首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7442篇
  免费   421篇
  国内免费   4篇
  2021年   86篇
  2020年   56篇
  2019年   80篇
  2018年   116篇
  2017年   99篇
  2016年   162篇
  2015年   226篇
  2014年   258篇
  2013年   487篇
  2012年   464篇
  2011年   487篇
  2010年   304篇
  2009年   308篇
  2008年   476篇
  2007年   487篇
  2006年   452篇
  2005年   410篇
  2004年   418篇
  2003年   408篇
  2002年   351篇
  2001年   122篇
  2000年   103篇
  1999年   115篇
  1998年   78篇
  1997年   78篇
  1996年   55篇
  1995年   85篇
  1994年   62篇
  1993年   65篇
  1992年   88篇
  1991年   75篇
  1990年   75篇
  1989年   50篇
  1988年   42篇
  1987年   49篇
  1986年   47篇
  1985年   57篇
  1984年   46篇
  1983年   40篇
  1982年   37篇
  1981年   47篇
  1980年   29篇
  1979年   27篇
  1978年   22篇
  1977年   22篇
  1976年   23篇
  1975年   30篇
  1974年   19篇
  1973年   20篇
  1969年   16篇
排序方式: 共有7867条查询结果,搜索用时 15 毫秒
1.
2.
Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive lysosomal storage disorder caused by a genetic defect in N-acetylgalactosamine-6-sulfate sulfatase (GALNS). In previous studies, we have found two common mutations in Caucasians and Japanese, respectively. To characterize the mutational spectrum in various ethnic groups, mutations in the GALNS gene in Colombian MPS IVA patients were investigated, and genetic backgrounds were extensively analyzed to identify racial origin, based on mitochondrial DNA (mtDNA) lineages. Three novel missense mutations never identified previously in other populations and found in 16 out of 19 Colombian MPS IVA unrelated alleles account for 84.2% of the alleles in this study. The G301C and S162F mutations account for 68.4% and 10.5% of mutations, respectively, whereas the remaining F69V is limited to a single allele. The skewed prevalence of G301C in only Colombian patients and haplotype analysis by restriction fragment length polymorphisms in the GALNS gene suggest that G301C originated from a common ancestor. Investigation of the genetic background by means of mtDNA lineages indicate that all our patients are probably of native American descent. Received: 2 January 1997 / Accepted: 10 June 1997  相似文献   
3.
The Saccharomyces cerevisiae MNN4 gene, which is involved inmannosylphosphate transfer from GDP-mannose to N-linked oligosaccharide,has been cloned from a lambda phage containing a yeast chromosomeXI DNA fragment The MNN4 ORF encodes a protein of 1178 aminoacids. The deduced amino acid sequence shows a topology of typeII membrane proteins and has a unique repeated sequence of lysineand glutamic acid at the C-terminus. Disruption and overexpressionof MNN4 led to a decrease and increase, respectively, of themannosylphosphate content in cell wall mannans prepared fromboth mnn4 and wild type strains. A dramatic decrease of mannosylphosphateoccurs in  相似文献   
4.
5.
6.
Okadaic acid, a potent inhibitor of Type 1 and Type 2A protein phosphatases, was used to investigate the mechanism of insulin action on membrane-bound low Km cAMP phosphodiesterase in rat adipocytes. Upon incubation of cells with 1 microM okadaic acid for 20 min, phosphodiesterase was stimulated 3.7- to 3.9-fold. This stimulation was larger than that elicited by insulin (2.5- to 3.0-fold). Although okadaic acid enhanced the effect of insulin, the maximum effects of the two agents were not additive. When cells were pretreated with 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7), the level of phosphodiesterase stimulation by okadaic acid was rendered smaller, similar to that attained by insulin. In cells that had been treated with 2 mM KCN, okadaic acid (like insulin) failed to stimulate phosphodiesterase, suggesting that ATP was essential. Also, as reported previously, the effect of insulin on phosphodiesterase was reversed upon exposure of hormone-treated cells to KCN. This deactivation of previously-stimulated phosphodiesterase was blocked by okadaic acid, but not by insulin. The above KCN experiments were carried out with cells in which A-kinase activity was minimized by pretreatment with H-7. Okadaic acid mildly stimulated basal glucose transport and, at the same time, strongly inhibited the action of insulin thereon. It is suggested that insulin may stimulate phosphodiesterase by promoting its phosphorylation and that the hormonal effect may be reversed by a protein phosphatase which is sensitive to okadaic acid. The hypothetical protein kinase thought to be involved in the insulin-dependent stimulation of phosphodiesterase appears to be more H-7-resistant than A-kinase.  相似文献   
7.
Walking ability is significantly lower in hemodialysis patients compared to healthy people. Decreased walking ability characterized by slow walking speed is associated with adverse clinical events, but determinants of decreased walking speed in hemodialysis patients are unknown. The purpose of this study was to identify factors associated with slow walking speed in ambulatory hemodialysis patients. Subjects were 122 outpatients (64 men, 58 women; mean age, 68 years) undergoing hemodialysis. Clinical characteristics including comorbidities, motor function (strength, flexibility, and balance), and maximum walking speed (MWS) were measured and compared across sex-specific tertiles of MWS. Univariate and multivariate logistic regression analyses were performed to examine whether clinical characteristics and motor function could discriminate between the lowest, middle, and highest tertiles of MWS. Significant and common factors that discriminated the lowest and highest tertiles of MWS from other categories were presence of cardiac disease (lowest: odds ratio [OR] = 3.33, 95% confidence interval [CI] = 1.26–8.83, P<0.05; highest: OR = 2.84, 95% CI = 1.18–6.84, P<0.05), leg strength (OR = 0.62, 95% CI = 0.40–0.95, P<0.05; OR = 0.57, 95% CI = 0.39–0.82, P<0.01), and standing balance (OR = 0.76, 95% CI = 0.63–0.92, P<0.01; OR = 0.81, 95% CI = 0.68–0.97, P<0.05). History of fracture (OR = 3.35, 95% CI = 1.08–10.38; P<0.05) was a significant factor only in the lowest tertile. Cardiac disease, history of fracture, decreased leg strength, and poor standing balance were independently associated with slow walking speed in ambulatory hemodialysis patients. These findings provide useful data for planning effective therapeutic regimens to prevent decreases in walking ability in ambulatory hemodialysis patients.  相似文献   
8.
9.
10.
We examined an idea that short-term cognition is transiently affected by a state of confusion in Zn2+ transport system due to a local increase in amyloid-β (Aβ) concentration. A single injection of Aβ (25 pmol) into the dentate gyrus affected dentate gyrus long-term potentiation (LTP) 1 h after the injection, but not 4 h after the injection. Simultaneously, 1-h memory of object recognition was affected when the training was performed 1 h after the injection, but not 4 h after the injection. Aβ-mediated impairments of LTP and memory were rescued in the presence of zinc chelators, suggesting that Zn2+ is involved in Aβ action. When Aβ was injected into the dentate gyrus, intracellular Zn2+ levels were increased only in the injected area in the dentate gyrus, suggesting that Aβ induces the influx of Zn2+ into cells in the injected area. When Aβ was added to hippocampal slices, Aβ did not increase intracellular Zn2+ levels in the dentate granule cell layer in ACSF without Zn2+, but in ACSF containing Zn2+. The increase in intracellular Zn2+ levels was inhibited in the presence of CaEDTA, an extracellular zinc chelator, but not in the presence of CNQX, an AMPA receptor antagonist. The present study indicates that Aβ-mediated Zn2+ influx into dentate granule cells, which may occur without AMPA receptor activation, transiently induces a short-term cognitive deficit. Extracellular Zn2+ may play a key role for transiently Aβ-induced cognition deficits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号