首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT The distribution of grizzly (Ursus arctos) and American black bears (U. americanus) overlaps in western North America. Few studies have detailed activity patterns where the species are sympatric and no studies contrasted patterns where populations are both sympatric and allopatric. We contrasted activity patterns for sympatric black and grizzly bears and for black bears allopatric to grizzly bears, how human influences altered patterns, and rates of grizzly-black bear predation. Activity patterns differed between black bear populations, with those sympatric to grizzly bears more day-active. Activity patterns of black bears allopatric with grizzly bears were similar to those of female grizzly bears; both were crepuscular and day-active. Male grizzly bears were crepuscular and night-active. Both species were more night-active and less day-active when ≤1 km from roads or developments. In our sympatric study area, 2 of 4 black bear mortalities were due to grizzly bear predation. Our results suggested patterns of activity that allowed for intra- and inter-species avoidance. National park management often results in convergence of locally high human densities in quality bear habitat. Our data provide additional understanding into how bears alter their activity patterns in response to other bears and humans and should help park managers minimize undesirable bear-human encounters when considering needs for temporal and spatial management of humans and human developments in bear habitats.  相似文献   

2.
Habitat fragmentation and loss contribute to isolation of wildlife populations and increased extinction risks for various species, including many large carnivores. We studied a small and isolated population of American black bears (Ursus americanus) that is of conservation concern in central Georgia, USA (i.e., central Georgia bear population [CGBP]). Our goal was to evaluate the potential for demographic and genetic interchange from neighboring bear populations to the CGBP. To evaluate resource selection and movement potential, we used 35,487 global positioning system locations collected every 20 minutes from 2012 to 2014 from 33 male bears in the CGBP. We then developed a step selection function model based on conditional logistic regression. Male bears chose steps that avoided crops, roads, and human developments and were closer to forests and woody wetlands than expected based on availability. We used a geographic information system to simulate 300 bear movement paths from nearby bear populations in northern Florida, northern Georgia, and southern Georgia to estimate the potential for immigration to the CGBP. Only 4 simulated movement paths from the nearby populations intersected the CGBP. The creation of a hypothetical 1-km-wide corridor between the southern Georgia population and the CGBP produced only minor improvements in interchange. Our findings suggest that demographic connectivity between the CGBP and surrounding bear populations may be limited, and coupled with previous works showing genetic isolation in the CGBP, that creation of corridors may have only marginal effects on restoring gene flow, at least in the near term. Management actions such as translocation and the establishment of stepping stone populations may be needed to increase the genetic diversity and demographic stability of bears in the CGBP. © 2021 The Wildlife Society.  相似文献   

3.
Abstract: During the past 2 decades, the grizzly bear (Ursus arctos) population in the Greater Yellowstone Ecosystem (GYE) has increased in numbers and expanded its range. Early efforts to model grizzly bear mortality were principally focused within the United States Fish and Wildlife Service Grizzly Bear Recovery Zone, which currently represents only about 61% of known bear distribution in the GYE. A more recent analysis that explored one spatial covariate that encompassed the entire GYE suggested that grizzly bear survival was highest in Yellowstone National Park, followed by areas in the grizzly bear Recovery Zone outside the park, and lowest outside the Recovery Zone. Although management differences within these areas partially explained differences in grizzly bear survival, these simple spatial covariates did not capture site-specific reasons why bears die at higher rates outside the Recovery Zone. Here, we model annual survival of grizzly bears in the GYE to 1) identify landscape features (i.e., foods, land management policies, or human disturbances factors) that best describe spatial heterogeneity among bear mortalities, 2) spatially depict the differences in grizzly bear survival across the GYE, and 3) demonstrate how our spatially explicit model of survival can be linked with demographic parameters to identify source and sink habitats. We used recent data from radiomarked bears to estimate survival (1983–2003) using the known-fate data type in Program MARK. Our top models suggested that survival of independent (age ≥ 2 yr) grizzly bears was best explained by the level of human development of the landscape within the home ranges of bears. Survival improved as secure habitat and elevation increased but declined as road density, number of homes, and site developments increased. Bears living in areas open to fall ungulate hunting suffered higher rates of mortality than bears living in areas closed to hunting. Our top model strongly supported previous research that identified roads and developed sites as hazards to grizzly bear survival. We also demonstrated that rural homes and ungulate hunting negatively affected survival, both new findings. We illustrate how our survival model, when linked with estimates of reproduction and survival of dependent young, can be used to identify demographically the source and sink habitats in the GYE. Finally, we discuss how this demographic model constitutes one component of a habitat-based framework for grizzly bear conservation. Such a framework can spatially depict the areas of risk in otherwise good habitat, providing a focus for resource management in the GYE.  相似文献   

4.
When abundant, seeds of the high‐elevation whitebark pine (WBP; Pinus albicaulis) are an important fall food for grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem. Rates of bear mortality and bear/human conflicts have been inversely associated with WBP productivity. Recently, mountain pine beetles (Dendroctonus ponderosae) have killed many cone‐producing WBP trees. We used fall (15 August–30 September) Global Positioning System locations from 89 bear years to investigate temporal changes in habitat use and movements during 2000–2011. We calculated Manly–Chesson (MC) indices for selectivity of WBP habitat and secure habitat (≥500 m from roads and human developments), determined dates of WBP use, and documented net daily movement distances and activity radii. To evaluate temporal trends, we used regression, model selection, and candidate model sets consisting of annual WBP production, sex, and year. One‐third of sampled grizzly bears had fall ranges with little or no mapped WBP habitat. Most other bears (72%) had a MC index above 0.5, indicating selection for WBP habitats. From 2000 to 2011, mean MC index decreased and median date of WBP use shifted about 1 week later. We detected no trends in movement indices over time. Outside of national parks, there was no correlation between the MC indices for WBP habitat and secure habitat, and most bears (78%) selected for secure habitat. Nonetheless, mean MC index for secure habitat decreased over the study period during years of good WBP productivity. The wide diet breadth and foraging plasticity of grizzly bears likely allowed them to adjust to declining WBP. Bears reduced use of WBP stands without increasing movement rates, suggesting they obtained alternative fall foods within their local surroundings. However, the reduction in mortality risk historically associated with use of secure, high‐elevation WBP habitat may be diminishing for bears residing in multiple‐use areas.  相似文献   

5.
To fulfill their needs, animals are constantly making trade-offs among limiting factors. Although there is growing evidence about the impact of ambient temperature on habitat selection in mammals, the role of environmental conditions and thermoregulation on apex predators is poorly understood. Our objective was to investigate the influence of ambient temperature on habitat selection patterns of grizzly bears in the managed landscape of Alberta, Canada. Grizzly bear habitat selection followed a daily and seasonal pattern that was influenced by ambient temperature, with adult males showing stronger responses than females to warm temperatures. Cutblocks aged 0–20 years provided an abundance of forage but were on average 6 °C warmer than mature conifer stands and 21- to 40-year-old cutblocks. When ambient temperatures increased, the relative change (odds ratio) in the probability of selection for 0- to 20-year-old cutblocks decreased during the hottest part of the day and increased during cooler periods, especially for males. Concurrently, the probability of selection for 21- to 40-year-old cutblocks increased on warmer days. Following plant phenology, the odds of selecting 0- to 20-year-old cutblocks also increased from early to late summer while the odds of selecting 21- to 40-year-old cutblocks decreased. Our results demonstrate that ambient temperatures, and therefore thermal requirements, play a significant role in habitat selection patterns and behaviour of grizzly bears. In a changing climate, large mammals may increasingly need to adjust spatial and temporal selection patterns in response to thermal constraints.  相似文献   

6.
One of the principal factors that have reduced grizzly bear populations has been the creation of human access into grizzly bear habitat by roads built for resource extraction. Past studies have documented mortality and distributional changes of bears relative to roads but none have attempted to estimate the direct demographic impact of roads in terms of both survival rates, reproductive rates, and the interaction of reproductive state of female bears with survival rate. We applied a combination of survival and reproductive models to estimate demographic parameters for threatened grizzly bear populations in Alberta. Instead of attempting to estimate mean trend we explored factors which caused biological and spatial variation in population trend. We found that sex and age class survival was related to road density with subadult bears being most vulnerable to road-based mortality. A multi-state reproduction model found that females accompanied by cubs of the year and/or yearling cubs had lower survival rates compared to females with two year olds or no cubs. A demographic model found strong spatial gradients in population trend based upon road density. Threshold road densities needed to ensure population stability were estimated to further refine targets for population recovery of grizzly bears in Alberta. Models that considered lowered survival of females with dependant offspring resulted in lower road density thresholds to ensure stable bear populations. Our results demonstrate likely spatial variation in population trend and provide an example how demographic analysis can be used to refine and direct conservation measures for threatened species.  相似文献   

7.
Understanding how environmental factors interact to determine the abundance and distribution of animals is a primary goal of ecology, and fundamental to the conservation of wildlife populations. Studies of these relationships, however, often assume static environmental conditions, and rarely consider effects of competition with ecologically similar species. In many parts of their shared ranges, grizzly bears Ursus arctos and American black bears U. americanus have nearly complete dietary overlap and share similar life history traits. We therefore tested the hypothesis that density patterns of both bear species would reflect seasonal variation in available resources, with areas of higher primary productivity supporting higher densities of both species. We also hypothesized that interspecific competition would influence seasonal density patterns. Specifically, we predicted that grizzly bear density would be locally reduced due to the ability of black bears to more efficiently exploit patchy food resources such as seasonally abundant fruits. To test our hypotheses, we used detections of 309 grizzly and 597 black bears from two independent genetic sampling methods in spatially‐explicit capture–recapture (SECR) models. Our results suggest grizzly bear density was lower in areas of high black bear density during spring and summer, although intraspecific densities were also important, particularly during the breeding season. Black bears had lower densities in areas of high grizzly bear density in spring; however, density of black bears in early and late summer was best explained by primary productivity. Our results are consistent with the hypothesis that smaller‐bodied, more abundant black bears may influence the density patterns of behaviorally‐dominant grizzly bears through exploitative competition. We also suggest that seasonal variation in resource availability be considered in efforts to relate environmental conditions to animal density.  相似文献   

8.
Abstract: We used resource selection functions (RSF) to estimate the relative probability of use for grizzly bears (Ursus arctos) adjacent to the Parsnip River, British Columbia, Canada, 1998-2003. We collected data from 30 radiocollared bears on a rolling plateau where a large portion of the landscape had been modified by human activities, primarily forestry. We also monitored 24 radiocollared bears in mountain areas largely inaccessible to humans. Bears that lived on the plateau existed at less than one-quarter the density of bears in the mountains. Plateau bears ate more high-quality food items, such as meat and berries, leading us to conclude that food limitation was not responsible for the differences in densities. We hypothesized that plateau bears were limited by human-caused mortality associated with roads constructed for forestry activities. Independent estimates of bear population size from DNA-based mark-recapture techniques allowed us to link populations to habitats using RSF models to scale habitat use patterns to population density. To evaluate whether differences in land-cover type, roads, or mortality risk could account for the disparity in density we used the mountain RSF model to predict habitat use and number of bears on the plateau and vice versa. We predicted increases ranging from 34 bears to 96 bears on the plateau when switching model coefficients, excluding land-cover types; when exchanging land-cover coefficients, the model predicted that the plateau population would be 9 bears lower than was observed. Large reductions in the numbers of mountain bears were predicted by habitat-selection models of bears using the plateau landscape. Although RSF models estimated in mountain and plateau landscapes could not predict bear use and abundance in the other areas, contrasts in models between areas provided a useful tool for examining the effects of human activities on grizzly bears.  相似文献   

9.
When large carnivores occupy peripheral human lands conflict with humans becomes inevitable, and the reduction of human-carnivore interactions must be the first consideration for those concerned with conflict mitigation. Studies designed to identify areas of high human-bear interaction are crucial for prioritizing management actions. Due to a surge in conflicts, against a background of social intolerance to wildlife and the prevalent use of lethal control throughout Japan, Asiatic black bears (Ursus thibetanus) are now threatened by high rates of mortality. There is an urgent need to reduce the frequency of human-bear encounters if bear populations are to be conserved. To this end, we estimated the habitats that relate to human-bear interactions by sex and season using resource selection functions (RSF). Significant seasonal differences in selection for and avoidance of areas by bears were estimated by distance-effect models with interaction terms of land cover and sex. Human-bear boundaries were delineated on the basis of defined bear-habitat edges in order to identify areas that are in most need of proactive management strategies. Asiatic black bears selected habitats in close proximity to forest edges, forest roads, rivers, and red pine and riparian forests during the peak conflict season and this was correctly predicted in our human-bear boundary maps. Our findings demonstrated that bears selected abandoned forests and agricultural lands, indicating that it should be possible to reduce animal use near human lands by restoring season-specific habitat in relatively remote areas. Habitat-based conflict mitigation may therefore provide a practical means of creating adequate separation between humans and these large carnivores.  相似文献   

10.
Avoiding humans will be more difficult and energetically costly for animals as outdoor recreation increases and people venture farther into wildland areas that provide high-quality habitat for wildlife. Restricting human access can be an attractive management tool to mitigate effects of human recreation activities on wildlife; however, the efficacy of such measures is rarely assessed. In 1982, Yellowstone National Park identified areas important to grizzly bears (Ursus arctos) to help protect critical grizzly bear habitat and reduce the likelihood of human injuries by bears. Referred to as bear management areas (BMAs), human access is restricted in these areas for 2–8 months each year, with timing and type of restrictions varying by area. We examined 2 datasets to evaluate grizzly bear selection of BMAs and differences of bear density in BMAs and non-BMAs. First, we used 17 years of recent global positioning system telemetry data for grizzly bears to assess their selection of BMAs during periods when human access was allowed, and when access was restricted. We used step-selection functions to test the hypothesis that bears spend time in places that allow them to avoid people and select quality food sources. There was support that grizzly bears differentially select for BMAs regardless of whether human access was restricted at the time, compared with areas outside BMAs, and that selection changed with sex and season. Only males during the summer and hyperphagic seasons changed their selection of BMAs based on whether access restrictions were in place, and overall, male bears preferred unrestricted BMAs (BMAs without restrictions in place). Females preferentially selected BMAs regardless of whether the area had access restrictions in place only during the mating season. Individuals varied widely in their preference for BMAs and access restrictions. Bears likely choose to spend time in BMAs based on available food resources rather than restrictions to human access. Supporting this interpretation, our analyses indicated that a greater proportion of BMA in an area was associated with higher densities of grizzly bear. Thus, restrictions to human access likely help reduce the potential for human–bear interactions, accomplishing one of the original objectives for establishing the BMAs.  相似文献   

11.
Railway networks contribute to the direct mortality of wildlife through collisions with trains, which can threaten vulnerable wildlife populations even in protected areas, including grizzly bears (Ursus arctos) in Banff and Yoho National Parks, Canada. Mitigation to reduce bear-train collisions requires information about how grizzly bears use the railway spatially and temporally and how particular types of use might increase collision vulnerability. We used data from 27 grizzly bears fitted with global positioning system (GPS) collars between 2000 and 2016 to relate railway use by bears via resource selection functions to variables that described land cover, human use, and topography. We used the same suite of explanatory variables to distinguish pairs of 4 types of steps, in which 3 successive GPS points (with 2-hr fix rates) included ≥1 within 30 m of the rail (hereafter on) and 2 others that defined locations where bears effectively entered the railway (first fix off rail, next 2 on), crossed it (only the middle fix on the rail), continued along the railway (all 3 fixes on), or exited the railway corridor (first 2 on, last off). We compared both sites of higher use and each of these 4 step types to the relative frequency of bear-train collisions, predicting a positive correlation for continue step types. Relative to available locations, bears were more likely to use the railway close to railroad sidings (sections of twinned track where trains sometimes stop), at intermediate distances from human-use features (e.g., town sites, highways, trails), in areas with lower values of the compound topographic index (a proxy for wetness; within 500 m), and within 90 m of rugged terrain. Seasonally, bears made greater use of the railway in spring and fall. Among 1,515 sequences of 3 steps, crossing locations comprised >50% and were most distinct from continue locations (about 20%), which occurred in areas with more rugged terrain (within 300 m), closer to railway sidings, in spring and fall, and with steps that were 60% shorter. Contrary to our prediction, past reports of bear-train collisions were negatively correlated with continue locations and unrelated to overall use or any other movement type. Our results suggest that railway use by bears increased where it provided increased forage or easier travel, particularly in spring and fall, but more work will be needed to determine the mechanistic basis of bear-train collisions. Meanwhile, mitigation efforts such as habitat alteration or warning systems might target locations where past strikes are concentrated for grizzly bears or other sensitive populations. © 2019 The Wildlife Society.  相似文献   

12.
In Europe, brown bear Ursus arctos habitats frequently overlap with human settlements and infrastructure. We tested whether anthropogenic structures played an important role in habitat selection by brown bears in the Bieszczady Mountains, Poland. We analysed 668 signs of brown bear presence recorded during 6 counts along 246 km of transects (total 1,476 km) in spring, summer and autumn of 1993 and 1994. Habitat selection of bears was more related to habitat and altitude than to human factors. Avoidance of roads, settlements and forest clearings influenced habitat selection by brown bears in spring but less in summer and autumn.  相似文献   

13.
Hunting regulations for grizzly bears (Ursus arctos) in much of Alaska since 1980 increasingly were designed to reduce bear abundance in the expectation such regulations would lead to increased harvests by hunters of moose (Alces alces) and caribou (Rangifer tarandus). Regulations were liberalized during 1980–2010 primarily in the area we termed the Liberal Grizzly Bear Hunting Area (hereafter Liberal Hunt Area) which encompassed 76.2% of Alaska. By 2010, these changes resulted in longer hunting seasons (100% of Liberal Hunt Area had seasons > 100 days, 99.7% > 200 days, and 67.8% > 300 days), more liberal bag limits (99.1% of the Liberal Hunt Area with a bag limit ≥ 1/yr and 10.1% with a bag limit ≥ 2/yr), and widespread waiver of resident tag fees (waived in 95.7% of the Liberal Hunt Area). During 1995–2010, there were 124 changes that made grizzly bear hunting regulations more liberal and two making them more conservative. The 4-year mean for grizzly bear kills by hunters increased 213% between 1976–1980 (387 grizzly bears) and 2005–2008 (823 grizzly bears). Since 2000, long-term research studies on grizzly populations in the Liberal Hunt Area have been terminated without replacement. Management of large predators by the State of Alaska is constrained by a 1994 state statute mandating “intensive management” in areas classified as important for human consumptive use of ungulates. Current grizzly bear management in the Liberal Hunt Area is inconsistent with the recommendations of the National Research Council's 1997 report on predator management in Alaska. Current attitudes, policies and absence of science-based management of grizzly bears in Alaska are increasingly similar to those that resulted in the near extirpation of grizzly bears south of Canada in the 19th and 20th centuries. If current trends continue, they increase risks to portions of the largest and most intact population of grizzly bears in North America. © 2011 The Wildlife Society.  相似文献   

14.
Grizzly bears (Ursus arctos) and American black bears (U. americanus) are sympatric in much of Yellowstone National Park. Three primary bear foods, cutthroat trout (Oncorhynchus clarki), whitebark pine (Pinus albicaulis) nuts, and elk (Cervus elaphus), have declined in recent years. Because park managers and the public are concerned about the impact created by reductions in these foods, we quantified bear diets to determine how bears living near Yellowstone Lake are adjusting. We estimated diets using: 1) stable isotope and mercury analyses of hair samples collected from captured bears and from hair collection sites established along cutthroat trout spawning streams and 2) visits to recent locations occupied by bears wearing Global Positioning System collars to identify signs of feeding behavior and to collect scats for macroscopic identification of residues. Approximately 45 ± 22% ( ± SD) of the assimilated nitrogen consumed by male grizzly bears, 38 ± 20% by female grizzly bears, and 23 ± 7% by male and female black bears came from animal matter. These assimilated dietary proportions for female grizzly bears were the same as 10 years earlier in the Lake area and 30 years earlier in the Greater Yellowstone Ecosystem. However, the proportion of meat in the assimilated diet of male grizzly bears decreased over both time frames. The estimated biomass of cutthroat trout consumed by grizzly bears and black bears declined 70% and 95%, respectively, in the decade between 1997–2000 and 2007–2009. Grizzly bears killed an elk calf every 4.3 ± 2.7 days and black bears every 8.0 ± 4.0 days during June. Elk accounted for 84% of all ungulates consumed by both bear species. Whitebark pine nuts continue to be a primary food source for both grizzly bears and black bears when abundant, but are replaced by false-truffles (Rhizopogon spp.) in the diets of female grizzly bears and black bears when nut crops are minimal. Thus, both grizzly bears and black bears continue to adjust to changing resources, with larger grizzly bears continuing to occupy a more carnivorous niche than the smaller, more herbivorous black bear. © 2012 The Wildlife Society.  相似文献   

15.
We defined patterns of habitat use and selection by female grizzly bears (Ursus arctos) in the Besa-Prophet watershed of northern British Columbia. We fitted 13 adult females with Geographic Positioning System (GPS) radio-collars and monitored them between 2001 and 2004. We examined patterns of habitat selection by grizzly bears relative to topographical attributes and 3 potential surrogates of food availability: land-cover class, vegetation biomass or quality (as measured by the Normalized Difference Vegetation Index), and selection value for prey species themselves (moose [Alces alces], elk [Cervus elaphus], woodland caribou [Rangifer tarandus], Stone's sheep [Ovis dalli stonei]). Although vegetation biomass and quality, and selection values for prey were important in seasonal selection by some individual bears, land-cover class, elevation, aspect, and vegetation diversity most influenced patterns of habitat selection across grizzly bears, which rely on availability of plant foods and encounters with ungulate prey. Grizzly bears as a group avoided conifer stands and areas of low vegetation diversity, and selected for burned land-cover classes and high vegetation diversity across seasons. They also selected mid elevations from what was available within seasonal ranges. Quantifying relative use of different attributes helped place selection patterns within the context of the landscape. Grizzly bears used higher elevations (1,595 ± 31 m SE) in spring and lower elevations (1,436 ± 27 m) in fall; the range of average elevations used among individuals was highest (500 m) during the summer. During all seasons, grizzly bears most frequented aspects with high solar gain. Use was distributed across 10 land-cover classes and depended on season. Management and conservation actions must maintain a diverse habitat matrix distributed across a large elevational gradient to ensure persistence of grizzly bears as levels of human access increase in the northern Rocky Mountains. © 2011 The Wildlife Society.  相似文献   

16.
We diagnosed exertional myopathy (EM) in a grizzly bear (Ursus arctos) that died approximately 10 days after capture by leghold snare in west-central Alberta, Canada, in June 2003. The diagnosis was based on history, post-capture movement data, gross necropsy, histopathology, and serum enzyme levels. We were unable to determine whether EM was the primary cause of death because autolysis precluded accurate evaluation of all tissues. Nevertheless, comparison of serum aspartate aminotransferase and creatine kinase concentrations and survival between the affected bear and other grizzly bears captured by leghold snare in the same research project suggests EM also occurred in other bears, but that it is not generally a cause of mortality. We propose, however, occurrence of nonfatal EM in grizzly bears after capture by leghold snare has potential implications for use of this capture method, including negative effects on wildlife welfare and research data.  相似文献   

17.
Population effects of competition between large carnivore species may be evident by contrasting actual distributions of putative competitors against predictions of inherent landscape quality for each species. Such comparison can be insightful if covariation with external factors known to influence the occurrence, density, or persistence of each species over space and time can be controlled. We used systematically‐distributed DNA hair‐trap stations to sample the occurrence of black bears (Ursus americanus) and grizzly bears (U. arctos) across 5496 km2 in southeastern British Columbia, Canada. We describe interspecific landscape partitioning according to terrain, vegetation and land‐cover variables at 2 spatial scales. We developed multivariate models to predict the potential distribution of each species. At sampling site‐session combinations that detected either species, we then investigated whether the expected or actual occurrence of each influenced the likelihood of detecting the other while controlling for human influence and inherent landscape quality. Black bears were more likely than grizzly bears to occur in gentle, valley bottom terrain with lower proportions of open habitats. Each species also was detected less frequently with the other species than predicted by their respective models; however, the strength of this relationship decreased as landscapes became more characteristic of black bear habitat. As landscapes showed higher inherent potential to support grizzly bears, black bears occurred more than model prediction in areas with higher human access and proximity to major highways but less in national parks. As potential to support black bears increased, grizzly bears occurred more than model prediction only in national parks and less with increasing human access and proximity to major highways. Results suggest that competition is occurring between the species, and that the differential response of each species to human disturbance or excessive mortality may influence the outcome and hence landscape partitioning. Moreover, black bears are more likely to benefit from human encroachment into landscapes of high inherent value for grizzly bears than vice versa. Conservation implications relate to potential mediating effects of habitat and human influence on competitive interactions between the species.  相似文献   

18.
We used the Muskwa-Kechika Management Area in northeast British Columbia, Canada as a case study to determine potential conflicts between future resource development and high-value habitats of large mammals in an undeveloped boreal landscape. More than 50 % of high-value habitats for caribou, moose, elk, wolves and grizzly bears were located in Special Resource Management Zones, where natural resource developments could occur. We developed geographic information system (GIS) layers of potential forest resources, oil and gas, minerals, wind power, all resources combined, and roads; and quantified the proportions of high-value habitats overlapping these potentials. Greater proportions of high-value habitats across seasons for moose, elk, and wolves overlapped areas with high cumulative resource potential (winter, 49–70 %, growing season, 35–63 %) more than for three other species (grizzly bears, Stone’s sheep, mountain goats). This pattern was similar for forest resources, oil and gas, wind power, and roads. Caribou were more seasonally influenced. The proportions of their high-value habitat in areas with high cumulative resource potential (winter, 53 %, growing season, 16 %), as well as high forest and oil and gas potentials, were greatest in winter; in contrast, overlap with high mineral potential was greatest during the growing season. We recommend a quantitative and visual GIS approach to scenario planning in the Muskwa-Kechika to maintain the abundance and diversity of wildlife populations there. Resource development would likely increase early seral habitats, presumably benefiting moose, elk, and wolves, but could adversely affect caribou and grizzly bears through habitat loss and increased access.  相似文献   

19.
Conservation of grizzly bears (Ursus arctos) is often controversial and the disagreement often is focused on the estimates of density used to calculate allowable kill. Many recent estimates of grizzly bear density are now available but field-based estimates will never be available for more than a small portion of hunted populations. Current methods of predicting density in areas of management interest are subjective and untested. Objective methods have been proposed, but these statistical models are so dependent on results from individual study areas that the models do not generalize well. We built regression models to relate grizzly bear density to ultimate measures of ecosystem productivity and mortality for interior and coastal ecosystems in North America. We used 90 measures of grizzly bear density in interior ecosystems, of which 14 were currently known to be unoccupied by grizzly bears. In coastal areas, we used 17 measures of density including 2 unoccupied areas. Our best model for coastal areas included a negative relationship with tree cover and positive relationships with the proportion of salmon in the diet and topographic ruggedness, which was correlated with precipitation. Our best interior model included 3 variables that indexed terrestrial productivity, 1 describing vegetation cover, 2 indices of human use of the landscape and, an index of topographic ruggedness. We used our models to predict current population sizes across Canada and present these as alternatives to current population estimates. Our models predict fewer grizzly bears in British Columbia but more bears in Canada than in the latest status review. These predictions can be used to assess population status, set limits for total human-caused mortality, and for conservation planning, but because our predictions are static, they cannot be used to assess population trend.  相似文献   

20.
Most animals concentrate their movement into certain hours of the day depending on drivers such as photoperiod, ambient temperature, inter‐ or intraspecific competition, and predation risk. The main activity periods of many mammal species, especially in human‐dominated landscapes, are commonly set at dusk, dawn, and during nighttime hours. Large carnivores, such as brown bears, often display great flexibility in diel movement patterns throughout their range, and even within populations, striking between individual differences in movement have been demonstrated. Here, we evaluated how seasonality and reproductive class affected diel movement patterns of brown bears of the Dinaric‐Pindos and Carpathian bear populations in Serbia. We analyzed the movement distances and general probability of movement of 13 brown bears (8 males and 5 females) equipped with GPS collars and monitored over 1–3 years. Our analyses revealed that movement distances and probability of bear movement differed between seasons (mating versus hyperphagia) and reproductive classes. Adult males, solitary females, and subadult males showed a crepuscular movement pattern. Compared with other reproductive classes, females with offspring were moving significantly less during crepuscular hours and during the night, particularly during the mating season, suggesting temporal niche partitioning among different reproductive classes. Adult males, solitary females, and in particular subadult males traveled greater hourly distances during the mating season in May‐June than the hyperphagia in July–October. Subadult males significantly decreased their movement from the mating season to hyperphagia, whereas females with offspring exhibited an opposite pattern with almost doubling their movement from the mating to hyperphagia season. Our results provide insights into how seasonality and reproductive class drive intrapopulation differences in movement distances and probability of movement in a recovering, to date little studied, brown bear population in southeastern Europe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号