts l–1.Successful germination experiments conducted with natural seawatershow that the occurrence of a vegetative form of G.catenatumin northern Europe is very likely. The present study highlightsthat cyst surveys provide an important tool for the evaluationof areas with potential toxicity problems, as they may indicatethe presence of hitherto overlooked species in the water column.  相似文献   

20.
Light and electron microscopy, nuclear-encoded LSU rDNA sequences, and pigment analyses were performed on five geographically separate isolates of Gymnodinium mikimotoi. The morphological variation between the isolates equals that found within the isolates. The nuclear-encoded LSU rDNA sequences were nearly identical in all isolates, and molecular analyses using maximum likelihood, parsimony, and neighbor joining showed the geographical isolates as an unresolved clade. Based on the available data it is concluded that the European isolates, formerly identified as Gyrodinium aureolum , Gyrodinium cf. aureolum , or Gymnodinium cf. nagasakiense , are conspecific with the Japanese Gymnodinium mikimotoi. An isolate from the Pettaquamscutt River, USA, is suggested to represent what Hulburt (1957) described as Gyrodinium aureolum. The LSU rDNA sequence data and ultrastructural characters in this isolate closely resemble those of Gymnodinium fuscum , the type species of Gymnodinium , and Gyrodinium aureolum Hulburt is therefore renamed Gymnodinium aureolum (Hulburt) G. Hansen, comb. nov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号