首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this study, cellular prolactin receptors and cytosolic progesterone receptors were examined and compared in pregnancy-dependent mammary tumors (PDMT) and in normal mammary glands of pregnant GR/A mice. PDMT and normal mammary glands were examined in the same animal, thus assuring an identical hormonal environment. The PDMT cells had a larger capacity to bind prolactin or the synthetic progesterone, R5020, than did the normal mammary gland. While the dissociation constant (Kd) value for prolactin binding to normal mammary epithelial cells was similar to that of PDMT cells, PDMT cells had 2.2 times more prolactin receptors than the normal cells. Progesterone binding activity was detected only in PDMT, but not in the normal mammary cells. The receptor concentration and the Kd value for progesterone binding of PDMT were 606 fmol/mg protein and 3.53 nM, respectively. It appears, therefore, that normal regulation of these receptors may be altered within the PDMT cells. The increased growth responsiveness of PDMT to the hormones of pregnancy, especially prolactin, progesterone, and placental lactogen, may be a function of a sharp increase in the level of cellular receptors for these mammotropic hormones.  相似文献   

2.
The ovarian steroids estrogen and progesterone are important in directing the normal growth and development of the mouse mammary gland. Previously, we have demonstrated that the majority of proliferating mammary epithelial cells do not express estrogen receptor-alpha (ERalpha). In this study we examined the relationship between progesterone receptor (PR) expression and proliferation in mammary epithelial cells using simultaneous immunohistochemistry for progesterone receptor (PR) and tritiated thymidine [(3)H]-Tdr) autoradiography. Results showed that the majority (>80%) of mammary epithelial cells labeled with [(3)H]-Tdr were PR-positive in the terminal end buds (TEBs) of pubertal mice and the ducts of pubertal and adult mice. Whereas the majority of mammary epithelial cells were also PR-positive, the basal cell population, which comprises the minority of mammary epithelial cells in the mammary ducts, was predominantly PR-negative. Nevertheless, the PR-positive phenotype remained the major proliferating cell type in the basal population. These findings suggest that the progesterone signaling pathway is involved in the proliferation of basal cell populations, potentially directing formation of tertiary side branching during pubertal development and alveolar bud formation in adult glands. A proportion of the basal cells exhibited weak expression of ERbeta, suggesting that the role of ERbeta in mediating normal estrogen-induced responses should be further studied. (J Histochem Cytochem: 47:1323-1330, 1999)  相似文献   

3.
The Ron receptor tyrosine kinase is expressed in normal breast tissue and is overexpressed in approximately 50% of human breast cancers. Despite the recent studies on Ron in breast cancer, nothing is known about the importance of this protein during breast development. To investigate the functional significance of Ron in the normal mammary gland, we compared mammary gland development in wild-type mice to mice containing a targeted ablation of the tyrosine kinase (TK) signaling domain of Ron (TK−/−). Mammary glands from RonTK−/− mice exhibited accelerated pubertal development including significantly increased ductal extension and branching morphogenesis. While circulating levels of estrogen, progesterone, and overall rates of epithelial cell turnover were unchanged, significant increases in phosphorylated MAPK, which predominantly localized to the epithelium, were associated with increased branching morphogenesis. Additionally, purified RonTK−/− epithelial cells cultured ex vivo exhibited enhanced branching morphogenesis, which was reduced upon MAPK inhibition. Microarray analysis of pubertal RonTK−/− glands revealed 393 genes temporally impacted by Ron expression with significant changes observed in signaling networks regulating development, morphogenesis, differentiation, cell motility, and adhesion. In total, these studies represent the first evidence of a role for the Ron receptor tyrosine kinase as a critical negative regulator of mammary development.  相似文献   

4.
Hormone replacement therapy (HRT) with ovarian hormones is an important therapeutic modality for postmenopausal women. However, a negative side effect of HRT is an increased risk of breast cancer. Surgical induction of menopause by ovariectomy (OVX) in mice is an experimental model that may provide insights into the effects of hormone replacement therapy on the human breast. We have developed a mouse model of early and late postmenopausal states to investigate the effects of HRT on the normal mammary gland. The purpose of this study was to determine if HRT-induced proliferation was due to the direct action of the hormones on the mammary gland, or mediated systemically by hormones or growth factors produced elsewhere in the body. Estrogen (E) or E plus the synthetic progestin, R5020, were implanted directly into the mammary glands of early (1 week post OVX) and late (5 week post OVX) postmenopausal mice instead of administration by injection. We report that responses of early and late postmenopausal mice to implanted hormones were the same as those observed previously with systemically administered hormones. Implanted E conferred an enhanced proliferative response in the late postmenopausal gland characterized morphologically by enlarged duct ends. E+R5020 implants induced similar degrees of cell proliferation in both postmenopausal states but the morphological responses differed. Ductal sidebranching was observed in early postmenopausal mice, whereas duct end enlargement was observed in late postmenopausal mice. The differences in morphological response to E+R5020 in 5 week post OVX were associated with an inability of E to induce progesterone receptors (PR) in the late postmenopausal gland. The responses of the late postmenopausal glands to E and E+P were very similar to that observed previously in immature pubertal glands in ovary-intact mice. In pubertal mice, PR cannot be induced by E unless the mammary gland is pre-treated with EGF-containing implants. Similarly, herein pre-treatment of the late postmenopausal mammary gland with EGF-containing implants restored PR induction by E. Thus, EGF may determine the sensitivity of the mammary gland to E and E+P in late postmenopause and at puberty.  相似文献   

5.
6.
A glucocorticoid receptor has been identified in cytosolic fractions prepared from 4-day old female Sprague-Dawley rat mammary glands at an early resting stage of mammary development. This component sedimented at 10S and 5S on respectively low and high (0.4 M KCl) ionic strength gradients. It bound dexamethasone with a high affinity (Kd approximately 2-6 nM) and a low capacity (N = 300 +/- 100 fmol per mg of proteins or 3.3 +/- 1.3 fmol per micrograms DNA), with a hierarchy of affinity by competition studies dexamethasone greater than corticosterone greater than progesterone greater than R 5020 much greater than Estradiol-17 beta. The characteristics of this glucocorticoid-binding protein are thus very similar to the adult one isolated from adult rat mammary gland.  相似文献   

7.
Receptor of Activated NF-κB Ligand (RANKL) is implicated as one of a number of effector molecules that mediate progesterone and prolactin signaling in the murine mammary epithelium. Using a mouse transgenic approach, we demonstrate that installation of the RANKL signaling axis into the mammary epithelium results in precocious ductal side-branching and alveologenesis in the virgin animal. These morphological changes occur due to RANKL-induced mammary epithelial proliferation, which is accompanied by increases in expression of activated NF-kB and cyclin D1. With age, prolonged RANKL exposure elicits limited mammary epithelial hyperplasia. While these transgenics exhibit RANKL-induced salivary gland adenocarcinomas, palpable mammary tumors are not observed due to RANKL-suppression of its own signaling receptor (RANK) in the mammary epithelium. Together, these studies reveal not only that the RANKL signaling axis can program many of the normal epithelial changes attributed to progesterone and prolactin action in the normal mammary gland during early pregnancy, but underscore the necessity for tight control of this signaling molecule to avoid unwarranted developmental changes that could lead to mammary hyperplasia in later life.  相似文献   

8.
Experiments were carried out to identify progestin-binding receptors in the mammary gland where casein synthesis is known to be inhibited by this hormone. A progestin-binding component with high affinity, low capacity and a sedimentation coefficient of 8.8 S was isolated from the cytosol of lactating rat mammary glands. This component strongly bound [3H]R5020 (17,21-dimethyl-19-nor-4,9-pregnadiene-3,20-dione) with a dissociation constant of 3.9 · 10?9 M under low-salt conditions and with that of 8.2 · 10?10 M in the presence of 0.3 M KCl. Specificity studies showed a higher degree of progestin specificity under high salt conditions. In the absence of KCl, binding of [3H]-R5020 was inhibited by unlabeled glucocorticoid in the same degree as unlabeled progestin, but the inhibition by glucocorticoid was greatly diminished by the presence of 0.3 M KCl. These observations suggest that the [3H]R5020-binding-component is the progestin receptor and that its function may be regulated by the concentration of glucocorticoid and salt.  相似文献   

9.
Vitamin D(3) receptor ablation alters mammary gland morphogenesis   总被引:5,自引:0,他引:5  
Postnatal mammary gland morphogenesis is achieved through coordination of signaling networks in both the epithelial and stromal cells of the developing gland. While the major proliferative hormones driving pubertal mammary gland development are estrogen and progesterone, studies in transgenic and knockout mice have successfully identified other steroid and peptide hormones that impact on mammary gland development. The vitamin D(3) receptor (VDR), whose ligand 1,25-dihydroxyvitamin D(3) is the biologically active form of vitamin D(3), has been implicated in control of differentiation, cell cycle and apoptosis of mammary cells in culture, but little is known about the physiological relevance of the vitamin D(3) endocrine system in the developing gland. In these studies, we report the expression of the VDR in epithelial cells of the terminal end bud and subtending ducts, in stromal cells and in a subset of lymphocytes within the lymph node. In the terminal end bud, a distinct gradient of VDR expression is observed, with weak VDR staining in proliferative populations and strong VDR staining in differentiated populations. The role of the VDR in ductal morphogenesis was examined in Vdr knockout mice fed high dietary Ca(2+) which normalizes fertility, serum estrogen and neonatal growth. Our results indicate that mammary glands from virgin Vdr knockout mice are heavier and exhibit enhanced growth, as evidenced by higher numbers of terminal end buds, greater ductal outgrowth and enhanced secondary branch points, compared with glands from age- and weight-matched wild-type mice. In addition, glands from Vdr knockout mice exhibit enhanced growth in response to exogenous estrogen and progesterone, both in vivo and in organ culture, compared with glands from wild-type mice. Our data provide the first in vivo evidence that 1,25-dihydroxyvitamin D(3) and the VDR impact on ductal elongation and branching morphogenesis during pubertal development of the mammary gland. Collectively, these results suggest that the vitamin D(3) signaling pathway participates in negative growth regulation of the mammary gland.  相似文献   

10.
The purpose of the present studies was to investigate the role of epidermal growth factor (EGF) in the acquisition of estrogen (E) and progestin (P) responsiveness in the mouse mammary gland in vivo. Using the Elvax 40P implant technique to introduce bioactive molecules directly into the mammary gland to produce a localized effect, we have made the novel observation that EGF implanted into glands of pubertal mice followed by E treatment resulted in the precocious acquisition of E-inducible progesterone receptors (PR). In sexually mature mice, EGF implants alone were able to increase PR. A neutralizing antibody specific for EGF blocked E-dependent stimulation of end-bud development and PR induction. Furthermore, the antiestrogen ICI 182,780 blocked the EGF-induced stimulation end-buds and PR induction, indicating that these EGF effects are mediated via estrogen receptors (ER). Immunohistochemical analysis showed that the endogenous EGF content of mammary glands of mature mice was higher than pubertal mice, that E implants caused a localized increase in mammary gland EGF content in both pubertal and mature mice, and that in mature mice E caused an increase in stromal cell EGF content. We have previously shown that the acquisition of E-inducible PR can be modulated by mammary stroma, and the present results indicate that mammary stroma could modulate hormonal responsiveness through control of local growth factor concentration. Taken together, these results provide evidence that E-dependent responses of mouse mammary gland in vivo, such as end-bud proliferation and PR regulation, may be mediated by EGF through an ER-dependent mechanism. J. Cell. Physiol. 174:251–260, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
12.
Elf5 is an epithelial-specific ETS factor. Embryos with a null mutation in the Elf5 gene died before embryonic day 7.5, indicating that Elf5 is essential during mouse embryogenesis. Elf5 is also required for proliferation and differentiation of mouse mammary alveolar epithelial cells during pregnancy and lactation. The loss of one functional allele led to complete developmental arrest of the mammary gland in pregnant Elf5 heterozygous mice. A quantitative mRNA expression study and Western blot analysis revealed that decreased expression of Elf5 correlated with the downregulation of milk proteins in Elf5(+/-) mammary glands. Mammary gland transplants into Rag(-/-) mice demonstrated that Elf5(+/-) mammary alveolar buds failed to develop in an Elf5(+/+) mammary fat pad during pregnancy, demonstrating an epithelial cell autonomous defect. Elf5 expression was reduced in Prolactin receptor (Prlr) heterozygous mammary glands, which phenocopy Elf5(+/-) glands, suggesting that Elf5 and Prlr are in the same pathway. Our data demonstrate that Elf5 is essential for developmental processes in the embryo and in the mammary gland during pregnancy.  相似文献   

13.
Hewitt SC  Korach KS 《Steroids》2000,65(10-11):551-557
Ovarian steroids have important inter-related roles in many systems and processes required for mammalian reproduction. The female reproductive tract, ovaries, and mammary glands are all targets for both estrogen and progesterone. In addition, the actions of these hormones are intertwined in that, for example, progesterone attenuates the proliferative effect of estrogen in the uterus, whereas estrogen also induces the progesterone receptor (PR) mRNA and protein, thus enhancing progesterone actions. The generation of mice that lacks the progesterone receptor (PRKO) or the estrogen receptoralpha (alphaERKO) has provided numerous insights into the interacting roles of these hormones. The mammary glands of the PRKO mice develop with full epithelial ducts that lack side branching and lobular alveolar structures, whereas the alphaERKO mice develop only an epithelial rudiment. This indicates that estrogen is important for ductal morphogenesis, whereas progesterone is required for ductal branching and alveolar development. Both the alphaERKO and PRKO mice are also anovulatory, but exhibit different causal pathologies. The alphaERKO ovary seems to possess follicles up to the preantral stage and shows a polycystic phenotype as a result of chronic hyperstimulation by LH. The PRKO follicles seem to develop to an ovulatory stage, but are unable to rupture, indicating a role for progesterone in ovulation. The uteri of these two strains seem to develop normally; however, the function and hormone responses are abnormal in each. Because estrogen is known to induce PRs in the uterus, the progesterone responsiveness of the alphaERKO uterus was characterized. PR mRNA was detected but was not up-regulated by estrogen in the alphaERKO tissue. PRs are present in the alphaERKO tissue at 60% of the level in wild-type tissue and show a similar amount of A and B isoforms when measured by R5020 binding and detected by Western blotting. The PRs were able to mediate induction of two progesterone-responsive uterine genes: calcitonin and amphiregulin. The alphaERKO uterine tissue was also able to undergo a decidual reaction in response to hormonal and intraluminal treatments to mimic implantation; however, unlike normal wild-type uteri, this response was estrogen independent in the alphaERKO uterine tissue.  相似文献   

14.
Emerging data suggest that metastasis-associated protein 1 (MTA1) represses ligand-dependent transactivation functions of estrogen receptor-alpha in cultured breast cancer cells and that MTA1 is upregulated in human breast tumors. However, the role of MTA1 in tumorigenesis in a physiologically relevant animal system remains unknown. To reveal the role of MTA1 in mammary gland development, transgenic mice expressing MTA1 under the control of the mouse mammary tumor virus promoter long terminal repeat were generated. Unexpectedly, we found that mammary glands of these virgin transgenic mice exhibited extensive side branching and precocious differentiation because of increased proliferation of ductal and alveolar epithelial cells. Mammary glands of virgin transgenic mice resemble those from wild-type mice in mid-pregnancy and inappropriately express beta-casein, cyclin D1 and beta-catenin protein. Increased ductal growth was also observed in the glands of ovariectomized female mice, as well as of transgenic male mice. MTA1 dysregulation in mammary epithelium and cancer cells triggered downregulation of the progesterone receptor-B isoform and upregulation of the progesterone receptor-A isoform, resulting in an imbalance in the native ratio of progesterone receptor A and B isoforms. MTA1 transgene also increased the expression of progesterone receptor-A target genes Bcl-XL (Bcl2l1) and cyclin D1 in mammary gland of virgin mice, and, subsequently, produced a delayed involution. Remarkably, 30% of MTA1 transgenic females developed focal hyperplastic nodules, and about 7% exhibited mammary tumors within 18 months. These studies establish, for the first time, a potential role of MTA1 in mammary gland development and tumorigenesis. The underlying mechanism involves the upregulation of progesterone receptor A and its targets, Bcl-XL and cyclin D1.  相似文献   

15.
Both ovarian and pituitary hormones are required for the pubertal development of the mouse mammary gland. Estradiol directs ductal elongation and branching, while progesterone leads to tertiary branching and alveolar development. The purpose of this investigation was to identify estrogen‐responsive genes associated with pubertal ductal growth in the mouse mammary gland in the absence of other ovarian hormones and at different stages of development. We hypothesized that the estrogen‐induced genes and their associated functions at early stages of ductal elongation would be distinct from those induced after significant ductal elongation had occurred. Therefore, ovariectomized prepubertal mice were exposed to 17β‐estradiol from two to 28 days, and mammary gland global gene expression analyzed by microarray analysis at various times during this period. We found that: (a) gene expression changes in our estrogen‐only model mimic those changes that occur in normal pubertal development in intact mice, (b) both distinct and overlapping gene profiles were observed at varying extents of ductal elongation, and (c) cell proliferation, the immune response, and metabolism/catabolism were the most common functional categories associated with mammary ductal growth. Particularly striking was the novel observation that genes active during carbohydrate metabolism were rapidly and robustly decreased in response to estradiol. Lastly, we identified mammary estradiol‐responsive genes that are also co‐expressed with estrogen receptor α in human breast cancer. In conclusion, our genomic data support the physiological observation that estradiol is one of the primary hormonal signals driving ductal elongation during pubertal mammary development. Mol. Reprod. Dev. 76: 733–750, 2009. Published 2009 Wiley‐Liss, Inc.  相似文献   

16.
The biological basis for the observed modulation in cytoplasmic progesterone receptors (PgR) of normal mammary gland occurring during mammary development was investigated. Specifically, the relative roles of hormones vs. differentiation on (a) the decrease in PgR concentration during pregnancy and lactation and (b) the loss of mammary responsiveness to estrogen during lactation were examined. PgR were measured using the synthetic progestin, R5020, as the ligand. The hormones estrogen and progesterone were tested in vivo for their effect of PgR concentration. Mammary gland differentiation was assessed morphologically and by measuring enzymatically active alpha- lactalbumin. These studies show that there is a stepwise decrease in PgR that occurs in two stages. The first decrease is completed by day 12 of pregnancy and the second decrease occurs only after parturition. There appears to be a hormonal basis for the first decrease and it appears to be caused by the negative effect of progesterone on estrogen- mediated increase in PgR. In direct contrast, the absence of PgR during lactation and the mammary tissue insensitivity to estrogenic stimulation of PgR were not related to the hormonal milieu of lactation but were directly related to the secretory state of the mammary gland and lactation per se.  相似文献   

17.
Although breast cancer typically develops in women over the age of 40, it remains unclear when breast cancer initiating events occur or whether the mammary gland is particularly susceptible to oncogenic transformation at a particular developmental stage. Using MTB-IGFIR transgenic mice that overexpress type I insulin-like growth factor receptor (IGF-IR) in a doxycycline-inducible manner, mammary tumorigenesis was initiated at different developmental stages. Tumor multiplicity was significantly increased while tumor latency was significantly decreased when the IGF-IR transgene was expressed during pubertal development compared to post-pubertal transgene expression. Moreover, metastatic spread of mammary tumors to the lungs was approximately twice as likely when IGF-IR was overexpressed in pubertal mice compared to post-pubertal mice. In addition, engraftment of pubertal MTB-IGFIR mammary tissue into cleared mammary fat pads of pubertal hosts produced tumors more frequently and faster than engraftment into adult hosts. These experiments show that the mammary microenvironment created during puberty renders mammary epithelial cells particularly susceptible to transformation.  相似文献   

18.
The antiprogesterone and antiglucocorticoid compound RU 486 added to pregnant rabbit mammary gland explant cultures had no effect alone but significantly stimulated casein production in the presence of ovine prolactin (PRL) in a dose dependent manner. This stimulation was inhibited by progesterone (Pg) and the Pg agonist R5020. When the explants were cultured for 5 days with two changes of medium, to eliminate all steroids, and hormones added afterwards, the effect of PRL was potentiated, Pg was no longer inhibitory and RU 486 had no effect, RU 486 also could inhibit the stimulatory action of glucocorticoids added to the cultures along with PRL. The compound was able to displace [3H]dexamethasone and [3H]R 5020 from mammary gland glucocorticoid and Pg receptors respectively and proved to have a high relative binding affinity (RBA) for both receptors when compared with typical ligands for each receptor. The RBAs of RU 486 and the steroids used in this study to mammary gland glucocorticoid and Pg receptors correlated well with the ability of RU 486 to block their biological activities. These results demonstrate that RU 486 has both antiglucocorticoid and antiprogesterone activities in pregnant rabbit mammary glands as well as the existence of a strong inhibitory residual action of Pg in the gland that persists during the first 48 h of culture and that can be eliminated by RU 486 or after several days of culture with no hormones.  相似文献   

19.
The Mediator subunit MED1 is essential for mammary gland development and lactation, whose contribution through direct interaction with estrogen receptors (ERs) is restricted to involvement in pubertal mammary gland development and luminal cell differentiation. Here, we provide evidence that the MED24-containing submodule of Mediator functionally communicates specifically with MED1 in pubertal mammary gland development. Mammary glands from MED1/MED24 double heterozygous knockout mice showed profound retardation in ductal branching during puberty, while single haploinsufficient glands developed normally. DNA synthesis of both luminal and basal cells were impaired in double mutant mice, and the expression of ER-targeted genes encoding E2F1 and cyclin D1, which promote progression through the G(1)/S phase of the cell cycle, was attenuated. Luciferase reporter assays employing double mutant mouse embryonic fibroblasts showed selective impairment in ER functions. Various breast carcinoma cell lines expressed abundant amounts of MED1, MED24, and MED30, and attenuated expression of MED1 and MED24 in breast carcinoma cells led to attenuated DNA synthesis and growth. These results indicate functional communications between the MED1 subunit and the MED24-containing submodule that mediate estrogen receptor functions and growth of both normal mammary epithelial cells and breast carcinoma cells.  相似文献   

20.
Estrogen (E), progesterone (P), and epidermal growth factor (EGF) are known to regulate growth and development of the normal mammary gland, and it is possible that EGF may interact with E and/or P. Estrogen (ER), progesterone (PR), and EGF receptors (EGF-R) have been detected in both mammary epithelial and stromal cells, and the relative roles of the various cells types in hormone-dependent growth regulation are not known. The present studies were undertaken to determine if E and/or P influence EGF action by exerting a regulatory effect on EGF-R levels and which cell types are affected. The comparative effects of ovariectomy and hormone treatments on EGF-R levels were examined in immature, pubertal 5-week-old and sexually mature 10-week-old female mice. EGF-R were characterized as a single class of high affinity sites and EGF-R concentration was 2-fold higher in glands of 5-week-old mice. Ovariectomy had no significant effect on EGF-R concentration in either age group, and treatment with E and/or P had no effect on EGF-R levels in either epithelial or stromal cells in 5-week-old mice. In contrast, E+P treatment caused a 2-fold increase in receptor concentration in 10-week-old mice in the mammary epithelium. Thus it appears that the developmental state of the gland may determine the nature and extent of the interaction of of EGF, E, and P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号