首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Arabidopsis thaliana (Thale cress, Arabidopsis) is an ideal model organism for the molecular genetic analysis of many plant processes. The availability of a complete physical map would greatly facilitate the gene cloning steps in these studies. The small genome size of Arabidopsis makes the construction of such a map a feasible goal. One of the approaches to construct an overlapping library of the Arabidopsis genome takes advantage of the many mapped markers and the availability of Arabidopsis yeast artificial chromosome (YAC) libraries. Mapped molecular markers are used to identify corresponding YAC clones and thereby place them on the genetic map. Subsequently, these YAC clones provide the framework for directed walking experiments aimed at closing the gaps between the YAC contigs. Adopting this strategy, YAC clones comprising about 10% of the genome have been assigned to the top halves of Arabidopsis chromosomes 4 and 5. Extensive walking experiments in a 10 cM interval of chromosome 4 have resulted in two contiguous regions in the megabase size range.  相似文献   

2.
A high-density genetic map with a number of anchor markers has been created to be used as a tool to dissect genetic variation in rose. Linkage maps for the diploid 94/1 population consisting of 88 individuals were constructed using a total of 520 molecular markers including AFLP, SSR, PK, RGA, RFLP, SCAR and morphological markers. Seven linkage groups, putatively corresponding to the seven haploid rose chromosomes, were identified for each parent, spanning 487 cM and 490 cM, respectively. The average length of 70 cM may cover more than 90% of the rose genome. An integrated map was constructed by incorporating the homologous parental linkage groups, resulting in seven linkage groups with a total length of 545 cM. The present linkage map is currently the most advanced map in rose with regard to marker density, genome coverage and with robust markers, giving good perspectives for QTL mapping and marker-assisted breeding in rose. The SSR markers, together with RFLP markers, provide good anchor points for future map alignment studies in rose and related species. Codominantly scored AFLP markers were helpful in the integration of the parental maps.  相似文献   

3.
We have constructed an AFLP-based linkage map of Japanese red pine (Pinus densiflora Siebold et Zucc.) using haploid DNA samples of 96 megagametophytes from a single maternal tree, selection clone Kyungbuk 4. Twenty-eight primer pairs generated a total of 5,780 AFLP fragments. Five hundreds and thirteen fragments were verified as genetic markers with two alleles by their Mendelian segregation. At the linkage criteria LOD 4.0 and maximum recombination fraction 0.25(theta), a total of 152 markers constituted 25 framework maps for 19 major linkage groups. The maps spanned a total length of 2,341 cM with an average framework marker spacing of 18.4 cM. The estimated genome size was 2,662 cM. With an assumption of equal marker density, 82.2% of the estimated genome would be within 10 cM of one of the 230 linked markers, and 68.1% would be within 10 cM of one of the 152 framework markers. We evaluated map completeness in terms of LOD value, marker density, genome length, and map coverage. The resulting map will provide crucial information for future genomic studies of the Japanese red pine, in particular for QTL mapping of economically important breeding target traits.  相似文献   

4.
A physical map of rice chromosome 5 was constructed with yeastartificial chromosome (YAC) clones along a high-resolution molecularlinkage map carrying 118 DNA markers distributed over 123.7cM of genomic DNA. YAC clones have been identified by colonyand Southern hybridization for 105 restriction fragment lengthpolymorphism (RFLP) markers and by polymerase chain reaction(PCR) screening for 8 sequence-tagged site (STS) markers and5 randomly amplified polymorphic DNA (RAPD) markers. Of 458YACs, 235 individual YACs with an average insert length of 350kb were selected and ordered on chromosome 5 from the YAC library.Forty-eight contigs covering nearly 21 Mb were formed on thechromosome 5; the longest one was 6 cM and covered 1.5 Mb. Thelength covered with YAC clones corresponded to 62% of the totallength of chromosome 5. There were many multicopy sequencesof expressed genes on chromosome 5. The distribution of manycopies of these expressed gene sequences was determined by YACSouthern hybridization and is discussed. A physical map withthese characteristics provides a powerful tool for elucidationof genome structure and extraction of useful genetic informationin rice.  相似文献   

5.
用AFLP标记快速构建遗传连锁图谱并定位一个新基因tms5   总被引:4,自引:0,他引:4  
报导了一个分子标记连锁图的快速构建方法。通过对水稻(Oryza sativa L.)“安农S-1”和“南京11”的F2分离群体的AFLP分析找到了142个AFLP标记,用这142个AFLP标记以及已定位的25个SSR标记和5个RFIP标记构建了水稻12个染色体的分子标记连锁图,该图覆盖水稻基因组的1537.4cM,相邻标记间的平均间距为9.0cM,这是在国内建立的第一张AFLP标记连锁图。在建立连锁图谱的同时把一个新基因tms5(水稻温敏核不育基因)定位在第2染色体上。  相似文献   

6.
Restriction landmark genome scanning (RLGS) was developed as a method of genome analysis that is based on the concept that restriction enzyme sites can be used as landmarks. In this article, we demonstrate how this method can be used for the systematic, successful positional cloning of mouse mutantreelergene. The major advantage of the RLGS method is that it allows the scanning of several thousand spots/loci throughout the genome with one RLGS profile. High-speed positional cloning based on the RLGS method includes (1) high-speed construction of a linkage map (RLGS spot mapping), (2) high-speed detection of RLGS spot markers tightly linked to the mutant phenotype (RLGS spot bombing method), and (3) construction of YAC contigs covering the region where tightly linked spot markers are located (RLGS-based YAC contig mapper). We introduced a series of these procedures by using them to positionally clone thereelergene. High-speed construction of the whole genetic map and spots/loci (less than 1 cM) within the closest flanking markers is demonstrated. The RLGS-based YAC contig mapper also efficiently yielded the YAC physical contig map of the target region. Finally, we cloned thereelergene, which is the causal gene for the perturbation of the three-dimensional brain architecture due to the abnormal migration of neuroblasts inreelermouse. Since the RLGS method itself can be used for any organism, we conclude that the total RLGS-based positional cloning system can be used to identify any mutant gene of any organism.  相似文献   

7.
The major QTL for submergence tolerance was locate in the 5.9 cM interval between flanking RFLP markers. To narrow down this region, a physical map was constructed using YAC and BAC clones. A 400-kb YAC was identified in this region and later its end fragments were used to screen a rice BAC library. Through chromosome walking, 24 positive BAC clones formed two contigs around linked-RFLP markers, R1164 and RZ698. Using one YAC end, six BAC ends and three RFLP markers, a fine-scale map was constructed of the 6.8-cM interval of S10709-RZ698 on rice chromosome 9. The submergence tolerance and related trait were located in a small, well-defined region around BAC-end marker 180D1R and RFLP marker R1164. The physical-to-map distance ratio in this region is as small as 172.5 kb/cM, showing that this region is a hot spot for recombination in the rice genome.  相似文献   

8.
An integrated genetic linkage map of pepper (Capsicum spp.)   总被引:3,自引:1,他引:2  
An integrated genetic map of pepper including 6 distinct progenies and consisting of 2262 markers covering 1832 cM was constructed using pooled data from six individual maps by the Keygene proprietary software package INTMAP. The map included: 1528 AFLP, 440 RFLP, 288 RAPD and several known gene sequences, isozymes and morphological markers. In total, 320 anchor markers (common markers in at least two individual maps) were used for map integration. Most anchor markers (265) were common to two maps, while 27, 26 and 5 markers were common to three, four and five maps, respectively. Map integration improved the average marker density in the genome to 1 marker per 0.8 cM compared to 1 marker per 2.1 cM in the most dense individual map. In addition, the number of gaps of at least 10 cM between adjacent markers was reduced in the integrated map. Although marker density and genome coverage were improved in the integrated map, several small linkage groups remained, indicating that further marker saturation will be needed in order to obtain a full coverage of the pepper genome. The integrated map can be used as a reference for future mapping studies in Capsicum and to improve the utilization of molecular markers for pepper breeding.These authors contributed equally to the work described in this paper(e-mail:  相似文献   

9.
Clustering has been reported for conifer genetic maps based on hypomethylated or low-copy molecular markers, resulting in uneven marker distribution. To test this, a framework genetic map was constructed from three types of microsatellites: low-copy, undermethylated, and genomic. These Pinus taeda L. microsatellites were mapped using a three-generation pedigree with 118 progeny. The microsatellites were highly informative; of the 32 markers in intercross configuration, 29 were segregating for three or four alleles in the progeny. The sex-averaged map placed 51 of the 95 markers in 15 linkage groups at LOD > 4.0. No clustering or uneven distribution across the genome was observed. The three types of P. taeda microsatellites were randomly dispersed within each linkage group. The 51 microsatellites covered a map distance of 795 cM, an average distance of 21.8 cM between markers, roughly half of the estimated total map length. The minimum and maximum distances between any two bins was 4.4 and 45.3 cM, respectively. These microsatellites provided anchor points for framework mapping for polymorphism in P. taeda and other closely related hard pines.  相似文献   

10.
报导了一个分子标记连锁图的快速构建方法.通过对水稻(Oryza sativa L.)"安农S-1"和"南京11"的F2分离群体的AFLP分析找到了142个AFLP标记,用这142个AFLP标记以及已定位的25个SSR标记和5个RFLP标记构建了水稻12个染色体的分子标记连锁图,该图覆盖水稻基因组的1 537.4 cM,相邻标记间的平均间距为9.0 cM,这是在国内建立的第一张AFLP标记连锁图.在建立连锁图谱的同时把一个新基因tms5 (水稻温敏核不育基因)定位在第2染色体上.  相似文献   

11.
A 356-marker linkage map of Glycine max (L.) Merr. (2n = 20) was established by anchoring 106 RAPD markers to an existing RFLP map built with a large recombinant inbred line population (330 RILs). This map comprises 24 major and 11 minor linkage groups for this genome which is estimated to be approximately 3,275 cM. The RAPD markers show similar distribution throughout the genome and identified similar levels of polymorphism as the RFLP markers used in the framework. By using a subset population to anchor the RAPD markers, it was possible to enhance the throughput of selecting and adding reliable marker loci to the existing map. The procedures to generate a dependable genetic linkage map are also described in this report.  相似文献   

12.
 A genetic linkage map of Lens sp. was constructed with 177 markers (89 RAPD, 79 AFLP, six RFLP and three morphological markers) using 86 recombinant inbred lines (F6:8) obtained from a partially interspecific cross. The map covered 1073 cM of the lentil genome with an average distance of 6.0 cM between adjacent markers. Previously mapped RFLP markers were used as anchor probes. The morphological markers, pod indehiscence, seed-coat pattern and flower-color loci were mapped. Out of the total linked loci, 8.4% showed segregation distortion. More than one-fourth of the distorted loci were clustered in one linkage group. AFLP markers showed more segregation distortion than the RAPD markers. The AFLP and RAPD markers were intermingled and clustering of AFLPs was seldom observed. This is the most extensive genetic linkage map of lentil to-date. The marker density of this map could be used for the identification of markers linked to quantitative trait loci in this population. Received: 6 November 1997 / Accepted: 10 February 1998  相似文献   

13.
Genetic maps are the primary resources for genetic study. Genetic map construction was quite difficult in the past decade for lack of polymorphic markers. This situation has been changed since the development of microsatellite markers or simple sequence length polymorphisms (SSLPs) because they are abundant and more polymorphic. Here we report the construction of an integrated genetic map of the rat derived from two F2 intercrosses. A map of 376 markers from 160 (OLETF × F344)F2 progenies and a map of 333 markers from 71 (F344 × LEC)F2 animals are integrated by use of common set of 120 anchor markers chosen to be spaced at an average of 15 cM in the genome. The resulting integrated map with 194 newly developed rat markers from WIBR/MIT CGR, 269 Mit/Mgh markers, 94 Wox markers, and 5 markers of various origins covers the majority of 21 chromosomes of the rat with a total genetic distance of 1797 cM and an average marker spacing of 3.2 cM. The current map provides detailed information for markers from different sources and, therefore, should be helpful to the research community. Received: 6 May 1998 / Accepted: 24 August 1998  相似文献   

14.
Genetic markers (microsatellites and SNPs) were used to create and compare maps of the turkey and chicken genomes. A physical map of the chicken genome was built by comparing sequences of turkey markers with the chicken whole-genome sequence by BLAST analysis. A genetic linkage map of the turkey genome (Meleagris gallopavo) was developed by segregation analysis of genetic markers within the University of Minnesota/Nicholas Turkey Breeding Farms (UMN/NTBF) resource population. This linkage map of the turkey genome includes 314 loci arranged into 29 linkage groups. An additional 40 markers are tentatively placed within linkage groups based on two-point LOD scores and 16 markers remain unlinked. Total map distance contained within linkage groups is 2,011 cM with the longest linkage group (47 loci) measuring 413.3 cM. Average marker interval over the 29 linkage groups was 6.4 cM. All but one turkey linkage group could be aligned with the physical map of the chicken genome. The present genetic map of the turkey provides a comparative framework for future genomic studies.  相似文献   

15.
Xie W  Zhang X  Cai H  Huang L  Peng Y  Ma X 《Génome》2011,54(3):212-221
Orchardgrass (Dactylis glomerata L.) is one of the most important cool-season forage grasses commonly grown throughout the temperate regions of the world. The objective of this work was to construct a diploid (2n = 2x = 14) orchardgrass genetic linkage map useful as a framework for basic genetic studies and plant breeding. A combination of simple sequence repeat (SSR) and sequence-related amplified polymorphism (SRAP) molecular markers were used for map construction. The linkage relationships among 164 SSRs and 108 SRAPs, assayed in a pseudo-testcross F1 segregating population generated from a cross between two diploid parents, were used to construct male (01996) and female (YA02-103) parental genetic maps. The paternal genetic map contains 90 markers (57 SSRs and 33 SRAPs) over 9 linkage groups (LGs), and the maternal genetic map is composed of 87 markers (54 SSRs and 33 SRAPs) assembled over 10 LGs. The total map distance of the male map is 866.7 centimorgans (cM), representing 81% genome coverage, whereas the female map spans 772.0 cM, representing 75% coverage. The mean map distance between markers is 9.6 cM in the male map and 8.9 cM in the female map. About 14% of the markers remained unassigned. The level of segregation distortion observed in this cross was 15%. Homology between the two maps was established between five LGs of the male map and five LGs of the female map using 10 bridging markers. The information presented in this study establishes a foundation for extending genetic mapping in this species, serves as a framework for mapping quantitative trait loci (QTLs), and provides basic information for future molecular breeding studies.  相似文献   

16.
For whole-genome analysis in a basal chordate (protochordate), we used F1 pseudo-testcross mapping strategy and amplified fragment length polymorphism (AFLP) markers to construct primary linkage maps of the ascidian tunicate Ciona intestinalis. Two genetic maps consisted of 14 linkage groups, in agreement with the haploid chromosome number, and contained 276 and 125 AFLP loci derived from crosses between British and Neapolitan individuals. The two maps covered 4218.9 and 2086.9 cM, respectively, with an average marker interval of 16.1 and 18.9 cM. We observed a high recombinant ratio, ranging from 25 to 49 kb/cM, which can explain the high degree of polymorphism in this species. Some AFLP markers were converted to sequence tagged sites (STSs) by sequence determination, in order to create anchor markers for the fragmental physical map. Our recombination tools provide basic knowledge of genetic status and whole genome organization, and genetic markers to assist positional cloning in C. intestinalis.  相似文献   

17.
We report the establishment of a hybridization-based marker system for the rat genome based on the PCR amplification of interspersed repetitive sequences (IRS). Overall, 351 IRS markers were mapped within the rat genome. The IRS marker panel consists of 210 nonpolymorphic and 141 polymorphic markers that were screened for presence/absence polymorphism patterns in 38 different rat strains and substrains that are commonly used in biomedical research. The IRS marker panel was demonstrated to be useful for rapid genome screening in experimental rat crosses and high-throughput characterization of large-insert genomic library clones. Information on corresponding YAC clones is made available for this IRS marker set distributed over the whole rat genome. The two existing rat radiation hybrid maps were integrated by placing the IRS markers in both maps. The genetic and physical mapping data presented provide substantial information for ongoing positional cloning projects in the rat.  相似文献   

18.
A new contiguous genetic linkage map of the HXB/BXH set of rat recombinant inbred (RI) strains was constructed to enhance QTL mapping power and precision, and thereby make the RI strain set a better genomics resource. The HXB/BXH rat RI strains were developed from a cross between the hypertensive SHR/OlaIpcv and normotensive BN-Lx/Cub rat strains and have been shown useful for identifying quantitative trait loci (QTL) for a variety of cardiovascular, metabolic, and behavioral phenotypes. In the current analysis, the DNAs from 31 existing strains, 1 substrain, and 4 extinct strains were genotyped for a selection of polymorphic microsatellite marker loci, predominantly polymorphic framework markers from high-density integrated rat genome maps. The resulting linkage map consists of 245 microsatellite markers spanning a total length of 1789 cM with an average inter-marker distance of ~8.0 cM. This map covers the rat genome contiguously and completely with the exception of two locations on Chromosomes (Chrs) 11 and 16. The new genotypic information obtained also permitted further genetic characterization of the RI strain set including strain independence, genetic similarity among the individual strains, and non-syntenic associations between loci.  相似文献   

19.
A new YAC (yeast artificial chromosome) physical map of the 12 rice chromosomes was constructed utilizing the latest molecular linkage map. The 1439 DNA markers on the rice genetic map selected a total of 1892 YACs from a YAC library. A total of 675 distinct YACs were assigned to specific chromosomal locations. In all chromosomes, 297 YAC contigs and 142 YAC islands were formed. The total physical length of these contigs and islands was estimated to 270 Mb which corresponds to approximately 63% of the entire rice genome (430 Mb). Because the physical length of each YAC contig has been measured, we could then estimate the physical distance between genetic markers more precisely than previously. In the course of constructing the new physical map, the DNA markers mapped at 0.0-cM intervals were ordered accurately and the presence of potentially duplicated regions among the chromosomes was detected. The physical map combined with the genetic map will form the basis for elucidation of the rice genome structure, map-based cloning of agronomically important genes, and genome sequencing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号