首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 327 毫秒
1.
Segregation data were obtained for 1260 potato linkage group I-specific AFLP loci from a heterozygous diploid potato population. Analytical tools that identified potential typing errors and/or inconsistencies in the data and that assembled cosegregating markers into bins were applied. Bins contain multiple-marker data sets with an identical segregation pattern, which is defined as the bin signature. The bin signatures were used to construct a skeleton bin map that was based solely on observed recombination events. Markers that did not match any of the bin signatures exactly (and that were excluded from the calculation of the skeleton bin map) were placed on the map by maximum likelihood. The resulting maternal and paternal maps consisted of 95 and 101 bins, respectively. Markers derived from EcoRI/MseI, PstI/MseI, and SacI/MseI primer combinations showed different genetic distributions. Approximately three-fourths of the markers placed into a bin were considered to fit well on the basis of an estimated residual "error rate" of 0-3%. However, twice as many PstI-based markers fit badly, suggesting that parental PstI-site methylation patterns had changed in the population. Recombination frequencies were highly variable across the map. Inert, presumably centromeric, regions caused extensive marker clustering while recombination hotspots (or regions identical by descent) resulted in empty bins, despite the level of marker saturation.  相似文献   

2.
A marker-saturated linkage map of potato was used to genetically map a locus involved in the resistance against wart disease Synchytrium endobioticum race 1. The locus mapped on the long arm of chromosome 4 and is named Sen1-4 in contrast to a Sen1 locus on chromosome 11. The AFLP markers from the Sen1-4 interval enabled the isolation of BAC clones from an 11 genome equivalent BAC library. This was achieved via fingerprinting of BAC pools with the AFLP primer pairs that resemble the genetic marker loci. With non-selective AFLP primers, fingerprints of individual BAC clones were generated to analyse the overlap between BAC clones using FPC. This resulted in a complete contig and a minimal tiling path of 14 BAC clones enclosing the Sen1-4 locus. The BAC contig has a genetic length of ~6 cM and a physical length of ~1 Mb. Our results demonstrate that map-based cloning of Sen1-4 can be pursued on the basis of a strategy of marker saturation alone. Genetic resolution achieved by screening large numbers of offspring for recombination events may not be required. Together with the construction of the BAC contig, a physical map with the position of the markers is accomplished in one step. This provides proof of concept for the utility of the marker saturation that is offered by the ultra dense AFLP map of potato for gene cloning.  相似文献   

3.
The resistance gene H1 confers resistance to the potato cyst nematode Globodera rostochiensis and is located at the distal end of the long arm of chromosome V of potato. For marker enrichment of the H1 locus, a bulked segregant analysis (BSA) was carried out using 704 AFLP primer combinations. A second source of markers tightly linked to H1 is the ultra-high-density (UHD) genetic map of the potato cross SH × RH. This map has been produced with 387 AFLP primer combinations and consists of 10,365 AFLP markers in 1,118 bins (). Comparing these two methods revealed that BSA resulted in one marker/cM and the UHD map in four markers/cM in the H1 interval. Subsequently, a high-resolution genetic map of the H1 locus has been developed using a segregating F1 SH × RH population consisting of 1,209 genotypes. Two PCR-based markers were designed at either side of the H1 gene to screen the 1,209 genotypes for recombination events. In the high-resolution genetic map, two of the four co-segregating AFLP markers could be separated from the H1 gene. Marker EM1 is located at a distance of 0.2 cM, and marker EM14 is located at a distance of 0.8 cM. The other two co-segregating markers CM1 (in coupling) and EM15 (in repulsion) could not be separated from the H1 gene.Communicated by J.G. Wenzel  相似文献   

4.
5.
The developments of molecular marker-based genetic linkage maps are now routine. Physical maps based on contigs of large insert genomic clones have been established in several plant species. However, integration of genetic, physical, and cytological maps is still a challenge for most plant species. Here we present an integrated map of rice (Oryza sativa L.) chromosome 5, developed by fluorescence in situ hybridization mapping of 18 bacterial artificial chromosome (BAC) clones or PI-derived artificial chromosome (PAC) clones on meiotic pachytene chromosomes. Each BAC/PAC clone was anchored by a restriction fragment length polymorphism marker mapped to the rice genetic linkage map. This molecular cytogenetic map shows the genetic recombination and sequence information of a physical map, correlated to the cytological features of rice chromosome 5. Detailed comparisons of the distances between markers on genetic, cytological, and physical maps, revealed the distributions of recombination events and molecular organization of the chromosomal features of rice chromosome 5 at the pachytene stage. Discordance of distances between the markers was found among the different maps. Our results revealed that neither the recombination events nor the degree of chromatin condensation were evenly distributed along the entire length of chromosome 5. Detailed comparisons of the correlative positions of markers on the genetic, cytological, and physical maps of rice chromosome 5 provide insight into the molecular architecture of rice chromosome 5, in relation to its cytological features and recombination events on the genetic map. The prospective applications of such an integrated cytogenetic map are discussed.  相似文献   

6.
Chen C  Yu Q  Hou S  Li Y  Eustice M  Skelton RL  Veatch O  Herdes RE  Diebold L  Saw J  Feng Y  Qian W  Bynum L  Wang L  Moore PH  Paull RE  Alam M  Ming R 《Genetics》2007,177(4):2481-2491
A high-density genetic map of papaya (Carica papaya L.) was constructed using microsatellite markers derived from BAC end sequences and whole-genome shot gun sequences. Fifty-four F(2) plants derived from varieties AU9 and SunUp were used for linkage mapping. A total of 707 markers, including 706 microsatellite loci and the morphological marker fruit flesh color, were mapped into nine major and three minor linkage groups. The resulting map spanned 1069.9 cM with an average distance of 1.5 cM between adjacent markers. This sequence-based microsatellite map resolved the very large linkage group 2 (LG 2) of the previous high-density map using amplified fragment length polymorphism markers. The nine major LGs of our map represent papaya's haploid nine chromosomes with LG 1 of the sex chromosome being the largest. This map validates the suppression of recombination at the male-specific region of the Y chromosome (MSY) mapped on LG 1 and at potential centromeric regions of other LGs. Segregation distortion was detected in a large region on LG 1 surrounding the MSY region due to the abortion of the YY genotype and in a region of LG6 due to an unknown cause. This high-density sequence-tagged genetic map is being used to integrate genetic and physical maps and to assign genome sequence scaffolds to papaya chromosomes. It provides a framework for comparative structural and evolutional genomic research in the order Brassicales.  相似文献   

7.
Sequencing of the rice genome has provided a platform for functional genomics research of rice and other cereal species. However, multiple approaches are needed to determine the functions of its genes and sequences and to use the genome sequencing results for genetic improvement of cereal crops. Here, we report a plant-transformation-competent, binary bacterial artificial chromosome (BIBAC) and bacterial artificial chromosome (BAC) based map of rice to facilitate these studies. The map was constructed from 20 835 BIBAC and BAC clones, and consisted of 579 overlapping BIBAC/BAC contigs. To facilitate functional analysis of chromosome 8 genomic sequence and cloning of the genes and QTLs mapped to the chromosome, we anchored the chromosomal contigs to the existing rice genetic maps. The chromosomal map consists of 11 contigs, 59 genetic markers, and 36 sequence tagged sites, spanning a total of ca. 38 Mb in physical length. Comparative analysis between the genetic and physical maps of chromosome 8 showed that there are 3 "hot" and 2 "cold" spots of genetic recombination along the chromosomal arms in addition to the "cold spot" in the centromeric region, suggesting that the sequence component contents of a chromosome may affect its local genetic recombination frequencies. Because of its plant transformability, the BIBAC/BAC map could provide a platform for functional analysis of the rice genome sequence and effective use of the sequencing results for gene and QTL cloning and molecular breeding.  相似文献   

8.
An index marker map of chromosome 9 has been constructed using the Centre d'Etude du Polymorphisme Humain reference pedigrees. The map comprises 26 markers, with a maximum intermarker interval of 13.1 cM and only two intervals > 10 cM. Placement of all but one marker into the map was achieved with > 10,000:1 odds. The sex-equal length is 151 cM, with male length of 121 cM and female length of 185 cM. The map extends to within 2%-3% of physical length at the telomeres, and its coverage therefore is expected to be within 20-30 cM of full map length. The markers are all of the GT/CA repeat type and have average heterozygosity .77, with a range of .60-.89. The map shows both marked contraction of genetic distance relative to physical distance in the pericentromeric region and expansion in the telomeric regions. Genotypic data were carefully examined for errors by using the crossover routine of the program DATAMAN. Five new mutations were observed among 17,316 meiotic events examined. There were two double-crossover events occurring within an interval of 0-10 cM, and another eight were observed within an interval of 10-20 cM. Many of these could be due to additional mutational events in which one parental allele converted to the other by either gene conversion or random strand slippage. When there was no correction for these possible mutational events, the number of crossovers displayed by the maternal and paternal chromosomes was significantly different (P < .001) from that predicted by the Poisson distribution, which would be expected in the absence of interference. In addition, the observed crossover distribution for paternally derived chromosomes was similar to that predicted from cytogenetic chiasma frequency observations. In all, the data strongly support the occurrence of strong positive interference on human chromosome 9 and suggest that flanking markers at an interval of < or = 20 cM are generally sufficient for disease gene inheritance predictions in presymptomatic genetic counseling by linkage analysis.  相似文献   

9.
The major QTL for submergence tolerance was locate in the 5.9 cM interval between flanking RFLP markers. To narrow down this region, a physical map was constructed using YAC and BAC clones. A 400-kb YAC was identified in this region and later its end fragments were used to screen a rice BAC library. Through chromosome walking, 24 positive BAC clones formed two contigs around linked-RFLP markers, R1164 and RZ698. Using one YAC end, six BAC ends and three RFLP markers, a fine-scale map was constructed of the 6.8-cM interval of S10709-RZ698 on rice chromosome 9. The submergence tolerance and related trait were located in a small, well-defined region around BAC-end marker 180D1R and RFLP marker R1164. The physical-to-map distance ratio in this region is as small as 172.5 kb/cM, showing that this region is a hot spot for recombination in the rice genome.  相似文献   

10.
A genome-wide genetic map of NB-LRR disease resistance loci in potato   总被引:1,自引:0,他引:1  
Like all plants, potato has evolved a surveillance system consisting of a large array of genes encoding for immune receptors that confer resistance to pathogens and pests. The majority of these so-called resistance or R proteins belong to the super-family that harbour a nucleotide binding and a leucine-rich-repeat domain (NB-LRR). Here, sequence information of the conserved NB domain was used to investigate the genome-wide genetic distribution of the NB-LRR resistance gene loci in potato. We analysed the sequences of 288 unique BAC clones selected using filter hybridisation screening of a BAC library of the diploid potato clone RH89-039-16 (S. tuberosum ssp. tuberosum) and a physical map of this BAC library. This resulted in the identification of 738 partial and full-length NB-LRR sequences. Based on homology of these sequences with known resistance genes, 280 and 448 sequences were classified as TIR-NB-LRR (TNL) and CC-NB-LRR (CNL) sequences, respectively. Genetic mapping revealed the presence of 15 TNL and 32 CNL loci. Thirty-six are novel, while three TNL loci and eight CNL loci are syntenic with previously identified functional resistance genes. The genetic map was complemented with 68 universal CAPS markers and 82 disease resistance trait loci described in literature, providing an excellent template for genetic studies and applied research in potato.  相似文献   

11.
The mapping resolution of the physical map for chicken Chromosome 4 (GGA4) was improved by a combination of radiation hybrid (RH) mapping and bacterial artificial chromosome (BAC) mapping. The ChickRH6 hybrid panel was used to construct an RH map of GGA4. Eleven microsatellites known to be located on GGA4 were included as anchors to the genetic linkage map for this chromosome. Based on the known conserved synteny between GGA4 and human Chromosomes 4 and X, sequences were identified for the orthologous chicken genes from these human chromosomes by BLAST analysis. These sequences were subsequently used for the development of STS markers to be typed on the RH panel. Using a logarithm of the odds (LOD) threshold of 5.0, nine linkage groups could be constructed which were aligned with the genetic linkage map of this chromosome. The resulting RH map consisted of the 11 microsatellite markers and 50 genes. To further increase the number of genes on the map and to provide additional anchor points for the physical BAC map of this chromosome, BAC clones were identified for 22 microsatellites and 99 genes. The combined RH and BAC mapping approach resulted in the mapping of 61 genes on GGA4 increasing the resolution of the chicken–human comparative map for this chromosome. This enhanced comparative mapping resolution enabled the identification of multiple rearrangements between GGA4 and human Chromosomes 4q and Xp.  相似文献   

12.
Because of polyploidy and large genome size, deletion stocks of bread wheat are an ideal material for physically allocating ESTs and genes to small chromosomal regions for targeted mapping. To enhance the utility of deletion stocks for chromosome bin mapping, we characterized a set of 84 deletion lines covering the 21 chromosomes of wheat using 725 microsatellites. We localized these microsatellite loci to 94 breakpoints in a homozygous state (88 distal deletions, 6 interstitial), and 5 in a heterozygous state representing 159 deletion bins. Chromosomes from homoeologous groups 2 and 5 were the best covered (126 and 125 microsatellites, respectively) while the coverage for group 4 was lower (80 microsatellites). We assigned at least one microsatellite in up to 92% of the bins (mean 4.97 SSR/bin). Only a few discrepancies concerning marker order were observed. The cytogenetic maps revealed small genetic distances over large physical regions around the centromeres and large genetic to physical map ratios close to the telomeres. As SSRs are the markers of choice for many genetic and breeding studies, the mapped microsatellite loci will be useful not only for deletion stock verifications but also for allocating associated QTLs to deletion bins where numerous ESTs that could be potential candidate genes are currently assigned.  相似文献   

13.
We have constructed a radiation hybrid (RH) map of chicken chromosome (GGA) 15. This map can be used as a resource to efficiently map genes to this chromosome. The map has been developed using a 6000 rad chicken-hamster whole-genome radiation hybrid panel (ChickRH6). In total, six microsatellite loci, 18 sequence tagged sites (STSs) from BAC end sequences and 11 genes were typed on the panel. The initial framework map comprised eight markers, and an additional 23 markers were then added to generate the final map. The total map length was 334 centiRay6000 (cR6000). The estimated retention frequency for the data set was 18%. Using an estimated physical length of 21 Mb, the ratio between cR6000 and physical distance over GGA15 was estimated to be 0.063 Mb/cR6000. The present map increases the marker density and the marker resolution on GGA15 and enables fast mapping of new chicken genes homologous to genes from human chromosomes 12 and 22.  相似文献   

14.
Several recent genetic studies have suggested linkage of Type 2 diabetes (non-insulin-dependent diabetes mellitus) susceptibility to a region of chromosome 20q12-q13.1. To facilitate the identification and cloning of a diabetes susceptibility gene(s) in this region, we have constructed correlated radiation hybrid and YAC/BAC contig physical maps of the region. A high-resolution radiation hybrid map encompassing 9.5 Mb between the PLC and the CEBPB genes was constructed using 68 markers: 25 polymorphic markers, 15 known genes, 21 ESTs, and 7 random genomic sequences. The physical order of the polymorphic markers within this radiation hybrid map is consistent with published genetic maps. A YAC/BAC contig that gives continuous coverage between PLC and CEBPB was also constructed. This contig was constructed from 24 YACs, 34 BACs, and 1 P1 phage clone onto which 71 markers were mapped: 23 polymorphic markers, 12 genes, 24 ESTs, and 12 random genomic sequences. The radiation hybrid map and YAC/BAC physical map enable precise mapping of newly identified transcribed sequences and polymorphic markers that will aid in linkage and linkage disequilibrium studies and facilitate identification and cloning of candidate Type 2 diabetes susceptibility genes residing in 20q12-q13.1.  相似文献   

15.
Populus deltoides is an important industrial tree species widely planted in many areas of the world, and de novo genome sequencing of this plant has been carried out by several research groups. A dense genetic map associating genome sequences is highly desirable for reconstructing the chromosome pseudomolecules using the obtained sequence scaffold assemblies. For this purpose, an intraspecific full-sib F1 mapping pedigree was established by using the sequenced P. deltoides as the maternal parent. With this mapping pedigree, we constructed a high-density genetic map using 92 randomly selected progenies. Single nucleotide polymorphism (SNP) markers were discovered by using specific length amplified fragment sequencing (SLAF-seq). In total, 487,038 SLAFs were generated, of which 179,360 were polymorphic. A high-density genetic map was built using HighMap software, which included 11,680 Mendelian segregation markers distributing in 2851 marker bins. The established map consisted of 19 linkage groups (LGs) that equaled to the 19 haploid chromosomes in poplar genome, and spanned a total genetic length of 3494.66 cM, with an average distance of 1.23 cM per marker bin. The map presented here will be useful for anchoring the genome sequence assemblies along chromosomes, and for many other aspects of genetic studies on P. deltoides and the closely related species.  相似文献   

16.
The dominant allele Gro1 confers on potato resistance to the root cyst nematode Globodera rostochiensis. The Gro1 locus has been mapped to chromosome VII on the genetic map of potato, using RFLP markers. This makes possible the cloning of Gro1 based on its map position. As part of this strategy we have constructed a high-resolution genetic map of the chromosome segment surrounding Gro1, based on RFLP, RAPD and AFLP markers. RAPD and RFLP markers closely linked to Gro1 were selected by bulked segregant analysis and mapped relative to the Gro1 locus in a segregating population of 1105 plants. Three RFLP and one RAPD marker were found to be inseparable from the Gro1 locus. Two AFLP markers were identified that flanked Gro1 at genetic distances of 0.6 cM and 0.8 cM, respectively. A genetic distance of 1 cM in the Gro1 region corresponds to a physical distance of ca. 100 kb as estimated by long-range restriction analysis. Marker-assisted selection for nematode resistance was accomplished in the course of constructing the high-resolution map. Plants carrying the resistance allele Gro1 could be distinguished from susceptible plants by marker assays based on the polymerase chain reaction (PCR).  相似文献   

17.
Han Y  Gasic K  Marron B  Beever JE  Korban SS 《Genomics》2007,89(5):630-637
Genome-wide physical mapping is an essential step toward investigating the genetic basis of complex traits as well as pursuing genomics research of virtually all plant and animal species. We have constructed a physical map of the apple genome from a total of 74,281 BAC clones representing approximately 10.5x haploid genome equivalents. The physical map consists of 2702 contigs, and it is estimated to span approximately 927 Mb in physical length. The reliability of contig assembly was evaluated by several methods, including assembling contigs using variable stringencies, assembling contigs using fingerprints from individual libraries, checking consensus maps of contigs, and using DNA markers. Altogether, the results demonstrated that the contigs were properly assembled. The apple genome-wide BAC-based physical map represents the first draft genome sequence not only for any member of the large Rosaceae family, but also for all tree species. This map will play a critical role in advanced genomics research for apple and other tree species, including marker development in targeted chromosome regions, fine-mapping and isolation of genes/QTL, conducting comparative genomics analyses of plant chromosomes, and large-scale genomics sequencing.  相似文献   

18.
Shizhong Xu 《Genetics》2013,195(3):1103-1115
The correct models for quantitative trait locus mapping are the ones that simultaneously include all significant genetic effects. Such models are difficult to handle for high marker density. Improving statistical methods for high-dimensional data appears to have reached a plateau. Alternative approaches must be explored to break the bottleneck of genomic data analysis. The fact that all markers are located in a few chromosomes of the genome leads to linkage disequilibrium among markers. This suggests that dimension reduction can also be achieved through data manipulation. High-density markers are used to infer recombination breakpoints, which then facilitate construction of bins. The bins are treated as new synthetic markers. The number of bins is always a manageable number, on the order of a few thousand. Using the bin data of a recombinant inbred line population of rice, we demonstrated genetic mapping, using all bins in a simultaneous manner. To facilitate genomic selection, we developed a method to create user-defined (artificial) bins, in which breakpoints are allowed within bins. Using eight traits of rice, we showed that artificial bin data analysis often improves the predictability compared with natural bin data analysis. Of the eight traits, three showed high predictability, two had intermediate predictability, and two had low predictability. A binary trait with a known gene had predictability near perfect. Genetic mapping using bin data points to a new direction of genomic data analysis.  相似文献   

19.
 By using 25 primer combinations, 563 AFLP markers segregating in a recombinant inbred population (103 lines, F9) derived from L94/Vada were generated. The 38 AFLP markers in common to the existing AFLP/RFLP combined Proctor/Nudinka map, one STS marker, and four phenotypic markers with known map positions, were used to assign present AFLP linkage groups to barley chromosomes. The constructed high-density molecular map contains 561 AFLP markers, three morphological markers, one disease resistance gene and one STS marker, and covers a 1062-cM genetic distance, corresponding to an average of one marker per 1.9 cM. However, extremely uneven distributions of AFLP markers and strong clustering of markers around the centromere were identified in the present AFLP map. Around the centromeric region, 289 markers cover a genetic distance of 155 cM, corresponding to one marker per 0.5 cM; on the distal parts, 906 cM were covered by 277 markers, corresponding to one marker per 3.3 cM. Three gaps larger than 20 cM still exist on chromosomes 1, 3 and 5. A skeletal map with a uniform distribution of markers can be extracted from the high-density map, and can be applied to detect and map loci underlying quantitative traits. However, the application of this map is restricted to barley species since hardly any marker in common to a closely related Triticum species could be identified. Received: 16 June 1997 / Accepted: 9 October 1997  相似文献   

20.
A first generation clone-based physical map for the bovine genome was constructed combining, fluorescent double digestion fingerprinting and sequence tagged site (STS) marker screening. The BAC clones were selected from an Inra BAC library (105 984 clones) and a part of the CHORI-240 BAC library (26 500 clones). The contigs were anchored using the screening information for a total of 1303 markers (451 microsatellites, 471 genes, 127 EST, and 254 BAC ends). The final map, which consists of 6615 contigs assembled from 100 923 clones, will be a valuable tool for genomic research in ruminants, including targeted marker production, positional cloning or targeted sequencing of regions of specific interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号