首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expression and modulation of CD44 variant isoforms in humans   总被引:15,自引:0,他引:15  
CD44 is a ubiquitous surface molecule that exists as a number of isoforms, generated by alternative splicing of 10 "variant" exons. Little is known about the expression and function of the variant isoforms, except that certain isoforms may play a role in cancer metastasis. We produced mAbs against CD44 variant regions encoded by exons 4v, 6v, and 9v, by immunizing mice with a fusion protein spanning variant exons 3v to 10v. A comprehensive analysis of human tissues revealed that CD44 variant isoforms were expressed widely throughout the body, principally by epithelial cells. However there was differential expression of CD44 variant exons by different epithelia. Most epithelia expressed exon 9v, but much fewer expressed 6v or 4v. The regions of epithelia that expressed the highest levels of the variant isoforms were the generative cells, particularly the basal cells of stratified squamous epithelium, and of glandular epithelium. CD44 variant isoforms were also expressed differentially by leukocytes, with CD44-9v expressed at very low levels and CD44-6v and 4v virtually absent. However, CD44-9v and CD44-6v were the main variants that were transiently upregulated on T cells after mitogenic stimulation and on myelomonocytic cell lines by TNF alpha and IFN gamma treatment. Some epithelial cell lines could preferentially upregulate CD44-6v upon IFN gamma incubation. These results show that CD44 variant isoforms are expressed much more widely than first appreciated, and that expression of the variant isoforms on some cell types can be modulated by particular cytokines.  相似文献   

2.
We previously found that bikunin (bik), a Kunitz-type protease inhibitor, suppresses phorbol ester (PMA)-stimulated expression of urokinase-type plasminogen activator (uPA). In the present study, we tried to answer this mechanism using human chondrosarcoma HCS-2/8 cells. Our results showed the following novel findings: (a) the standard form of CD44 (CD44s; 85 kDa) is expressed in both unstimulated and PMA-stimulated cells, while CD44v isoforms containing epitope v9 (110 kDa) are strongly up-regulated in response to treatment with PMA; (b) CD44v isoforms containing epitope v9 present on the same cell exclusively form aggregates in stimulated cells; (c) induction of uPA mRNA expression could be achieved by using a second cross-linker antibody to cross-link Fab monomers of anti-CD44; (d) co-treatment of stimulated cells with anti-CD44 mAb alone or anti-CD44v9 mAb alone suppresses PMA-induced clustering of CD44, which results in inhibition of uPA overexpression; (e) bikunin efficiently disrupts PMA-induced clustering of CD44, but does not prevent PMA-induced up-regulation of CD44v isoforms containing epitope v9; and (f) after exposure to bik, approximately 150-kDa band is mainly detected with immunoprecipitation and this band is shown to be a heterodimer composed of the 110-kDa v9-containing CD44v isoforms and a 45-kDa bik receptor (bik-R). In conclusion, we provide, for the first time, evidence that the bik-R can physically interact with the CD44v isoforms containing epitope v9 and function as a repressor to down-regulate PMA-stimulated uPA expression, at least in part, by preventing clustering of CD44v isoforms containing epitope v9.  相似文献   

3.
Deletion of exon CD44v7 abrogates experimental colitis by apoptosis induction in intestinal mononuclear cells. Here we show that CD44v7 expression was upregulated upon CD40 ligation in human mononuclear cells, and examined whether ligation of CD44v7 also affects activation and apoptosis in lamina propria mononuclear cells (LPMC) from Crohn's disease (CD) patients. Thirty five patients with chronic inflammatory bowel disease (IBD), fourteen controls and four patients with diverticulitis were evaluated. CD44v7 was upregulated predominantly in the inflamed mucosa of CD patients. Furthermore, incubation with an anti-CD44v7 antibody induced apoptosis in LPMC isolated from inflamed mucosa of CD patients, but not from non-inflamed mucosa, from patients with ulcerative colitis (UC) or from normal controls. CD40 ligation and simultaneous incubation with anti-CD44v7 significantly downregulated CD80 in dendritic cells, thus inhibiting a critical second signal for naive T-cell activation. The apoptotic signal was mediated via the intrinsic mitochondrial pathway with decreased Bcl-2 and increased 7A6 (a mitochondrial membrane protein) expression. It was Fas independent and required caspases-3 and -9 activation. The process is highly specific for macrophage activation via CD40. These findings point to a novel mechanism of apoptosis induction in CD patients mediated by CD44v7 ligation.  相似文献   

4.
CD44 is a glycosylated adhesion molecule and osteopontin is one of its ligand. CD44 undergoes alternative splicing to produce variant isoforms. Our recent studies have shown an increase in the surface expression of CD44 isoforms (sCD44 and v4–v10 variant CD44) in prostate cancer cells over‐expressing osteopontin (PC3/OPN). Formation of CD44/MMP9 complex on the cell surface is indispensable for MMP9 activity. In this study, we have characterized the expression of variant CD44 using RT‐PCR, surface labeling with NHS–biotin, and immunoblotting. Expression of variant CD44 encompassing v4–v10 and sCD44 at mRNA and protein levels are of the same levels in PC3 and PC3/OPN cells. However, an increase in the surface expression of v6, v10, and sCD44 in PC3/OPN cells suggest that OPN may be a ligand for these isoforms. We then proceeded to determine the role of sCD44 in MMP9 activation. Based on our previous studies in osteoclasts, we hypothesized that phosphorylation of CD44 has a role on its surface expression and subsequent activation of MMP9. We have prepared TAT‐fused CD44 peptides comprising unphosphorylated and constitutively phosphorylated serine residues at positions Ser323 and Ser325. Transduction of phosphopeptides at Ser323 and Ser323/325 into PC3 cells reduced the surface levels of CD44, MMP9 activity, and cell migration; but had no effect on the membrane localization of MMP9. However, MMP9 knock‐down PC3 cells showed reduced CD44 at cellular and surface levels. Thus we conclude that surface expression of CD44 and activation of MMP9 on the cell surface are interdependent. J. Cell. Biochem. 108: 272–284, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
6.
 Taste buds are accumulations of elongated bipolar cells situated on lingual papillae. The factors that determine the sites where a taste bud may develop are largely obscure, although it is known that the early invasion of nerve fibers plays one of the key roles in taste bud development and maturation. The conditions under which taste bud primordium cells develop are influenced by the interaction between epithelial cells and extracellular matrix molecules of the mesenchyma, such as hyaluronan. Thus, we investigated immunohistochemically the distribution pattern of the receptor for hyaluronan, CD44s, and its epithelial variant isoforms CD44v6 and CD44v9, in taste buds of human embryonic, fetal, perinatal, and adult tongues. Furthermore, we wanted to determine the temporal and spatial relationships of CD44 to sensory innervation of taste bud primordia. In early gestational stages (weeks 7–9), CD44 and its isoforms are expressed on membranes of apical perigemmal (marginal) cells covering taste bud primordia. It seems that CD44 serves as a marker for marginal cells (perigemmal cells) in early developmental stages. The expression of CD44 follows rather than precedes the invasion of sensory nerve fibers and the development of taste bud primordia (weeks 7–8). In new-born and adult taste bud cells, only the standard molecule, CD44s, is expressed; the variant isoforms, CD44v6 and CD44v9, occur only in the adjacent epithelium. From these results it is likely that marginal cells are of the utmost importance for the development and maturation of taste buds. We presume that CD44 is involved in local binding, reuptake, and degradation of hyaluronan in the early stages of taste bud formation. CD44 probably does not induce the transformation of epithelial cells into taste bud primordial cells. What is more, CD44 may change its function in the course of developmental events. Accepted: 13 January 1998  相似文献   

7.
Tumor progression requires a crosstalk with the tumor surrounding, where the tumor matrix plays an essential role. We recently reported that only the matrix delivered by a CD44v6-competent (ASML(wt)), but not that of a CD44v6-deficient (ASML-CD44v(kd)) rat pancreatic adenocarcinoma line supports metastasis formation. We here describe that this matrix provides an important feedback toward the tumor cell and that CD44v6 accounts for orchestrating signals received from the matrix. ASML(wt) cells contain more hyaluronan synthase-3 and secrete higher amounts of >50 kDa HA than ASML-CD44v(kd) cells, which secrete more hyaluronidase. Only the ASML(wt)-matrix supports migration and apoptosis resistance, which both can be initiated via CD44v6, c-Met, and α6β4 ligand binding and proceed via FAK, PI3K/Akt, and MAPK activation, respectively. However, c-Met- and α6β4-initiated signaling are strongly augmented by the association with CD44v6 as only very weak effects are observed in CD44v6-deficient cells. The same CD44v6-dependent convergence of motility- and apoptosis resistance-related signals also accounts for human tumor lines. Thus, CD44v6 promotes motility and apoptosis resistance via its involvement in assembling a matrix that, in turn, triggers activation of signaling cascades, which proceeds, independent of the initiating receptor-ligand interaction, in a concerted action via CD44v6.  相似文献   

8.
CD44 is a transmembrane glycoprotein, which can exist in a multitude of isoforms due to alternative splicing of the pre-mRNA. We have generated monoclonal antibodies to several of these variant regions, which are encoded by 10 additional exons in the extracellular part of the molecule. CD44 variant isoforms have been reported to be involved in the malignant progression of rat and human tumours. The precise localization of CD44 variant isoforms in normal developmental and morphogenetic processes is essential for diagnostic studies of human tumorigenesis. Therefore, we have analysed a large number of different human tissues by immunohistochemistry for the expression of CD44 isoforms containing either exons 4v, 6v or 9v. Expression of exon 9v-isoforms was detected in almost all epithelia analysed, with a few exceptions. Exon 6v isoforms are expressed only in squamous and glandular epithelia, e.g. skin epidermis, sweat and sebaceous glands, oesophagus, ducts of the mammary gland, salivary and prostate glands. Detection of exon 4v-encoded isoforms was restricted to the epidermis and the oesophagus. Similar tissue distributions of CD44 variant isoforms were observed in 10-week-old fetal tissues. Since one of the ligands of CD44 is hyaluronic acid (HA), we also analysed the tissue distribution of HA synthetase. HA synthetase was detected in all tissues analysed, showing good correlation with the expression of the standard form of CD44, CD44s.  相似文献   

9.
Listeria monocytogenes is a facultative intracellular Gram-positive bacterium responsible for listeriosis. It is able to invade, survive and replicate in phagocytic and non-phagocytic cells. The L. monocytogenes surface protein InlB interacts with c-Met, the hepatocyte growth factor (HGF) receptor, inducing bacterial internalization in numerous non-phagocytic cells. As InlB and HGF are known to trigger similar signaling pathways upon c-Met activation, we investigated the role of CD44, and more specifically its isoform CD44v6, in bacterial internalization in non-phagocytic cells. Indeed, CD44, the hyaluronic acid transmembrane receptor, and more specifically its isoform CD44v6 have been reported as necessary for the activation of c-Met upon the interaction with either the endogenous ligand HGF or the L. monocytogenes surface protein InlB. Our results demonstrate that, in the cell lines that we used, CD44 receptors play no role in the activation of c-Met, neither during L. monocytogenes entry, nor upon HGF activation. Furthermore, none of the CD44 isoforms was recruited at the L. monocytogenes entry site, and depletion by siRNA of total CD44 or of CD44v6 isoform did not reduce bacterial infections. Conversely, the overexpression of CD44 or CD44v6 had no significant effect on L. monocytogenes internalization. Together our results reveal that the activation of c-Met can be largely CD44-independent.  相似文献   

10.
The CD44 cell surface glycoprotein is expressed on a broad range of different tissues as multiple isoforms containing from one to ten alternatively spliced exons v1-v10 inserted within the extracellular domain. Differential glycosylation generates still further variability, yielding both N- and O-glycan-modified forms of CD44 in addition to proteoglycan-like variants containing chondroitin sulphate and heparan sulphate. These high molecular mass proteoglycan-like variants, previously identified in lymphocytes, melanomas, and keratinocytes have been implicated in cell-matrix adhesion, cell motility, and invasiveness. More recently, monocyte CD44 molecules presumed to carry glycosaminoglycan chains were shown to bind the chemokine MIP-1 beta (Tanaka, Y.,D. H. Adams, S. Hubscher, H. Hirano, U. Siebenlist, and S. Shaw. 1993. Nature (Lond). 361:79-82.) raising the intriguing possibility that proteoglycan-like CD44 variants might play a role in regulating inflammatory responses. Here we have investigated the molecular identity of these proteoglycan-like CD44 variants by generating a panel of recombinant CD44 isoforms using a novel cassette cloning strategy. We show that both chondroitin and heparan sulphate modifications are associated specifically with isoforms (CD44v3-10 and CD44v3,8-10) containing the v3 alternative exon which encodes a consensus motif SGXG for GAG addition. Other isoforms (CD44v10, CD44v8- 10, CD44v7-10, and CD44v6-10) are shown to lack these GAG chains but to carry extensive O-glycan modifications, most likely within the mucin- like alternative exon inserts. We also demonstrate that the majority of endogenous GAG-modified CD44 isoforms present in epithelial cells constitute v3 isoforms thus establishing that in these cells the majority of proteoglycan-like CD44 variants are generated by alternative splicing. Finally we present evidence using transfected B lymphoma cells that the GAG-modified CD44 isoforms CD44v3-10 and CD44v3,8-10, unlike CD44H, bind only weakly to hyaluronan. Together with the demonstration in the accompanying paper (Bennett, K., D. G. Jackson, J.C. Simon, E. Tanczos, R. Peach, B. Modrell, I. Stamenkovic, G. Plowman, and A. Aruffo. 1995. J. Cell Biol. 128:687-698.), that CD44 molecules containing the v3 exon bind growth factors, these results highlight a new and potentially important role for CD44 alternative splicing in the control of cell-surface proteoglycan expression.  相似文献   

11.
The p38 mitogen-activated protein kinase (MAPK) signaling pathway can be activated by a variety of stress stimuli such as UV radiation and osmotic stress. The regulation and role of this pathway in death receptor-induced apoptosis remain unclear and may depend on the specific death receptor and cell type. Here we show that binding of Fas ligand to Fas activates p38 MAPK in CD8+ T cells and that activation of this pathway is required for Fas-mediated CD8+ T-cell death. Active p38 MAPK phosphorylates Bcl-xL and Bcl-2 and prevents the accumulation of these antiapoptotic molecules within the mitochondria. Consequently, a loss of mitochondrial membrane potential and the release of cytochrome c lead to the activation of caspase 9 and, subsequently, caspase 3. Therefore, the activation of p38 MAPK is a critical link between Fas and the mitochondrial death pathway and is required for the Fas-induced apoptosis of CD8+ T cells.  相似文献   

12.
We have investigated the effect of mechanical damage, cell density, and cell-derived soluble mediators on CD44 expression in a model of bronchial epithelial repair. CD44 (all isoforms) and variant-containing isoforms (CD44v3, CD44v6, and CD44v9) were identified with flow cytometry and immunocytochemistry with image analysis. After mechanical damage, CD44 expression increased up to 500 microm from the wound edge and for up to 48 h in two human bronchial epithelium-derived cell lines, 16HBE14o- and NCI-H292. CD44 expression was unchanged by interferon-gamma and increased by <50% by tumor necrosis factor-alpha. To exclude other soluble factors, a Vaseline spacer was used to temporarily divide petri dishes, with cells at high density on one side and those at low density on the other. After the spacer was removed, the cells at low cell density growing in the shared medium expressed up to fourfold higher CD44, although cell proliferation was unchanged. Thus increased CD44 expression at low cell density was not mediated by soluble factors and may reflect functional involvement in cell motility, dedifferentiation, or altered cell-substrate adhesion in epithelial repair.  相似文献   

13.
Functional immaturity of neonatal T cells is related to their immature phenotype, with the majority of neonatal T cells of naive (CD45RA+) T cells. The progression of T cells from naive cells to effector cells is dependent on the survival of Ag-specific T cells and their resistance to apoptosis. In this study, we showed for the first time that insulin-like growth factor 1 (IGF-1) converted cord blood CD45RA+ T cells to CD45RO+ T cells and inhibited cord blood T cell apoptosis. We found cord blood T cells stimulated with PHA would result in gradual loss of CD45RA and gain of CD45RO expression. IGF-1 further increased the loss of CD45RA and enhanced CD45RO expression in PHA-stimulated cord blood T cells. In addition, IGF-1 prevented cord blood T cells from spontaneous apoptosis through a mechanism other than Fas/FasL. In PHA-activated cord blood T cells, IGF-1 prevented both naive (CD45RA+) and memory/mature (CD45RO+) T cells from apoptosis. Moreover, cord blood T cells cultured with IGF-1 and PHA had a higher resistance to anti-Fas-induced apoptosis as compared with PHA-activated cord blood T cells. IGF-1 also significantly inhibited PHA-induced Fas expression on cord blood T cells. These results demonstrate that IGF-1 promotes the maturation and maintains the survival of cord blood T cells. Its antiapoptotic effect in PHA-activated cord blood T cells may be mediated through the down-regulation of Fas expression.  相似文献   

14.
Peanut agglutinin lectin (PNA) binds the Thomsen-Friedenreich (TF) oncofetal carbohydrate antigen (galactose beta1-3N-acetylgalactosamine alpha) that shows increased expression in colon cancer, adenomas, and inflammatory bowel disease. PNA is mitogenic, both in vitro and in vivo, for colon epithelial cells. In these cells, PNA binds predominantly to cell-surface TF antigen expressed by high molecular weight isoforms of the transmembrane glycoprotein CD44 that are generated in inflamed and neoplastic colonic epithelia by altered RNA splicing. Our aim was to identify the signaling mechanism underlying the proliferative response to PNA. This was investigated in HT29, T84, and Caco2 colon cancer cells. Parallel lectin and immunoblotting of PNA affinity-purified HT29 cell membrane extracts showed PNA binding to high molecular weight CD44v6 isoforms. Within 5 min, PNA (25 microg/mL) caused a 6-fold increase in phosphorylation of hepatocyte growth factor receptor c-Met, known to co-associate with CD44v6. This was followed by the downstream activation of p44/p42 mitogen-activated protein kinase (MAPK) over 15-20 min. The presence of 100 microg/mL asialofetuin, a TF antigen-expressing glycoprotein, blocked both PNA-induced c-Met and MAPK activation. A similar PNA-induced c-Met and MAPK phosphorylation was also seen in T84 cells that express CD44v6 but not in Caco2 cells that lack CD44v6. PNA-induced cell proliferation was completely blocked by 1 microM PD98059, an inhibitor of MAPK activation (p < 0.0001). The expression of TF antigen by CD44 isoforms in colonic epithelial cells allows lectin-induced mitogenesis that is mediated by phosphorylation of c-Met and MAPK. It provides a mechanism by which dietary, microbial, or endogenous galactose-binding lectins could affect epithelial proliferation in the cancerous and precancerous colon.  相似文献   

15.
In the current study, we investigated the nature and role of CD44 variant isoforms involved in endothelial cell (EC) injury and tumor cell cytotoxicity mediated by IL-2-activated killer (LAK) cells. Treatment of CD44 wild-type lymphocytes with IL-2 led to increased gene expression of CD44 v6 and v7 variant isoforms and to significant induction of vascular leak syndrome (VLS). CD44v6-v7 knockout (KO) and CD44v7 KO mice showed markedly reduced levels of IL-2-induced VLS. The decreased VLS in CD44v6-v7 KO and CD44v7 KO mice did not result from differential activation and expansion of CD8+ T cells, NK, and NK-T cells or from altered degree of perivascular lymphocytic infiltration in the lungs. LAK cells from CD44v7 KO mice showed a significant decrease in their ability to adhere to and mediate lysis of EC but not lysis of P815 tumor cells in vitro. CD44v7-mediated lysis of EC by LAK cells was dependent on the activity of phosphatidylinositol 3-kinase and tyrosine kinases. Interestingly, IL-2-activated LAK cells expressing CD44hi but not CD44lo were responsible for EC lysis. Furthermore, lysis of EC targets could be blocked by addition of soluble or enzymatic cleavage of CD44v6-v7-binding glycosaminoglycans. Finally, anti-CD44v7 mAbs caused a significant reduction in the adherence to and killing of EC and led to suppression of IL-2-induced VLS. Together, this study suggests that the expression of CD44v7 on LAK cells plays a specific role in EC injury and that it may be possible to reduce EC injury but not tumor cell killing by specifically targeting CD44v7.  相似文献   

16.
17.
Defective expression of Fas leads to B cell autoimmunity, indicating the importance of this apoptotic pathway in eliminating autoreactive B cells. However, B cells with anti-self specificities occasionally escape such regulation in individuals with intact Fas, suggesting ways of precluding this apoptosis. Here, we examine whether coligation of the B cell Ag receptor (BCR) with the complement (C3)-binding CD21/CD19/CD81 costimulatory complex can enhance the escape of human B cells from Fas-induced death. This was warranted given that BCR-initiated signals induce resistance to Fas apoptosis, some (albeit not all) BCR-triggered events are amplified by coligation of BCR and the co-stimulatory complex, and several self Ags targeted in autoimmune diseases effectively activate complement. Using a set of affinity-diverse surrogate Ags (receptor-specific mAb:dextran conjugates) with varying capacity to engage CD21, it was established that BCR:CD21 coligation lowers the BCR engagement necessary for inducing protection from Fas apoptosis. Enhanced protection was associated with altered expression of several molecules known to regulate Fas apoptosis, suggesting a unique molecular model for how BCR:CD21 coligation augments protection. BCR:CD21 coligation impairs the generation of active fragments of caspase-8 via dampened expression of membrane Fas and augmented expression of FLIP(L). This, in turn, diminishes the generation of cells that would be directly triggered to apoptosis via caspase-8 cleavage of caspase 3 (type I cells). Any attempt to use the mitochondrial apoptotic protease-activating factor 1 (Apaf-1)-dependent pathway for apoptosis (as type II cells) is further blocked because BCR:CD21 coligation promotes up-regulation of the mitochondrial antiapoptotic molecule, Bcl-2.  相似文献   

18.
CD44v6 is transiently expressed during T cell activation, and constitutively CD44v4-v7 expressing transgenic T cells show accelerated responses towards nominal antigens. The underlying mechanism is unknown. The mouse thymoma EL4 was transfected with CD44 standard isoform (CD44s) or CD44v6 cDNA (EL4-s, EL4-v6). Only EL4-v6 cells proliferated at an over 10-fold higher rate than untransfected cells, displayed up-regulated expression of CD69, CD25, and IL-2, and were protected from apoptosis by CD44v6 cross-linking. In the absence of any stimulus, ERK1/2 was partly phosphorylated, and phosphorylation was significantly increased by CD44v6 cross-linking. The same accounted for JNK, c-jun, and IkappaBalpha. Moreover, NF-kappaB was partly translocated into the nucleus. Instead, CD44s cross-linking induced ERK1/2, JNK, c-jun, and IkappaBalpha phosphorylation only in the context of TCR engagement. No selectively CD44v6 associated transmembrane proteins were uncovered in EL4 cells. However, CD44v6, as opposed to CD44s, did not colocalise with the TCR/CD3 complex after CD3 cross-linking. Furthermore, a CD44-associated 85-kDa protein became hypophosphorylated only after CD44v6 cross-linking. Threonine hypophosphorylation of this protein coincided with the activation of MAP and SAP kinases, which was prohibited in the presence of a phosphatase inhibitor. Thus, CD44v6, distinct to CD44s, stimulates autonomously growth and IL-2 secretion of a thymoma line and rescues cells from apoptosis.  相似文献   

19.
 Isoforms of the transmembrane glycoprotein CD44, which are generated by alternative splicing of nine variant exons, have been implicated in tumor cell adhesion, invasion and metastatic spread and may be indicators of the degree of tumor differentiation. Since little is known about the distribution of CD44 in non-neoplastic neuroendocrine cell types, we systematically investigated 42 samples of tissue from different organs, including the pituitary gland, thyroid, parathyroid, adrenal gland, lung, pancreas, stomach, duodenum, jejunum, ileum, appendix, and colon, immunohistochemically for the expression of CD44 standard and variant exon-encoded gene products (CD44v3, v4, v5, v6, v9). Furthermore, double immunolabeling for CD44 and a variety of peptide hormones was applied to characterize the different neuroendocrine cell types. Our results show that neuroendocrine cells derived from the neuroectoderm lack CD44 immunoreactivity. However, those originated from the endoderm exhibit a variable CD44 immunostaining which is related to their anatomical localization and the degree of differentiation irrespective of the hormone produced. Furthermore, we demonstrate that CD44 positive neuroendocrine cells predominantly express CD44 isoforms of the epithelial type and that hyperplastic clusters of neuroendocrine cells of pancreatic ducts express CD44 most probably as a sign of dedifferentiation. Accepted: 13 September 1996  相似文献   

20.
The induction of immunologic unresponsiveness by i.v. administration of Ag-coupled lymphoid cells has been studied extensively, but the mechanisms remain unclear. We have further explored this model by examining the role of Fas/Fas ligand (FasL)-mediated apoptosis. Using i.v. injection of trinitrophenyl-coupled splenocytes (TNP-spl) as tolerogen, we found that Fas signaling for apoptosis in the spleen cells delivered by FasL in the recipient is the critical event. The requirement for Fas and FasL was overcome by prior induction of apoptosis in TNP-spl, making the tolerogen 100 times more potent. Prevention of apoptosis by a caspase inhibitor blocks tolerance. Interestingly, while blocking CD40/CD40 ligand interaction does not prevent tolerance induction, an agonist anti-CD40 Ab turns tolerogenic TNP-spl into an immunizing Ag. Studies further showed that tolerance is induced through cross-presentation of Ag in a class I MHC-dependent manner by CD8(+)CD11c(+) lymphoid-derived dendritic cells to regulatory T cells. The results provide a mechanism for a well-established method of inducing immunologic unresponsiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号