首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The use of nopal cladodes (Opuntia streptacantha) as raw material for Pb(2+) biosorption was investigated. Batch experiments were carried out to determine Pb(2+) sorption capacity and the efficiency of the sorption process under different pH, initial Pb(2+) and nopal biomass concentrations. The experimental data showed a good fit to Langmuir and Freundlich isotherms models. The maximum adsorption capacity for Pb(2+) was 0.14 mmol g(-1) with an efficiency higher than 94% (pH 5.0 and 2.5 g L(-1) nopal biomass). The Pb(2+) kinetics were best described by the pseudo-second-order rate model. The rate constant, the initial sorption rate and the equilibrium sorption capacity were determined. The practical implication of this study is the development of an effective and economic technology in which the nopal biomass did not undergo any chemical or physical pretreatment, which added to nopal abundance in Mexico and its low cost makes it a good option for Pb(2+) removal from contaminated waters.  相似文献   

2.
The present work deals with the biosorption performance of dried and non-growing biomasses of Exiguobacterium sp. ZM-2, isolated from soil contaminated with tannery effluents, for the removal of Cd2+, Ni2+, Cu2+, and Zn2+ from aqueous solution. The metal concentrations studied were 25 mg/l, 50 mg/l, 100 mg/l, 150 mg/l and 200 mg/l. The effect of solution pH and contact time was also studied. The biosorption capacity was significantly altered by pH of the solution. The removal of metal ions was conspicuously rapid; most of the total sorption occurred within 30 min. The sorption data have been analyzed and fitted to the Langmuir and Freundlich isotherm models. The highest Qmax value was found for the biosorption of Cd2+ at 43.5 mg/g in the presence of the non-growing biomass. Recovery of metals (Cd2+, Zn2+, Cu2+ and Ni2+) was found to be better when dried biomass was used in comparison to non-growing biomass. Metal removal through bioaccumulation was determined by growing the bacterial strain in nutrient broth amended with different concentrations of metal ions. This multi-metal resistant isolate could be employed for the removal of heavy metals from spent industrial effluents before discharging them into the environment.  相似文献   

3.
The kinetics and mechanism of lead biosorption by powderized Rhizopus oligosporus were studied using shake flask experiment. The optimum biomass concentration and initial solution pH for lead sorption at initial lead concentrations ranging from 50–200 mg/l was obtained at 0.5 g/l and pH5, respectively. In term of the ratio of initial lead concentration to biomass concentration ratio, the highest lead adsorption was obtained at 750 mg/g which gave the maximum lead uptake capacity of 126 mg/g. The experimental data of lead sorption by R.oligosporus fitted well to the Langmuir sorption isotherm model, indicating that the sorption was similar to that for an ion-exchange resin. This means that the sorption is a single layer metal adsorption that occurred as a molecular surface coverage. This assumption was confirmed by the examination of lead sorption using transmission electron microscope and energy dispersive X-ray analysis, which showed that during sorption most of the lead was adsorbed on the surface of cell.  相似文献   

4.
Bioremediation of toxic metals by magnetotactic bacteria and magnetic separation of metal-loaded magnetotactic bacteria are of great interest. This bioprocess technique is rapid, efficient, economical, and environmentally friendly. In this study, cobalt removal potential of a novel isolated magnetotactic bacterium (Alphaproteobacterium MTB-KTN90) as a new biosorbent was investigated. The effects of various environmental parameters in the cobalt removal and the technique of magnetic separation of cobalt-loaded bacterial cells were studied. Cobalt removal by MTB-KTN90 was very sensitive to pH solution; higher biosorption capacity was observed around pH 6.5–7.0. When biomass concentration increased from 0.009 to 0.09 g/l, the biosorption efficiency increased from 13.87 % to 19.22 %. The sorption of cobalt by MTB-KTN90 was rapid during the first 15 min (859.17 mg/g dry weight). With the increasing of cobalt concentrations from 1 to 225 mg/l, the specific cobalt uptake increased. Maximum cobalt removal (1160.51 ± 15.42 mg/g dry weight) took place at optimum conditions; pH 7.0 with initial cobalt concentration of 115 mg/l at 60 min by 0.015 g/l of dry biomass. The results showed maximum values for constants of Langmuir and Freundlich models so far. The biosorption mechanisms were studied with FTIR, PIXE, and FESEM analysis. Cobalt-loaded MTB-KTN90 had ability to separate from solution by a simple magnetic separator. Magnetic response in MTB-KTN90 is due to the presence of unique intracellular magnetic nanoparticles (magnetosomes). The orientation magnetic separation results indicated that 88.55 % of cobalt was removed from solution. Consequently, Alphaproteobacterium MTB-KTN90 as a new biosorbent opens up good opportunities for the magnetic removal of cobalt from the polluted aquatic environments.  相似文献   

5.
Many studies have been carried out on the biosorption capacity of different kinds of biomass. However, reports on the kinetic and equilibrium study of the biosorption process are limited. In our experiments, the removal of Cr(VI) from aqueous solution was investigated in a batch system by sorption on the dead cells of Bacillus licheniformis isolated from metal-polluted soils. Equilibrium and kinetic experiments were performed at various initial metal concentrations, pH, contact time, and temperatures. The biomass exhibited the highest Cr(VI) uptake capacity at 50°C, pH 2.5 and with the initial Cr(VI) concentration of 300 mg/g. The Langmuir and Freundlich models were considered to identify the isotherm that could better describe the equilibrium adsorption of Cr(VI) onto biomass. The Langmuir model fitted our experimental data better than the Freundlich model. The suitability of the pseudo first-order and pseudo second-order kinetic models for the sorption of Cr(VI) onto Bacillus licheniformis was also discussed. It is better to apply the pseudo second-kinetic model to describe the sorption system.  相似文献   

6.
The biosorption of cadmium and lead ions from artificial aqueous solutions using waste baker's yeast biomass was investigated. The yeast cells were treated with caustic, ethanol and heat for increasing their biosorption capacity and the highest metal uptake values (15.63 and 17.49 mg g(-1) for Cd(2+) and Pb(2+), respectively) were obtained by ethanol treated yeast cells. The effect of initial metal concentration and pH on biosorption by ethanol treated yeast was studied. The Langmuir model and Freundlich equation were applied to the experimental data and the Langmuir model was found to be in better correlation with the experimental data. The maximum metal uptake values (qmax, mg g(-1)) were found as 31.75 and 60.24 for Cd(2+) and Pb(2+), respectively. Competitive biosorption experiments were performed with Cd(2+) and Pb(2+) together with Cu(2+) and the competitive biosorption capacities of the yeast biomass for all metal ions were found to be lower than in non-competitive conditions.  相似文献   

7.
Biosorptive capacity of Pb(II), Cd(II) and Cu(II) by lyophilized cells of Pseudomonas stutzeri was investigated based on Langmuir and Freundlich isotherms. Biosorptive capacity for Pb(II), Cd(II) and Cu(II) decreased with an increase of metal concentration, reaching 142, 43.5 and 36.2 mg/g at initial concentration of 300 mg/l, respectively. Biosorption capacity for metal ions increased with increasing pH. The optimum pH for biosorption rate of Cd(II) and Cu(II) were 5.0, and 6.0 for Pb(II) biosorption. The experimental data showed a better fit with the Langmuir model over the Freundlich model for metal ions throughout the range of initial concentrations. The maximum sorptive capacity (q max) obtained from the Langmuir equation for Pb(II), Cd(II) and Cu(II) were 153.3 (r 2  = 0.998), 43.86 (r 2  = 0.995), and 33.16 (r 2  = 0.997) for metal ions, respectively. The selectivity order for metal ions towards the biomass of P. stutzeri was Pb(II) > Cd(II) > Cu(II) for a given initial metal ions concentration. The interactions between heavy metals and functional groups on the cell wall surface of bacterial biomass were confirmed by FTIR analysis. The results of this study indicate the possible removal of heavy metals from the environment by using lyophilized cells of P. stutzeri.  相似文献   

8.
The performance of a new biosorbent system, consisting of a fungal biomass immobilized within an orange peel cellulose absorbent matrix, for the removal of Zn(2+) heavy metal ions from an aqueous solution was tested. The amount of Zn(II) ion sorption by the beads was as follows; orange peel cellulose with Phanerochaete chrysosporium immobilized Ca-alginate beads (OPCFCA) (168.61 mg/g) > orange peel cellulose immobilized Ca-alginate beads (OPCCA) (147.06 mg/g) > P. chrysosporium (F) (125.0 mg/g) > orange peel cellulose (OPC) (108.70 mg/g) > plain Ca-alginate bead (PCA) (98.26 mg/g). The Zn(2+) concentration was 100 to 1000 mg/L. The widely used Langmuir and Freundlich isotherm models were utilized to describe the biosorption equilibrium process. The isotherm parameters were estimated using linear and non-linear regression analysis. The Box-Behnken model was found to be in close agreement with the experimental values, as indicated by the correlation coefficient value of 0.9999.  相似文献   

9.
Cyanobacteria have been found to be potential biosorbents of metal ions from waste water. The Pb(2+) removal capacity of growing cells of indigenous cyanobacterium Oscillatoria laete-virens (Crouan and Crouan) Gomont was studied under batch experiments and it was found capable of removing Pb(2+) of lower concentrations (below 100?mg L(-1)). The effects of different concentrations of Pb(2+), on the growth rate of alga were also evaluated. The research parameters include the pH of the solution, contact time, initial concentration of Pb(2+), and culture density. Of the parameters studied, the pH of the solution was found to be the most crucial. The removal of Pb(2+) peaked at an initial pH of 5. The data obtained from the equilibrium experiments were found well fitting with the Langmuir isotherm with a maximum sorptive capacity (q (max)) of 20.36?mg?g(-1), indicating a good biosorbtive potential of growing cells. This was confirmed using scanning electron microscope and energy dispersive X-ray analysis, which showed the adsorption of lead on the surface of the cell. The species could tolerate a concentration as high as 60?mg L(-1) of Pb(2+). It was observed that the removal obeyed the pseudo-second-order kinetics. The percentage removal was found to decrease with increasing metal concentration, from 10 to 100?mg L(-1). FTIR analysis indicates the involvement of amino, carboxylic and amide groups in the sorption process. Among the desorbing agents evaluated, an efficient recovery of 90.2?% was achieved by HCl, in 24?h. Thus Oscillatoria laete-virens (Crouan and Crouan) Gomont seems to be a promising metal biosorbent for the treatment of Pb(2+), in waste waters.  相似文献   

10.
Biosorption of Cr (VI) from aqueous solution by Rhizopus nigricans   总被引:3,自引:0,他引:3  
The study was aimed to quantify the Cr sorption ability of powdered biomass of Rhizopus nigricans at the best operating conditions. The influence of solution pH, agitation, Cr (VI) concentration, biomass dosage, contact time, biomass particle size and temperature were studied. The optimum pH for biosorption of Cr (VI) was found to be 2.0. Higher adsorption percentage was noted at lower initial concentrations of Cr ions, while the adsorption capacity of the biomass increased with increasing concentration of ions. Optimum biomass dosage was observed as 0.5% (w/v). More than 75% of the ions were removed within 30 min of contact and maximum removal was obtained after 8 h. Biomass particles of smaller size (90 microm) gave maximum adsorption (99.2%) at 100 mg/l concentration. The adsorption capacity increased with increase in temperature and agitation speed and the optimum were determined as 45 degrees C at 120 rpm. Freundlich and Langmuir isotherms were used to evaluate the data and the regression constants were derived. The adsorption rate constant values (Kad) were calculated for different initial concentration of Cr ions and the sorption was found to be higher at lower concentration (100 mg/l) of metal ion.  相似文献   

11.
Lead (Pb) is a toxic heavy metal causing serious health risks to humans and animals. In the present study, cotton (Gossypium hirsutum L.) shells powder was used as adsorbent for the treatment of synthetic Pb-contaminated water. The batch scale biosorption capacity of cotton shells powder was evaluated to study the effects of Pb concentrations, adsorbent doses and contact time at constant pH (6) and temperature (25?°C). Results revealed that sorption of Pb increased (q?=?0.09–9.60?mg/g) with increasing Pb concentration (1–15?mg/L) and contact time (15–90?min) while decreasing adsorbent dose (1–0.1?g/100?mL). The maximum Pb removal (90%) was achieved at Pb concentration (1?mg/L), contact time (90?min) and adsorbent dose (1?g/100?mL). Freundlich isotherm model proved best fit for Pb sorption (R2?=?0.99). The cotton shells powder has microporous structure confirmed by SEM, and has BET surface area (45 m2/g) and pore size (2.3 µm). These surface moieties along with various functional groups (C-H, C-O, C=O, O-H, S=O) confirmed by FTIR analysis might involve in Pb removal by complexation and ion exchange mechanisms. The cotton shells powder biomass could be considered as promising adsorbent for the removal of Pb from contaminated water.  相似文献   

12.
Yu J  Tong M  Sun X  Li B 《Bioresource technology》2008,99(7):2588-2593
Enhanced and selective removal of Pb2+ and Cu2+ in the presence of high concentration of K+, Na+, Ca2+ and Mg2+ were achieved by adsorption on biomass of baker's yeast modified with ethylenediaminetetraacetic dianhydride (EDTAD). The modified biomass was found to have high adsorption capacities and fast rates for Pb2+ and Cu2+, and it also displayed consistently high levels of metal uptake over the pH range from 2.7 to 6.0. From Langmuir isotherm, the adsorption capacities for Pb2+ and Cu2+ were found to be 192.3 and 65.0 mg g(-1), respectively, which are about 10 and 14 times higher than that of the unmodified biomass. Competitive biosorption experiments showed that the co-ions of K+, Na+, Ca2+ and Mg2+ had little effects on the uptake of Pb2+ and Cu2+ even at the concentration of 1.0 mol L(-1). The adsorbed Pb2+ and Cu2+ on the modified biomass could be effectively desorbed in an EDTA solution, and the regenerated biomass could be reused repeatedly with little loss of the adsorption capacity.  相似文献   

13.
In this study, potentials of oven dried biomass of Eichhornia crassipes, Valisneria spiralis and Pistia stratiotes, were examined in terms of their heavy metal (Cd, Ni, Zn, Cu, Cr and Pb) sorption capacity, from individual-metal and multi-metal aqueous solutions at pH 6.0+/-0.1 (a popular pH of industrial effluent). V. spiralis was the most and E. crassipes was the least efficient for removal of all the metals. Cd, Pb and Zn were efficiently removed by all the three biomass. Cd was removed up to 98% by V. spiralis. Sorption data for Cr, Ni and Cd fitted better to Langmuir isotherm equation, while, the sorption data for Pb, Zn and Cu fitted better to Freundlich isotherm equation. In general, the presence of other metal ions did not influence significantly the targeted metal sorption capacity of the test plant biomasses. Ion exchange was proven the main mechanism involved in bio-sorption and there was a strong ionic balance between adsorbed (H(+) and M(2+)) to the released ions (Na(+) and K(+)) to and from the biomass. No significant difference was observed in the metal exchanged amount, by doubling of metal concentration (15-30 mg/l) in the solution and employing individual-metal and multi-metal solutions.  相似文献   

14.
This study reported the hexavalent chromium removal by untreated Mucor racemosus biomass and the possible mechanism of Cr (VI) removal to the biomass. The optimum pH, biomass dose, initial Cr (VI) concentration and contact time were investigated thoroughly to optimize the removal condition. The metal removal by the biomass was strongly affected by pH and the optimum pH ranged from 0.5 to 1.0. The residual total Cr was determined. It was found that dichromate reduction occurred at a low very low pH value. At biomass dose 6 g/l, almost all the Cr (VI) ions were removed in the optimum condition. Higher removal percentage was observed at lower initial concentrations of Cr (VI) ions, while the removal capacity of the biomass linearly depended on the initial Cr (VI) concentration. More than half of Cr (VI) ions were diminished within 1 h of contact and removal process reached a relative equilibrium in approximately 8 h. Almost all of the Cr (VI) ions were removed in 24 h when initial concentrations were below 100 mg/l. The equilibrium data were fitted in to the Langmuir and the Freundlich isotherm models and the correlated coefficients were gained from the models. A Fourier transform infrared spectra was employed to elucidate clearly the possible biosorption mechanism as well.  相似文献   

15.
The adsorption of Cd2+ and Pb2+ on sugar beet pulp (SBP), a low-cost material, has been studied. In the present work, the abilities of native (SBP) to remove cadmium (Cd2+) and lead (Pb2+) ions from aqueous solutions were compared. The (SBP) an industrial by product and solid waste of sugar industry were used for the removal of Cd2+ and Pb2+ ions from aqueous water. Batch adsorption studies were carried out to examine the influence of various parameters such as initial pH, adsorbent dose, initial metal ion concentration, and time on uptake. The sorption process was relatively fast and equilibrium was reached after about 70 min of contact. As much as 70-75% removal of Cd2+ and Pb2+ ions for (SBP) are possible in about 70 min, respectively, under the batch test conditions. Uptake of Cd2+ and Pb2+ ions on (SBP) showed a pH-dependent profile. The overall uptake for the (SBP) is at a maximum at pH 5.3 and gives up to 46.1 mg g(-1) for Cd2+ and at pH 5.0 and gives 43.5 mg g(-1) for Pb2+ for (SBP), which seems to be removed exclusively by ion exchange, physical sorption and chelation. A dose of 8 gL(-1) was sufficient for the optimum removal of both the metal ions. The Freundlich represented the sorption data for (SBP). In the presence of 0.1M NaNO3 the level of metal ion uptake was found to reach its maximum value very rapidly with the speed increasing both with the (SPB) concentration and with increasing initial pH of the suspension. The reversibility of the process was investigated. The desorption of Cd2+ and Pb2+ ions which were previously deposited on the (SBP) back into the deionised water was observed only in acidic pH values during one day study period and was generally rather low. The extent of adsorption for both metals increased along with an increase of the (SBP) dosage. (SBP), which is cheap and highly selective, therefore seems to be a promising substrate to entrap heavy metals in aqueous solutions.  相似文献   

16.
Recently, it was observed that the acetylcholine analogue carbachol induces a transient stimulation of an apical Cl(-) conductance in basolaterally depolarized rat distal colonic epithelium (Schultheiss et al., 2003). The further characterization of this conductance was the aim of the present study. All experiments were performed at basolaterally depolarized tissues (111.5 mmol.l(-1) KCl buffer at the serosal side); in the absence of a K(+) gradient, a Cl(-) current was driven across the apical membrane (107 mmol.l(-1) K gluconate/4.5 mmol.l(-1) KCl buffer on the mucosal side). Under these conditions, carbachol evoked an atropine-sensitive biphasic change in short-circuit current (I(SC)), consisting of a transient increase followed by a long-lasting decrease, suggesting a stimulation of apical Cl(-) conductance followed by an inhibition. This conductance was inhibited by SITS, but was resistant against glibenclamide, a blocker of CFTR. The carbachol-induced I(SC) was dependent on the presence of mucosal Ca(2+). Ionomycin, a Ca(2+) ionophore, mimicked the effect of carbachol. An antibody against bovine Ca(2+)-activated Cl(-) channel ClCa 1 stained rat colonic epithelial cells both at the cell membrane as well as intracellularly, suggesting that the action of Ca(2+) may be caused by a stimulation of a ClC a-type anion channel. The activation of apical Cl(-) conductance by carbachol was resistant against any blockers of the phospholipase C/IP3/protein kinase C pathway tested (e.g., U-73122, 2-ABP, Li(+), staurosporine), but was inhibited by the NO-synthase blocker L: -NNA. Vice versa, NO-donating compounds such as GEA 3162 or sodium nitroprusside evoked a transient increase of I(SC). Consequently, NO seems to be involved in the transient stimulation of apical Ca(2+)-dependent Cl(-) conductance after muscarinic receptor stimulation.  相似文献   

17.
A biomass derived from the plant Momordica charantia has been found to be very efficient in arsenic(III) adsorption. An attempt was made to use this biomass for arsenic(III) removal under different conditions. The parameters optimized were contact time (5-150 min), pH (2-11), concentration of adsorbent (1-50 g/l), concentration of adsorbate (0.1-100mg/l), etc. It was observed that the pH had a strong effect on biosorption capacity. The optimum pH obtained for arsenic adsorption was 9. The influence of common ions such as Ca(2+), Mg(2+), Cd(2+), Se(4+), Cl(-), SO(4)(2-), and HCO(3)(-), at concentrations varying from 5 to 1000 mg/l was investigated. To establish the most appropriate correlation for the equilibrium curves, isotherm studies were performed for As(III) ion using Freundlich and Langmuir adsorption isotherms. The pattern of adsorption fitted well with both models. The biomass of M. charantia was found to be effective for the removal of As(III) with 88% sorption efficiency at a concentration of 0.5mg/l of As(III) solution, and thus uptake capacity is 0.88 mg As(III)/gm of biomass. It appears that this biomass should be used as a palliative food item. Further it also appears that the dietary habits may play a role in the toxic effects of ingested arsenic.  相似文献   

18.
We have tested the applicability of regular as well as sulfanylacetic acid (SA) modified fluted pumpkin waste biomass as adsorbents for Pb2+, Cd2+, and Zn2+ aqueous solutions by means of the batch-sorption technique. The data revealed that SA modification produces a larger surface area, enhancing the metal-ion binding capacity of the biomass. The sorption process was examined by means of Freundlich and Langmuir models. The kinetic study showed that the sorption rates can be described by a pseudo-second-order process. The rate constants for the control biomass (CB) were 2.2x10(-2), 4.4x10(-2), and 1.6x10(-2) mg g(-1) min(-1) for Pb2+, Cd2+, and Zn2+, respectively; and the corresponding rate constants for the SA-modified biomass were 4.0x10(-2), 4.7x10(-2), and 1.7x10(-2) mg g(-1) min(-1), respectively. Thermodynamic considerations indicated a spontaneous exothermic process, which implies that physisorption is the main mechanism in the sorption process.  相似文献   

19.
A case study was undertaken for the treatment of domestic wastewater generated at village of Sanghol, Distt. Fatehgarh Sahib, Punjab (India), using a schematic designed algal and duckweed based stabilization pond system, which is discussed here for winter months only (November to March) as there was no growth of duckweeds and only algae dominated the whole system. A proficient increase in pH and dissolved oxygen was observed after the treatment with reduction in chemical oxygen demand and biochemical oxygen demand by 93% and 79% respectively. Chlorella sp. was the dominating algal species in the stabilization pond water during entire period and was studied for its Zn2+ and Pb2+ metal removal efficiency. 60–70% removal of Zn2+ was observed from culture medium containing 5–20 mg L?1 Zn2+, which declined to 42% at 50 mg L?1. A constant decline in cell number from 538 × 105 to 8 × 105 cells ml?1 was observed indicating zinc toxicity to Chlorella. Lead was maximally removed by 66.3% from culture medium containing 1 mg L?1. The lead removal efficiency was 45 50 % at higher 5 to 20 mg L?1 of external lead concentrations. The increase in cell number indicated no signs of Pb2+ toxicity up to 20 mg L?1. The maximum uptake (q max) by live Chlorella biomass for both Zn2+ and Pb2+ was 34.4 and 41.8 mg/g respectively.  相似文献   

20.
A preliminary study on the removal of cadmium by nonmetabolizing live biomass of Rhizopus oligosporus from aqueous solution is presented. The equilibrium of the process was in all cases well described by the Langmuir sorption isotherm, suggesting that the process was a chemical, equilibrated and saturable mechanism which reflected the predominantly site-specific mechanism on the cell surface. A curve of Scatchard transformation plots reflected the covalent nature of Cd2+ adsorption by the cells. The maximum cadmium uptake capacities were 34.25 mg/g for immobilized cells and 17.09 mg/g for free cells. Some factorial experiments in shake flasks were performed in order to investigate the effect of different initial cadmium concentrations and biomass concentrations on the equilibrium. Experimental results showed a reverse trend of the influence of the immobilized and free biomass concentration on the cadmium specific uptake capacity. The immobilized cells had a higher specific cadmium uptake capacity with increasing biomass concentrations compared to free cells. In a bioreactor, the cadmium uptake capacity of immobilized cells (qmax = 30.1–37.5 mg/g) was similar to that observed in shake flask experiments (qmax = 34.25 mg/g) whereas with free cells the bioreactor qmax of 4.8–13.0 mg/g; was much lower than in shake flasks (qmax = 17.09 mg/g), suggesting that cadmium biosorption by immobilized cells of R. oligosporus might be further improved in bigger reactors. EDAX and transmission electron microscopic experiments on the fungal biomass indicated that the presence of Cd2+ sequestrated to the cell wall was due to bioadsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号