首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular recognition features (MoRFs) are intrinsically disordered protein regions that bind to partners via disorder‐to‐order transitions. In one‐to‐many binding, a single MoRF binds to two or more different partners individually. MoRF‐based one‐to‐many protein–protein interaction (PPI) examples were collected from the Protein Data Bank, yielding 23 MoRFs bound to 2–9 partners, with all pairs of same‐MoRF partners having less than 25% sequence identity. Of these, 8 MoRFs were bound to 2–9 partners having completely different folds, whereas 15 MoRFs were bound to 2–5 partners having the same folds but with low sequence identities. For both types of partner variation, backbone and side chain torsion angle rotations were used to bring about the conformational changes needed to enable close fits between a single MoRF and distinct partners. Alternative splicing events (ASEs) and posttranslational modifications (PTMs) were also found to contribute to distinct partner binding. Because ASEs and PTMs both commonly occur in disordered regions, and because both ASEs and PTMs are often tissue‐specific, these data suggest that MoRFs, ASEs, and PTMs may collaborate to alter PPI networks in different cell types. These data enlarge the set of carefully studied MoRFs that use inherent flexibility and that also use ASE‐based and/or PTM‐based surface modifications to enable the same disordered segment to selectively associate with two or more partners. The small number of residues involved in MoRFs and in their modifications by ASEs or PTMs may simplify the evolvability of signaling network diversity.  相似文献   

2.
Post‐translational modifications (PTMs) of proteins are central in any kind of cellular signaling. Modern mass spectrometry technologies enable comprehensive identification and quantification of various PTMs. Given the increased numbers and types of mapped protein modifications, a database is necessary that simultaneously integrates and compares site‐specific information for different PTMs, especially in plants for which the available PTM data are poorly catalogued. Here, we present the Plant PTM Viewer (http://www.psb.ugent.be/PlantPTMViewer), an integrative PTM resource that comprises approximately 370 000 PTM sites for 19 types of protein modifications in plant proteins from five different species. The Plant PTM Viewer provides the user with a protein sequence overview in which the experimentally evidenced PTMs are highlighted together with an estimate of the confidence by which the modified peptides and, if possible, the actual modification sites were identified and with functional protein domains or active site residues. The PTM sequence search tool can query PTM combinations in specific protein sequences, whereas the PTM BLAST tool searches for modified protein sequences to detect conserved PTMs in homologous sequences. Taken together, these tools help to assume the role and potential interplay of PTMs in specific proteins or within a broader systems biology context. The Plant PTM Viewer is an open repository that allows the submission of mass spectrometry‐based PTM data to remain at pace with future PTM plant studies.  相似文献   

3.
Various post‐translational modifications (PTMs) fine‐tune the functions of almost all eukaryotic proteins, and co‐regulation of different types of PTMs has been shown within and between a number of proteins. Aiming at a more global view of the interplay between PTM types, we collected modifications for 13 frequent PTM types in 8 eukaryotes, compared their speed of evolution and developed a method for measuring PTM co‐evolution within proteins based on the co‐occurrence of sites across eukaryotes. As many sites are still to be discovered, this is a considerable underestimate, yet, assuming that most co‐evolving PTMs are functionally associated, we found that PTM types are vastly interconnected, forming a global network that comprise in human alone >50 000 residues in about 6000 proteins. We predict substantial PTM type interplay in secreted and membrane‐associated proteins and in the context of particular protein domains and short‐linear motifs. The global network of co‐evolving PTM types implies a complex and intertwined post‐translational regulation landscape that is likely to regulate multiple functional states of many if not all eukaryotic proteins.  相似文献   

4.
Post‐translational modifications (PTMs) represent an important regulatory layer influencing the structure and function of proteins. With broader availability of experimental information on the occurrences of different PTM types, the investigation of a potential “crosstalk” between different PTM types and combinatorial effects have moved into the research focus. Hypothesizing that relevant interferences between different PTM types and sites may become apparent when investigating their mutual physical distances, we performed a systematic survey of pairwise homo‐ and heterotypic distances of seven frequent PTM types considering their sequence and spatial distances in resolved protein structures. We found that actual PTM site distance distributions differ from random distributions with most PTM type pairs exhibiting larger than expected distances with the exception of homotypic phosphorylation site distances and distances between phosphorylation and ubiquitination sites that were found to be closer than expected by chance. Random reference distributions considering canonical acceptor amino acid residues only were found to be shifted to larger distances compared to distances between any amino acid residue type indicating an underlying tendency of PTM‐amenable residue types to be further apart than randomly expected. Distance distributions based on sequence separations were found largely consistent with their spatial counterparts suggesting a primary role of sequence‐based pairwise PTM‐location encoding rather than folding‐mediated effects. Our analysis provides a systematic and comprehensive overview of the characteristics of pairwise PTM site distances on proteins and reveals that, predominantly, PTM sites tend to avoid close proximity with the potential implication that an independent attachment or removal of PTMs remains possible. Proteins 2016; 85:78–92. © 2016 Wiley Periodicals, Inc.  相似文献   

5.
Protein post‐translational modifications (PTMs) allow the cell to regulate protein activity and play a crucial role in the response to changes in external conditions or internal states. Advances in mass spectrometry now enable proteome wide characterization of PTMs and have revealed a broad functional role for a range of different types of modifications. Here we review advances in the study of the evolution and function of PTMs that were spurred by these technological improvements. We provide an overview of studies focusing on the origin and evolution of regulatory enzymes as well as the evolutionary dynamics of modification sites. Finally, we discuss different mechanisms of altering protein activity via post‐translational regulation and progress made in the large‐scale functional characterization of PTM function.  相似文献   

6.
Post‐translational modifications (PTMs) are critical regulators of protein function, and nearly 200 different types of PTM have been identified. Advances in high‐resolution mass spectrometry have led to the identification of an unprecedented number of PTM sites in numerous organisms, potentially facilitating a more complete understanding of how PTMs regulate cellular behavior. While databases have been created to house the resulting data, most of these resources focus on individual types of PTM, do not consider quantitative PTM analyses or do not provide tools for the visualization and analysis of PTM data. Here, we describe the Functional Analysis Tools for Post‐Translational Modifications (FAT‐PTM) database ( https://bioinformatics.cse.unr.edu/fat-ptm/ ), which currently supports eight different types of PTM and over 49 000 PTM sites identified in large‐scale proteomic surveys of the model organism Arabidopsis thaliana. The FAT‐PTM database currently supports tools to visualize protein‐centric PTM networks, quantitative phosphorylation site data from over 10 different quantitative phosphoproteomic studies, PTM information displayed in protein‐centric metabolic pathways and groups of proteins that are co‐modified by multiple PTMs. Overall, the FAT‐PTM database provides users with a robust platform to share and visualize experimentally supported PTM data, develop hypotheses related to target proteins or identify emergent patterns in PTM data for signaling and metabolic pathways.  相似文献   

7.
8.
9.
Post-translational modifications (PTMs) regulate protein activity, stability and interaction profiles and are critical for cellular functioning. Further regulation is gained through PTM interplay whereby modifications modulate the occurrence of other PTMs or act in combination. Integration of global acetylation, ubiquitination and tyrosine or serine/threonine phosphorylation datasets with protein interaction data identified hundreds of protein complexes that selectively accumulate each PTM, indicating coordinated targeting of specific molecular functions. A second layer of PTM coordination exists in these complexes, mediated by PTM integration (PTMi) spots. PTMi spots represent very dense modification patterns in disordered protein regions and showed an equally high mutation rate as functional protein domains in cancer, inferring equivocal importance for cellular functioning. Systematic PTMi spot identification highlighted more than 300 candidate proteins for combinatorial PTM regulation. This study reveals two global PTM coordination mechanisms and emphasizes dataset integration as requisite in proteomic PTM studies to better predict modification impact on cellular signaling.  相似文献   

10.
11.
The importance of internal post‐translational modification (PTM) in protein signaling and function has long been known and appreciated. However, the significance of the same PTMs on the alpha amino group of N‐terminal amino acids has been comparatively understudied. Historically considered static regulators of protein stability, additional functional roles for N‐terminal PTMs are now beginning to be elucidated. New findings show that N‐terminal methylation, along with N‐terminal acetylation, is an important regulatory modification with significant roles in development and disease progression. There are also emerging studies on the enzymology and functional roles of N‐terminal ubiquitylation and N‐terminal propionylation. Here, will discuss the recent advances in the functional studies of N‐terminal PTMs, recount the new N‐terminal PTMs being identified, and briefly examine the possibility of dynamic N‐terminal PTM exchange.  相似文献   

12.
Protein methylation is one of the major post-translational modifications (PTMs) in the cell. In Saccharomyces cerevisiae, over 20 protein methyltransferases (MTases) and their respective substrates have been identified. However, the way in which these MTases are modified and potentially subject to regulation remains poorly understood. Here, we investigated six overexpressed S. cerevisiae protein MTases (Rkm1, Rkm4, Efm4, Efm7, Set5 and Hmt1) to identify PTMs of potential functional relevance. We identified 48 PTM sites across the six MTases, including phosphorylation, acetylation and methylation. Forty-two sites are novel. We contextualized the PTM sites in structural models of the MTases and revealed that many fell in catalytic pockets or enzyme–substrate interfaces. These may regulate MTase activity. Finally, we compared PTMs on Hmt1 with those on its human homologs PRMT1, PRMT3, CARM1, PRMT6 and PRMT8. This revealed that several PTMs are conserved from yeast to human, whereas others are only found in Hmt1. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD006767.  相似文献   

13.

Background

Protein post-translational modification (PTM) plays an essential role in various cellular processes that modulates the physical and chemical properties, folding, conformation, stability and activity of proteins, thereby modifying the functions of proteins. The improved throughput of mass spectrometry (MS) or MS/MS technology has not only brought about a surge in proteome-scale studies, but also contributed to a fruitful list of identified PTMs. However, with the increase in the number of identified PTMs, perhaps the more crucial question is what kind of biological mechanisms these PTMs are involved in. This is particularly important in light of the fact that most protein-based pharmaceuticals deliver their therapeutic effects through some form of PTM. Yet, our understanding is still limited with respect to the local effects and frequency of PTM sites near pharmaceutical binding sites and the interfaces of protein-protein interaction (PPI). Understanding PTM’s function is critical to our ability to manipulate the biological mechanisms of protein.

Results

In this study, to understand the regulation of protein functions by PTMs, we mapped 25,835 PTM sites to proteins with available three-dimensional (3D) structural information in the Protein Data Bank (PDB), including 1785 modified PTM sites on the 3D structure. Based on the acquired structural PTM sites, we proposed to use five properties for the structural characterization of PTM substrate sites: the spatial composition of amino acids, residues and side-chain orientations surrounding the PTM substrate sites, as well as the secondary structure, division of acidity and alkaline residues, and solvent-accessible surface area. We further mapped the structural PTM sites to the structures of drug binding and PPI sites, identifying a total of 1917 PTM sites that may affect PPI and 3951 PTM sites associated with drug-target binding. An integrated analytical platform (CruxPTM), with a variety of methods and online molecular docking tools for exploring the structural characteristics of PTMs, is presented. In addition, all tertiary structures of PTM sites on proteins can be visualized using the JSmol program.

Conclusion

Resolving the function of PTM sites is important for understanding the role that proteins play in biological mechanisms. Our work attempted to delineate the structural correlation between PTM sites and PPI or drug-target binding. CurxPTM could help scientists narrow the scope of their PTM research and enhance the efficiency of PTM identification in the face of big proteome data. CruxPTM is now available at http://csb.cse.yzu.edu.tw/CruxPTM/.
  相似文献   

14.
15.
Protein posttranslational modifications (PTMs) are of increasing interest in biomedical research, yet studies rarely examine more than one PTM. One barrier to multi‐PTM studies is the time cost for both sample preparation and data acquisition, which scale linearly with the number of modifications. The most prohibitive requirement is often the need for large amounts of sample, which must be increased proportionally with the number of PTM enrichment steps. Here, a streamlined, quantitative label‐free proteomic workflow—“one‐pot” PTM enrichment—that enables comprehensive identification and quantification of peptides containing acetylated and succinylated lysine residues from a single sample containing as little as 1 mg mitochondria protein is described. Coupled with a label‐free, data‐independent acquisition (DIA), 2235 acetylated and 2173 succinylated peptides with the one‐pot method are identified and quantified and peak areas are shown to be highly correlated between the one‐pot and traditional single‐PTM enrichments. The ‘one‐pot’ method makes possible detection of multiple PTMs occurring on the same peptide, and it is shown that it can be used to make unique biological insights into PTM crosstalk. Compared to single‐PTM enrichments, the one‐pot workflow has equivalent reproducibility and enables direct assessment of PTM crosstalk from biological samples in less time from less tissue.  相似文献   

16.
Phosphorylation at specific residues can activate a protein, lead to its localization to particular compartments, be a trigger for protein degradation and fulfill many other biological functions. Protein phosphorylation is increasingly being studied at a large scale and in a quantitative manner that includes a temporal dimension. By contrast, structural properties of identified phosphorylation sites have so far been investigated in a static, non-quantitative way. Here we combine for the first time dynamic properties of the phosphoproteome with protein structural features. At six time points of the cell division cycle we investigate how the variation of the amount of phosphorylation correlates with the protein structure in the vicinity of the modified site. We find two distinct phosphorylation site groups: intrinsically disordered regions tend to contain sites with dynamically varying levels, whereas regions with predominantly regular secondary structures retain more constant phosphorylation levels. The two groups show preferences for different amino acids in their kinase recognition motifs - proline and other disorder-associated residues are enriched in the former group and charged residues in the latter. Furthermore, these preferences scale with the degree of disorderedness, from regular to irregular and to disordered structures. Our results suggest that the structural organization of the region in which a phosphorylation site resides may serve as an additional control mechanism. They also imply that phosphorylation sites are associated with different time scales that serve different functional needs.  相似文献   

17.
The AutoMotif Server allows for identification of post-translational modification (PTM) sites in proteins based only on local sequence information. The local sequence preferences of short segments around PTM residues are described here as linear functional motifs (LFMs). Sequence models for all types of PTMs are trained by support vector machine on short-sequence fragments of proteins in the current release of Swiss-Prot database (phosphorylation by various protein kinases, sulfation, acetylation, methylation, amidation, etc.). The accuracy of the identification is estimated using the standard leave-one-out procedure. The sensitivities for all types of short LFMs are in the range of 70%. AVAILABILITY: The AutoMotif Server is available free for academic use at http://automotif.bioinfo.pl/  相似文献   

18.
Alterations to the global levels of certain types of post-translational modifications (PTMs) are commonly observed in neurodegenerative diseases. The net influence of these PTM changes to the progression of these diseases can be deduced from cellular and animal studies. However, at the molecular level, how one PTM influences a given protein is not uniform and cannot be easily generalized from systemic observations, thus requiring protein-specific interrogations. Given that protein aggregation is a shared pathological hallmark in neurodegeneration, it is important to understand how these PTMs affect the behavior of amyloid-forming proteins. For this purpose, protein semisynthesis techniques, largely via native chemical and expressed protein ligation, have been widely used. These approaches have thus far led to our increased understanding of the site-specific consequences of certain PTMs to amyloidogenic proteins’ endogenous function, their propensity for aggregation, and the structural variations these PTMs induce toward the aggregates formed.  相似文献   

19.
Protein phosphorylation and acetylation are the two most abundant post‐translational modifications (PTMs) that regulate protein functions in eukaryotes. In plants, these PTMs have been investigated individually; however, their co‐occurrence and dynamics on proteins is currently unknown. Using Arabidopsis thaliana, we quantified changes in protein phosphorylation, acetylation and protein abundance in leaf rosettes, roots, flowers, siliques and seedlings at the end of day (ED) and at the end of night (EN). This identified 2549 phosphorylated and 909 acetylated proteins, of which 1724 phosphorylated and 536 acetylated proteins were also quantified for changes in PTM abundance between ED and EN. Using a sequential dual‐PTM workflow, we identified significant PTM changes and intersections in these organs and plant developmental stages. In particular, cellular process‐, pathway‐ and protein‐level analyses reveal that the phosphoproteome and acetylome predominantly intersect at the pathway‐ and cellular process‐level at ED versus EN. We found 134 proteins involved in core plant cell processes, such as light harvesting and photosynthesis, translation, metabolism and cellular transport, that were both phosphorylated and acetylated. Our results establish connections between PTM motifs, PTM catalyzing enzymes and putative substrate networks. We also identified PTM motifs for further characterization of the regulatory mechanisms that control cellular processes during the diurnal cycle in different Arabidopsis organs and seedlings. The sequential dual‐PTM analysis expands our understanding of diurnal plant cell regulation by PTMs and provides a useful resource for future analyses, while emphasizing the importance of analyzing multiple PTMs simultaneously to elucidate when, where and how they are involved in plant cell regulation.  相似文献   

20.
O-linked N-acetylglucosamine (O-GlcNAc) is a dynamic, reversible monosaccharide modifier of serine and threonine residues on intracellular protein domains. Crosstalk between O-GlcNAcylation and phosphorylation has been hypothesized. Here, we identified over 1750 and 16,500 sites of O-GlcNAcylation and phosphorylation from murine synaptosomes, respectively. In total, 135 (7%) of all O-GlcNAcylation sites were also found to be sites of phosphorylation. Although many proteins were extensively phosphorylated and minimally O-GlcNAcylated, proteins found to be extensively O-GlcNAcylated were almost always phosphorylated to a similar or greater extent, indicating the O-GlcNAcylation system is specifically targeting a subset of the proteome that is also phosphorylated. Both PTMs usually occur on disordered regions of protein structure, within which, the location of O-GlcNAcylation and phosphorylation is virtually random with respect to each other, suggesting that negative crosstalk at the structural level is not a common phenomenon. As a class, protein kinases are found to be more extensively O-GlcNAcylated than proteins in general, indicating the potential for crosstalk of phosphorylation with O-GlcNAcylation via regulation of enzymatic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号