首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although taurine and glutamate are the most abundant amino acids conducting neural signals in the central nervous system, the communication between these two neurotransmitters is largely unknown. This study explores the interaction of taurine and glutamate in the retinal third-order neurons. Using specific antibodies, both taurine and taurine transporters were localized in photoreceptors and Off-bipolar cells, glutamatergic neurons in retinas. It is possible that Off-bipolar cells release juxtaposed glutamate and taurine to activate the third-order neurons in retina. The interaction of taurine and glutamate was studied in acutely dissociated third-order neurons in whole-cell patch-clamp recording and Ca2+ imaging. We find that taurine effectively reduces glutamate-induced Ca2+ influx via ionotropic glutamate receptors and voltage-dependent Ca2+ channels in the neurons, and the effect of taurine was selectively inhibited by strychnine and picrotoxin, but not GABA receptor antagonists, although GABA receptors are present in the neurons. A CaMKII inhibitor partially reversed the effect of taurine, suggesting that a Ca2+/calmodulin-dependent pathway is involved in taurine regulation. On the other hand, a rapid influx of Ca2+ through ionotropic glutamate receptors could inhibit the amplitude and kinetics of taurine-elicited currents in the third-order neurons, which could be controlled with intracellular application of BAPTA a fast Ca2+ chelator. This study indicates that taurine is a potential neuromodulator in glutamate transmission. The reciprocal inhibition between taurine and glutamate in the postsynaptic neurons contributes to computation of visual signals in the retinal neurons.  相似文献   

2.
There is considerable evidence indicating that intracellular Ca2+ participates as a second messenger in TLR4-dependent signaling. However, how intracellular free Ca2+ concentrations ([Ca2+]i) is increased in response to LPS and how they affect cytokine production are poorly understood. Here we examined the role of transient receptor potential (TRP), a major Ca2+ permeation pathway in non-excitable cells, in the LPS-induced cytokine production in macrophages. Pharmacologic experiments suggested that TRPV family members, but neither TRPC nor TRPM family members, are involved in the LPS-induced TNFα and IL-6 production in RAW264 macrophages. RT-PCR and immunoblot analyses showed that TRPV2 is the sole member of TRPV family expressed in macrophages. ShRNA against TRPV2 inhibited the LPS-induced TNFα and IL-6 production as well as IκBα degradation. Experiments using BAPTA/AM and EGTA, and Ca2+ imaging suggested that the LPS-induced increase in [Ca2+]i involves both the TRPV2-mediated intracellular and extracellular Ca2+ mobilizations. BAPTA/AM abolished LPS-induced TNFα and IL-6 production, while EGTA only partially suppressed LPS-induced IL-6 production, but not TNFα production. These data indicate that TRPV2 is involved in the LPS-induced Ca2+ mobilization from intracellular Ca2+ store and extracellular Ca2+. In addition to Ca2+ mobilization through the IP3-receptor, TRPV2-mediated intracellular Ca2+ mobilization is involved in NFκB-dependent TNFα and IL-6 expression, while extracellular Ca2+ entry is involved in NFκB-independent IL-6 production.  相似文献   

3.
已有研究表明在脑缺血期间及再灌流后早期,海马CA1锥体神经元细胞内钙浓度明显升高,这一钙超载被认为是缺血性脑损伤的重要机制之一.电压依赖性钙通道是介导正常CA1神经元钙内流的主要途径.实验观察了脑缺血再灌流后早期海马CA1锥体神经元电压依赖性L型钙通道的变化.以改良的四血管闭塞法制作大鼠15 min前脑缺血模型,在急性分离的海马CA1神经元上,采用膜片钳细胞贴附式记录L型电压依赖性钙通道电流.脑缺血后CA1神经元L型钙通道的总体平均电流明显增大,这是由于通道的开放概率增加所致.进一步分析单通道动力学显示,脑缺血后通道的开放时间变长,通道的开放频率增大.研究结果提示L型钙通道功能活动增强可能参与了缺血后海马CA1锥体神经元的细胞内钙浓度升高.  相似文献   

4.
Here we show that positive modulators (CyPPA and NS309) of Ca2+-activated K+ channels of small (SK) and intermediate (IK) conductances in cerebellar neurons decrease glutamate-evoked Ca2+ entry into neurons independently on the presence of Mg2+ in extracellular media. An analysis of neuronal viability after long-term (240 min) glutamate treatments demonstrated neuroprotective action of CyPPA and NS309. Extracellular Mg2+ did not protect neurons from apoptosis during prolonged treatment with glutamate. Activation of SK and IK channels results in local membrane hyperpolarization, which enhances Mg2+ block of NMDA receptors and reduces activation of voltage-dependent Ca2+ channels, which can explain neuroprotection caused by CyPPA or NS309. The obtained results reveal an important role Ca2+-activated K+ channels of small and intermediate conductance in the regulation of Ca2+ entry into cerebellar neurons via NMDA receptors and voltage-gated Ca2+ channels.  相似文献   

5.
6.
Alterations in Kv7-mediated currents in excitable cells result in several diseased conditions. A case in DFNA2, an autosomal dominant version of progressive hearing loss, involves degeneration of hair cells and spiral ganglion neurons (SGNs) from basal to apical cochlea, manifesting as high-to-low frequency hearing loss, and has been ascribed to mutations in Kv7.4 channels. Analyses of the cellular mechanisms of Kv7.4 mutations and progressive degeneration of SGNs have been hampered by the paucity of functional data on the role Kv7 channels play in young and adult neurons. To understand the cellular mechanisms of the disease in SGNs, we examined temporal (young, 0.5 months old, and senescent, 17 months old) and spatial (apical and basal) roles of Kv7-mediated currents. We report that differential contribution of Kv7 currents in mice SGNs results in distinct and profound variations of the membrane properties of basal versus apical neurons. The current produces a major impact on the resting membrane potential of basal neurons. Inhibition of the current promotes membrane depolarization, resulting in activation of Ca2+ currents and a sustained rise in intracellular Ca2+. Using TUNEL assay, we demonstrate that a sustained increase in intracellular Ca2+ mediated by inhibition of Kv7 current results in significant SGN apoptotic death. Thus, this study provides evidence of the cellular etiology and mechanisms of SGN degeneration in DFNA2.  相似文献   

7.
Calcium influx via store-operated calcium entry (SOCE) has an important role for regulation of vast majority of cellular physiological events. MAPK signalling is also another pivotal modulator of many cellular functions. However, the relationship between SOCE and MAPK is not well understood. In this study, we elucidated the involvement of SOCE in Gαq/11 protein-mediated activation of p38 MAPK in an intestinal epithelial cell line HT-29/B6. In this cell line, we previously showed that the stimulation of M3 muscarinic acetylcholine receptor (M3-mAChR) but not histamine H1 receptor (H1R) led to phosphorylation of p38 MAPK which suppressed tumor necrosis factor-α (TNF-α)-induced NF-κB signalling through ADAM17 protease-mediated shedding of TNF receptor-1 (TNFR1). First, we found that stimulation of M3-mAChR and protease-activated receptor-2 (PAR-2) but not H1R induced persistent upregulation of cytosolic Ca2+ concentration through SOCE. Activation of M3-mAChR or PAR-2 also suppressed TNF-α-induced NF-κB phosphorylation, which was dependent on the p38 MAPK activity. Time course experiments revealed that M3-mAChR stimulation evoked intracellular Ca2+-dependent early phase p38 MAPK phosphorylation and extracellular Ca2+-dependent later phase p38 MAPK phosphorylation. This later phase p38 MAPK phosphorylation, evoked by M3-mAChRs or PAR-2, was abolished by inhibition of SOCE. Thapsigargin or ionomycin also phosphorylate p38 MAPK by Ca2+ influx through SOCE, leading to suppression of TNF-α-induced NF-κB phosphorylation. Finally, we showed that p38 MAPK was essential for thapsigargin-induced cleavage of TNFR1 and suppression of TNF-α-induced NF-κB phosphorylation. In conclusion, SOCE is important for p38 MAPK phosphorylation and is involved in TNF-α signalling suppression.  相似文献   

8.
Cell adhesion molecules (CAMs) play indispensable roles in the developing and mature brain by regulating neuronal migration and differentiation, neurite outgrowth, axonal fasciculation, synapse formation and synaptic plasticity. CAM-mediated changes in neuronal behavior depend on a number of intracellular signaling cascades including changes in various second messengers, among which CAM-dependent changes in intracellular Ca2+ levels play a prominent role. Ca2+ is an essential secondary intracellular signaling molecule that regulates fundamental cellular functions in various cell types, including neurons. We present a systematic review of the studies reporting changes in intracellular Ca2+ levels in response to activation of the immunoglobulin superfamily CAMs, cadherins and integrins in neurons. We also analyze current experimental evidence on the Ca2+ sources and channels involved in intracellular Ca2+ increases mediated by CAMs of these families, and systematically review the role of the voltage-dependent Ca2+ channels (VDCCs) in neurite outgrowth induced by activation of these CAMs. Molecular mechanisms linking CAMs to VDCCs and intracellular Ca2+ stores in neurons are discussed.  相似文献   

9.
10.
11.
As we had found previously that thapsigargin, an endomembrane Ca2+-ATPase inhibitor, induces production of intracellular platelet-activating factor (PAF) [Br. J. Pharmacol. 116 (1995) 2141], we decided to investigate the possible roles of intracellular PAF in nuclear factor (NF)-κB activation of thapsigargin-stimulated rat peritoneal macrophages. When rat peritoneal macrophages were stimulated with thapsigargin, the level of inhibitory protein of NF-κB-α (IκB-α) was decreased and the nuclear translocation of NF-κB was increased. The thapsigargin-induced activation of NF-κB was inhibited by the PAF synthesis inhibitor SK&F 98625 and the PAF antagonist E6123. Structurally unrelated PAF antagonists such as E5880 and L-652,731 also inhibited the thapsigargin-induced activation of NF-κB. Lipopolysaccharide (LPS)-induced activation of NF-κB was also suppressed by these drugs. In a culture of rat peritoneal macrophages, exogenously added PAF did not induce degradation of IκB-α. These findings suggest that the intracellular PAF produced by the stimulation with thapsigargin or LPS is involved in activation of the NF-κB pathway.  相似文献   

12.
13.
14.
15.
Pheromones are substances released from animals that, when detected by the vomeronasal organ of other individuals of the same species, affect their physiology and behavior. Pheromone binding to receptors on microvilli on the dendritic knobs of vomeronasal sensory neurons activates a second messenger cascade to produce an increase in intracellular Ca2+ concentration. Here, we used whole-cell and inside-out patch-clamp analysis to provide a functional characterization of currents activated by Ca2+ in isolated mouse vomeronasal sensory neurons in the absence of intracellular K+. In whole-cell recordings, the average current in 1.5 µM Ca2+ and symmetrical Cl was −382 pA at −100 mV. Ion substitution experiments and partial blockade by commonly used Cl channel blockers indicated that Ca2+ activates mainly anionic currents in these neurons. Recordings from inside-out patches from dendritic knobs of mouse vomeronasal sensory neurons confirmed the presence of Ca2+-activated Cl channels in the knobs and/or microvilli. We compared the electrophysiological properties of the native currents with those mediated by heterologously expressed TMEM16A/anoctamin1 or TMEM16B/anoctamin2 Ca2+-activated Cl channels, which are coexpressed in microvilli of mouse vomeronasal sensory neurons, and found a closer resemblance to those of TMEM16A. We used the Cre–loxP system to selectively knock out TMEM16A in cells expressing the olfactory marker protein, which is found in mature vomeronasal sensory neurons. Immunohistochemistry confirmed the specific ablation of TMEM16A in vomeronasal neurons. Ca2+-activated currents were abolished in vomeronasal sensory neurons of TMEM16A conditional knockout mice, demonstrating that TMEM16A is an essential component of Ca2+-activated Cl currents in mouse vomeronasal sensory neurons.  相似文献   

16.
Kostyuk  E.  Pinchenko  V.  Kostyuk  P. 《Neurophysiology》2002,34(2-3):158-160
Earlier, considerable prolongation of the depolarization-induced Ca2+ transients was demonstrated in primary sensory neurons of rats with streptozotocin (STZ)-induced diabetes mellitus. To analyze the nature of this effect, we examine possible changes in the characteristics of voltage-operated calcium channels. Neither the amplitude of Ca2+ currents provided by both high- and low-voltage activated calcium channels nor the respective current densities significantly changed within the early stages of diabetes mellitus. In rats treated with nimodipine, also no significant changes in the calcium channel activity were observed. Only in the case of a decrease in the external calcium concentration was some drop in the Ca2+ current amplitude observed. We conclude that within the early stages of diabetes mellitus there are no significant modifications in the structure of the membrane of primary sensory neurons manifested in the expression of Ca2+ channels, which might be responsible for the observed rapidly occurring changes in calcium signalling, cytosolic Ca2+ accumulation, and synaptic plasticity.  相似文献   

17.
18.
Acidosis is a common feature of brain in acute neurological injury, particularly in ischemia where low pH has been assumed to play an important role in the pathological process. However, the cellular and molecular mechanisms underlying acidosis-induced injury remain unclear. Recent studies have demonstrated that activation of Ca2+-permeable acid-sensing ion channels (ASIC1a) is largely responsible for acidosis-mediated, glutamate receptor-independent, neuronal injury. In cultured mouse cortical neurons, lowering extracellular pH to the level commonly seen in ischemic brain activates amiloride-sensitive ASIC currents. In the majority of these neurons, ASICs are permeable to Ca2+, and an activation of these channels induces increases in the concentration of intracellular Ca2+ ([Ca2+]i). Activation of ASICs with resultant [Ca2+]i loading induces time-dependent neuronal injury occurring in the presence of the blockers for voltage-gated Ca2+ channels and the glutamate receptors. This acid-induced injury is, however, inhibited by the blockers of ASICs, and by reducing [Ca2+]o. In focal ischemia, intracerebroventricular administration of ASIC1a blockers, or knockout of the ASIC1a gene protects brain from injury and does so more potently than glutamate antagonism. Furthermore, pharmacological blockade of ASICs has up to a 5 h therapeutic time window, far beyond that of glutamate antagonists. Thus, targeting the Ca2+-permeable acid-sensing ion channels may prove to be a novel neuroprotective strategy for stroke patients.  相似文献   

19.
The purpose of this paper was to examine the function of N-methyl-D-aspartate (NMDA) glutamate receptor in cortical neurons on amino acid neurotransmitters release as well as the fraction of neurons implicated in the response of this receptor. Local stimulation of these cells at different concentrations of NMDA, agonist of this ionotropic glutamate receptor, produced a dose dependent release of aspartate, glutamate, glycine and GABA. These effects were blocked by DAP5, an antagonist of the NMDA receptor. The amino acid Ca2+ dependent release mediated by the NMDA receptor, is induced by the opening of voltage-dependent Ca2+ channels that this receptor promotes. Ca++ movements were explored in single cells loaded with fura-2. When single cells were stimulated with 100 μM NMDA, the calcium recording performed showed that 82% of the cells responded to this agonist increasing the intracellular calcium concentration, although the amplitude of these increments was variable. The results suggest that NMDA-elicited neurotransmitter release from cortical neurons involves Ca2+-dependent and Ca2+-independent components, as well as neuron depolarisation, and different VDCC subtypes of N, P/Q or L depending of the amino acid neurotransmitter release elicited by this receptor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号