首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ionizing radiation causes a variety of types of damage to DNA in cells, requiring the concerted action of a number of DNA repair enzymes to restore genomic integrity. The DNA base-excision repair and DNA double-strand break repair pathways are particularly important. While single base damages are rapidly excised and repaired using the opposite (undamaged) strand as a template, the correct repair of DNA double-strand breaks may present more difficulties to cellular enzymes owing to the loss of template. In the last few years evidence in support of several enzymatic pathways for the repair of such double-stranded damage has been found. At present we may distinguish at least three pathways: homologous recombination repair, non-homologous (DNA-PK-dependent) end joining, and repeat-driven end joining. This paper focuses on evidence for the first and third of these pathways, and considers in particular their relative importance in mammalian cells and implications for the fidelity of repair.  相似文献   

2.
DNA损伤的发生与积累是造成细胞功能紊乱的根本原因,也是引起衰老与肿瘤等疾病发生的关键事件。为维持机体自身遗传物质的完整性与稳定性,生物体内拥有多种针对不同类型DNA损伤的修复方式。Sirtuin蛋白是一组NAD+依赖的、高度保守的组蛋白去乙酰化酶,可通过去乙酰化作用调节众多底物蛋白质的表达、活性与稳定性。 近来的研究显示,DNA损伤修复途径的多个关键蛋白质是Sirtuin的下游底物。Sirtuin蛋白通过调节同源重组修复、非同源末端修复、核苷酸切除修复等途径中的核心蛋白质参与修复包括双链断裂(double stranded breakes, DSBs)在内的多种DNA损伤类型,从而在维持基因组稳定性、寿命以及细胞能量代谢调节等一系列生物学作用中发挥至关重要的作用。本综述将介绍近年来Sirtuin与DNA损伤修复的研究进展。  相似文献   

3.
4.
All mutagenic agents induce lesions in the cellular DNA and they are repaired efficiently by different repair mechanisms. Un-repaired and mis-repaired lesions lead to chromosomal aberrations (CAs). Depending upon the mutagenic agents involved, different DNA repair pathways, such as nucleotide excision repair (NER), base excision repair (BER), non-homologous end joining (NHEJ), homologous recombination repair (HRR), cross-link repair (FANC), single strand annealing (SSA) etc., are operative. Following ionising radiation, DNA double strand breaks (DSBs, which are considered to be the most important leasion leading to observed biological effects) are repaired either by NHEJ and/or HRR. We have investigated the relative role of these two repair pathways leading to chromosomal aberrations using Chinese hamster ovary (CHO) mutant cells deficient in one of these two repair pathwatys. NHEJ operates both in G1 and G2 phases of the cell cycle, wheras HHR operates mainly in S and G2 phases of the cell cycle. In NHEJ-deficient mutant cells irradiated in G1, un-repaired double strand breaks reaching S phase are repaired (unexpectedly with a large mis-repair component) by HRR. In HRR-deficient mutant cells, un-repaired DSBs reaching S phase are repaired by NHEJ (unexpectedly with a low mis-repair component) as evidenced by the frequencies of chromatid type aberrations. Employing a similar approach, following treatment with benzo(alpha)pyrene-7,8diol-9,10epoxide (BPDE), the active metabolite of benzo(alpha)pyrene, NER and HRR seem to be the most important repair pathways protecting against chromosomal damage induced by this agent. In the case of acetaldehyde, (primary metabolite of alcohol in vivo) a DNA cross-linking agent, HRR and FANC pathways are important for protection against damage induced by this agent. Irrespective of the type of DNA lesions induced, ultimately they have to be converted to DSBs in order to give rise to CA. Therefore, both NHEJ and HRR are also involved to some extent in the origin of CA following treatment with S-dependent agents.The relative importance of different repair pathways in bestowing protection against DNA damage leading to chromosomal alterations is discussed.  相似文献   

5.
Topoisomerase II is a ubiquitous enzyme that removes knots and tangles from the genetic material by generating transient double-strand DNA breaks. While the enzyme cannot perform its essential cellular functions without cleaving DNA, this scission activity is inherently dangerous to chromosomal integrity. In fact, etoposide and other clinically important anticancer drugs kill cells by increasing levels of topoisomerase II-mediated DNA breaks. Cells rely heavily on recombination to repair double-strand DNA breaks, but the specific pathways used to repair topoisomerase II-generated DNA damage have not been defined. Therefore, Saccharomyces cerevisiae was used as a model system to delineate the recombination pathways that repair DNA breaks generated by topoisomerase II. Yeast cells that expressed wild-type or a drug-hypersensitive mutant topoisomerase II or overexpressed the wild-type enzyme were examined. Based on cytotoxicity and recombination induced by etoposide in different repair-deficient genetic backgrounds, double-strand DNA breaks generated by topoisomerase II appear to be repaired primarily by the single-strand invasion pathway of homologous recombination. Non-homologous end joining also was triggered by etoposide treatment, but this pathway was considerably less active than single-strand invasion and did not contribute significantly to cell survival in S.cerevisiae.  相似文献   

6.
Living organisms are constantly threatened by environmental DNA-damaging agents, including UV and ionizing radiation (IR). Repair of various forms of DNA damage caused by IR is normally thought to follow lesion-specific repair pathways with distinct enzymatic machinery. DNA double strand break is one of the most serious kinds of damage induced by IR, which is repaired through double strand break (DSB) repair mechanisms, including homologous recombination (HR) and non-homologous end joining (NHEJ). However, recent studies have presented increasing evidence that various DNA repair pathways are not separated, but well interlinked. It has been suggested that non-DSB repair mechanisms, such as Nucleotide Excision Repair (NER), Mismatch Repair (MMR) and cell cycle regulation, are highly involved in DSB repairs. These findings revealed previously unrecognized roles of various non-DSB repair genes and indicated that a successful DSB repair requires both DSB repair mechanisms and non-DSB repair systems. One of our recent studies found that suppressed expression of non-DSB repair genes, such as XPA, RPA and MLH1, influenced the yield of IR induced micronuclei formation and/or chromosome aberrations, suggesting that these genes are highly involved in DSB repair and DSB-related cell cycle arrest, which reveals new roles for these gene products in the DNA repair network. In this review, we summarize current progress on the function of non-DSB repair-related proteins, especially those that participate in NER and MMR pathways, and their influence on DSB repair. In addition, we present our developing view that the DSB repair mechanisms are more complex and are regulated by not only the well known HR/NHEJ pathways, but also a systematically coordinated cellular network.Key Words: Ionizing radiation (IR), DNA damage, DSB repair, NER, MMR and cell cycle.  相似文献   

7.
Ultraviolet (UV)-induced DNA damage are removed by nucleotide excision repair (NER) or can be tolerated by specialized translesion synthesis (TLS) polymerases, such as Polη. TLS may act at stalled replication forks or through an S-phase independent gap-filling mechanism. After UVC irradiation, Polη-deficient (XP-V) human cells were arrested in early S-phase and exhibited both single-strand DNA (ssDNA) and prolonged replication fork stalling, as detected by DNA fiber assay. In contrast, NER deficiency in XP-C cells caused no apparent defect in S-phase progression despite the accumulation of ssDNA and a G2-phase arrest. These data indicate that while Polη is essential for DNA synthesis at ongoing damaged replication forks, NER deficiency might unmask the involvement of tolerance pathway through a gap-filling mechanism. ATR knock down by siRNA or caffeine addition provoked increased cell death in both XP-V and XP-C cells exposed to low-dose of UVC, underscoring the involvement of ATR/Chk1 pathway in both DNA damage tolerance mechanisms. We generated a unique human cell line deficient in XPC and Polη proteins, which exhibited both S- and G2-phase arrest after UVC irradiation, consistent with both single deficiencies. In these XP-C/PolηKD cells, UVC-induced replicative intermediates may collapse into double-strand breaks, leading to cell death. In conclusion, both TLS at stalled replication forks and gap-filling are active mechanisms for the tolerance of UVC-induced DNA damage in human cells and the preference for one or another pathway depends on the cellular genotype.  相似文献   

8.
Malfunction of enzymes that detoxify reactive oxygen species leads to oxidative attack on biomolecules including DNA and consequently activates various DNA repair pathways. The nature of DNA damage and the cell cycle stage at which DNA damage occurs determine the appropriate repair pathway to rectify the damage. Oxidized DNA bases are primarily repaired by base excision repair and nucleotide incision repair. Nucleotide excision repair acts on lesions that distort DNA helix, mismatch repair on mispaired bases, and homologous recombination and non-homologous end joining on double stranded breaks. Post-replication repair that overcomes replication blocks caused by DNA damage also plays a crucial role in protecting the cell from the deleterious effects of oxidative DNA damage. Mitochondrial DNA is also prone to oxidative damage and is efficiently repaired by the cellular DNA repair machinery. In this review, we discuss the DNA repair pathways in relation to the nature of oxidative DNA damage in Saccharomyces cerevisiae.  相似文献   

9.
DNA damage responses are important for the maintenance of genome stability and the survival of organisms. Such responses are activated in the presence of DNA damage and lead to cell cycle arrest, apoptosis, and DNA repair. In Caenorhabditis elegans, double-strand breaks induced by DNA damaging agents have been detected indirectly by antibodies against DSB recognizing proteins. In this study we used a comet assay to detect DNA strand breaks and to measure the elimination of DNA strand breaks in mitotic germline nuclei of C. elegans. We found that C. elegans brc-1 mutants were more sensitive to ionizing radiation and camptothecin than the N2 wild-type strain and repaired DNA strand breaks less efficiently than N2. This study is the first demonstration of direct measurement of DNA strand breaks in mitotic germline nuclei of C. elegans. This newly developed assay can be applied to detect DNA strand breaks in different C. elegans mutants that are sensitive to DNA damaging agents.  相似文献   

10.
Double-strand breaks (DSBs) are the most lethal form of DNA damage. They can be repaired by one of two pathways, homologous recombination and non-homologous end joining (NHEJ). A NHEJ assay has previously been reported which measures joining using cell-free extracts and a linearised plasmid as DNA substrate. This assay was designed for 3 × 109 cells grown in vitro and utilised radioactively labelled substrate. We have scaled down the method to use smaller cell numbers in a variety of cell lines. Altering the cellular extraction procedure decreased background DNA contamination. The cleaner preparations allowed us to use SYBR Green I staining to identify joined products, which was as sensitive as 32P-end-labelled DNA. NHEJ was found in established tumour cell lines from different originating tissues, though actual levels and fidelity of repair differed. This method also allowed end joining to be assessed in clinical specimens (human blood, brain and bladder tumours) within 24 h of receiving samples. The application of this method will allow investigation of the role of DSB DNA repair pathways in human tumours.  相似文献   

11.
DNA损伤修复机制——解读2015年诺贝尔化学奖   总被引:1,自引:0,他引:1  
Tomas Lindahl, Paul Modrich和Aziz Sancar三位科学家因发现“DNA损伤修复机制”获得了2015年诺贝尔化学奖.Lindahl首次发现Escherichia Coli中参与碱基切除修复的第一个蛋白质--尿嘧啶 DNA糖基化酶(UNG); Modrich重建了错配修复的体外系统,从大肠杆菌到哺乳动物深入探究了错配修复的机制; Sancar利用纯化的UvrA、UvrB、UvrC重建了核苷酸切除修复的关键步骤,阐述了核苷酸切除修复的分子机制.DNA损伤是由生物所处体外环境和体内因素共同导致的,面对不同种类的损伤,机体启动多种不同的修复机制修复损伤,保护基因组稳定性.这些修复机制包括:光修复(light repairing);核苷酸切除修复(nucleotide excision repair, NER);碱基切除修复(base excision repair, BER);错配修复(mismatch repair, MMR);以及DNA双链断裂修复(DNA double strand breaks repair, DSBR).其中DNA双链断裂修复又分同源重组(homologous recombination, HR)和非同源末端连接(non homologous end joining, NHEJ)两种方式.本文将对上述几种修复的机制进行总结与讨论.  相似文献   

12.
Repair of DNA double-stranded breaks caused by ionizing radiation or cellular metabolization, homologous recombination, is an evolutionary conserved process controlled by RAD52 group genes. Genes of recombinational repair also play a leading role in the response to DNA damage caused by UV light. Cells with deletion in gene dds20 of recombinational repair were shown to manifest hypersensitivity to the action of UV light at lowered incubation temperature. Epistatic analysis revealed that dds20 + is not a member of the NER and UVER gene groups responsible for the repair of DNA damage induced by UV light. The Dds protein has functions in the Cds1-independent mechanism of UV damage tolerance of DNA.  相似文献   

13.
Homology-directed repair (HDR) of double-strand DNA breaks is a promising method for genome editing, but is thought to be less efficient than error-prone nonhomologous end joining in most cell types. We have investigated HDR of double-strand breaks induced by CRISPR-associated protein 9 (Cas9) in Caenorhabditis elegans. We find that HDR is very robust in the C. elegans germline. Linear repair templates with short (∼30–60 bases) homology arms support the integration of base and gene-sized edits with high efficiency, bypassing the need for selection. Based on these findings, we developed a systematic method to mutate, tag, or delete any gene in the C. elegans genome without the use of co-integrated markers or long homology arms. We generated 23 unique edits at 11 genes, including premature stops, whole-gene deletions, and protein fusions to antigenic peptides and GFP. Whole-genome sequencing of five edited strains revealed the presence of passenger variants, but no mutations at predicted off-target sites. The method is scalable for multi-gene editing projects and could be applied to other animals with an accessible germline.  相似文献   

14.
G4 DNA motifs, which can form stable secondary structures called G-quadruplexes, are ubiquitous in eukaryotic genomes, and have been shown to cause genomic instability. Specialized helicases that unwind G-quadruplexes in vitro have been identified, and they have been shown to prevent genetic instability in vivo. In the absence of these helicases, G-quadruplexes can persist and cause replication fork stalling and collapse. Translesion synthesis (TLS) and homologous recombination (HR) have been proposed to play a role in the repair of this damage, but recently it was found in the nematode Caenorhabditis elegans that G4-induced genome alterations are generated by an error-prone repair mechanism that is dependent on the A-family polymerase Theta (Pol θ). Current data point towards a scenario where DNA replication blocked at G-quadruplexes causes DNA double strand breaks (DSBs), and where the choice of repair pathway that can act on these breaks dictates the nature of genomic alterations that are observed in various organisms.  相似文献   

15.
Double-strand DNA breaks (DSBs) resulting from metabolic cellular processes and external factors pose a serious threat to the stability of the genome, but the cells have molecular mechanisms for the efficient repair of this type of damage. In this review, we examine two main biochemical pathways of repairing the double-strand DNA breaks in eukaryotic cells—DNA strands nonhomologous end joining and homologous recombination between sister chromatids or chromatids of homologous chromosomes. Numerous data obtained recently for various eukaryotic cells suggest that there is a complex interplay between the main DSB repair pathways, which normally facilitates efficient repair and maintenance of the structural and functional integrity of the genome, but which, at the same time, under conditions of exposure to genotoxic factors may induce increased genomic instability.  相似文献   

16.
ERCC1-XPF, through its role in nucleotide excision repair (NER), is essential for the repair of DNA damage caused by UV light. ERCC1-XPF is also involved in recombinational repair processes distinct from NER. In rodent cells chromosome aberrations are a common consequence of UV irradiation. We have previously shown that ERCC1-deficient cells have a lower ratio of chromatid exchanges to breaks than wild type cells. We have now confirmed this result and have shown that XPF-deficient cells also have a lower ratio than wild type. However, cells deficient in the other NER genes, XPD, XPB and XPG, all have the same ratio of exchanges to breaks as wild type. This implies that ERCC1-XPF, but not other NER proteins, is involved in the formation of UV-induced chromosome aberrations, presumably through the role of ERCC1-XPF in recombinational repair pathways rather than NER. We suggest that ERCC1-XPF may be involved in the bypass/repair of DNA damage in replicating DNA by an exchange mechanism involving single strand annealing between non-homologous chromosomes. This mechanism would rely on the ability of ERCC1-XPF to trim non-homologous 3' tails.  相似文献   

17.
Neuronal DNA repair remains one of the most exciting areas for investigation, particularly as a means to compare the DNA repair response in mitotic (cancer) vs. post-mitotic (neuronal) cells. In addition, the role of DNA repair in neuronal cell survival and response to aging and environmental insults is of particular interest. DNA damage caused by reactive oxygen species (ROS) such as generated by mitochondrial respiration includes altered bases, abasic sites, and single- and double-strand breaks which can be prevented by the DNA base excision repair (BER) pathway. Oxidative stress accumulates in the DNA of the human brain over time especially in the mitochondrial DNA (mtDNA) and is proposed to play a critical role in aging and in the pathogenesis of several neurological disorders including Parkinson's disease, ALS, and Alzheimer's diseases. Because DNA damage accumulates in the mtDNA more than nuclear DNA, there is increased interest in DNA repair pathways and the consequence of DNA damage in the mitochondria of neurons. The type of damage that is most likely to occur in neuronal cells is oxidative DNA damage which is primarily removed by the BER pathway. Following the notion that the bulk of neuronal DNA damage is acquired by oxidative DNA damage and ROS, the BER pathway is a likely area of focus for neuronal studies of DNA repair. BER variations in brain aging and pathology in various brain regions and tissues are presented. Therefore, the BER pathway is discussed in greater detail in this review than other repair pathways. Other repair pathways including direct reversal, nucleotide excision repair (NER), mismatch repair (MMR), homologous recombination and non-homologous end joining are also discussed. Finally, there is a growing interest in the role that DNA repair pathways play in the clinical arena as they relate to the neurotoxicity and neuropathy associated with cancer treatments. Among the numerous side effects of cancer treatments, major clinical effects include neurocognitive dysfunction and peripheral neuropathy. These symptoms occur frequently and have not been effectively studied at the cellular or molecular level. Studies of DNA repair may help our understanding of how those cells that are not dividing could succumb to neurotoxicity with the clinical manifestations discussed in the following article.  相似文献   

18.
Wu X  Braithwaite E  Wang Z 《Biochemistry》1999,38(9):2628-2635
Excision repair of DNA is an important cellular response to DNA damage induced by radiation and many chemicals. In eukaryotes, base excision repair (BER) and nucleotide excision repair (NER) are two major excision repair pathways which are completed by a DNA ligation step. Using a cell-free system, we have determined the DNA ligase requirement during BER and NER of the yeast S. cerevisiae. Under nonpermissive conditions in extracts of the cdc9-2 temperature-sensitive mutant, DNA ligation in both BER and NER pathways was defective, and the repair patches were enlarged. At the permissive temperature (23 degrees C), DNA ligation during excision repair was only partially functional in the mutant extracts. In contrast, deleting the DNA ligase IV gene did not affect DNA ligation of BER or NER. Defective DNA ligation of BER and NER in cdc9-2 mutant extracts was complemented in vitro by purified yeast Cdc9 protein, but not by DNA ligase IV even when overexpressed. These results demonstrate that the ligation step of excision repair in yeast cell-free extracts is catalyzed specifically by the Cdc9 protein, the homologue of mammalian DNA ligase I.  相似文献   

19.
Two systems are essential in humans for genome integrity, DNA repair and apoptosis. Cells that are defective in DNA repair tend to accumulate excess DNA damage. Cells defective in apoptosis tend to survive with excess DNA damage and thus allow DNA replication past DNA damages, causing mutations leading to carcinogenesis. It has recently become apparent that key proteins which contribute to cellular survival by acting in DNA repair become executioners in the face of excess DNA damage.Five major DNA repair pathways are homologous recombinational repair (HRR), non-homologous end joining (NHEJ), nucleotide excision repair (NER), base excision repair (BER) and mismatch repair (MMR). In each of these DNA repair pathways, key proteins occur with dual functions in DNA damage sensing/repair and apoptosis. Proteins with these dual roles occur in: (1) HRR (BRCA1, ATM, ATR, WRN, BLM, Tip60 and p53); (2) NHEJ (the catalytic subunit of DNA-PK); (3) NER (XPB, XPD, p53 and p33(ING1b)); (4) BER (Ref-1/Ape, poly(ADP-ribose) polymerase-1 (PARP-1) and p53); (5) MMR (MSH2, MSH6, MLH1 and PMS2). For a number of these dual-role proteins, germ line mutations causing them to be defective also predispose individuals to cancer. Such proteins include BRCA1, ATM, WRN, BLM, p53, XPB, XPD, MSH2, MSH6, MLH1 and PMS2.  相似文献   

20.
Repair of DNA double-stranded breaks caused by ionizing radiation or cellular metabolization, homologous recombination, is an evolutionary conserved process controlled by RAD52 group genes. Genes of recombinational repair also play a leading role in the response to DNA damage caused by UV light. Cells with deletion in gene dds20 of recombinational repair were shown to manifest hypersensitivity to the action of UV light at lowered incubation temperature. Epistatic analysis revealed that dds20+ is not a member of the NER and UVER gene groups responsible for the repair of DNA damage induced by UV light. The Dds protein has functions in the Cds1-independent mechanism of UV damage tolerance of DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号