首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A lectin from the phytopathogenic ascomycete Sclerotinia sclerotiorum that shares only weak sequence similarity with characterized fungal lectins has recently been identified. S. sclerotiorum agglutinin (SSA) is a homodimeric protein consisting of two identical subunits of ∼ 17 kDa and displays specificity primarily towards Gal/GalNAc. Glycan array screening indicates that SSA readily interacts with Gal/GalNAc-bearing glycan chains. The crystal structures of SSA in the ligand-free form and in complex with the Gal-β1,3-GalNAc (T-antigen) disaccharide have been determined at 1.6 and 1.97 Å resolution, respectively. SSA adopts a β-trefoil domain as previously identified for other carbohydrate-binding proteins of the ricin B-like lectin superfamily and accommodates terminal non-reducing galactosyl and N-acetylgalactosaminyl glycans. Unlike other structurally related lectins, SSA contains a single carbohydrate-binding site at site α. SSA reveals a novel dimeric assembly markedly dissimilar to those described earlier for ricin-type lectins. The present structure exemplifies the adaptability of the β-trefoil domain in the evolution of fungal lectins.  相似文献   

2.
For the GalNAcα1→ specific Agaricus bisporus agglutinin (ABA) from an edible mushroom, the mechanism of polyvalent Galβ1→3/4GlcNAcβ1→ complex in ABA-carbohydrate recognition has not been well defined since Gal and GlcNAc are weak ligands. By enzyme-linked lectinosorbent and inhibition assays, we show that the polyvalent Galβ1→3/4GlcNAcβ1→ in natural glycans also play vital roles in binding and we propose that four different intensities of glycotopes (Galβ1-3GalNAcα1-, GalNAcα1-Ser/Thr and Galβ1-3/4GlcNAcβ1-) construct three recognition systems at the same domain. This peculiar concept provides the most comprehensive mechanism for the attachment of ABA to target glycans and malignant cells at the molecular level.  相似文献   

3.
Galectins, a group of β-galactoside-binding lectins, are involved in multiple functions through specific binding to their oligosaccharide ligands. No previous work has focused on their interaction with glycosaminoglycans (GAGs). In the present work, affinities of established members of human galectins toward a series of GAGs were investigated, using frontal affinity chromatography. Structurally-defined keratan sulfate (KS) oligosaccharides showed significant affinity to a wide range of galectins if Gal residue(s) remained unsulfated, while GlcNAc sulfation had relatively little effect. Consistently, galectins showed much higher affinity to corneal type I than cartilageous type II KS. Unexpectedly, galectin-3, -7, and -9 also exerted significant affinity to desulfated, GalNAc-containing GAGs, i.e., chondroitin and dermatan, but not at all to hyaluronan and N-acetylheparosan. These observations revealed that the integrity of 6-OH of βGalNAc is important for galectin recognition of these galactosaminoglycans, which were shown, for the first time, to be implicated as potential ligands of galectins.  相似文献   

4.
Stereocontrolled syntheses of branched tri-, tetra-, and pentasaccharides displaying a Galβ1→3GalNAc core in the glycan portion of the glycoprotein antigen from the parasite Echinococcusmultilocularis have been accomplished. Trisaccharide Galβ1→3(GlcNAcβ1→6)GalNAcα1-OR (A), tetrasaccharide Galβ1→3(Galβ1→4GlcNAcβ1→6)GalNAcα1-OR (D), and pentasaccharides Galβ1→3(Galβ1→4Galβ1→4GlcNAcβ1→6)GalNAcα1-OR (E) and Gal β1→3(Galα1→4Galβ1→4GlcNAcβ1→6)GalNAcα1-OR (F) (R = 2-(trimethylsilyl)ethyl) were synthesized by block synthesis. The disaccharide 2-(trimethylsilyl)ethyl 2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl-(1→3)-2-azido-4-O-benzyl-2-deoxy-α-d-galactopyranoside served as a common glycosyl acceptor in the synthesis of the branched oligosaccharides. Moreover, linear trisaccharide Galβ1→4Galβ1→3GalNAcα1-OR (B) and branched tetrasaccharide Galβ1→4Galβ1→3(GlcNAcβ1→6)GalNAcα1-OR (C) were synthesized by stepwise condensation.  相似文献   

5.
Galectins form a large family of β-galactoside-binding proteins in metazoa and fungi. This report presents a comparative study of the functions of potential galectin genes found in the genome database of Caenorhabditis elegans. We isolated full-length cDNAs of eight potential galectin genes (lec-25 and 811) from a λZAP cDNA library. Among them, lec-2–5 were found to encode 31–35-kDa polypeptides containing two carbohydrate-recognition domains similar to the previously characterized lec-1, whereas lec-8–11 were found to encode 16–27-kDa polypeptides containing a single carbohydrate-recognition domain and a C-terminal tail of unknown function. Recombinant proteins corresponding to lec-1–4, -6, and 810 were expressed in Escherichia coli, and their sugar-binding properties were assessed. Analysis using affinity adsorbents with various β-galactosides, i.e., N-acetyllactosamine (Galβ1-4GlcNAc), lacto-N-neotetraose (Galβ1-4GlcNAcβ1-3Galβ1-4Glc), and asialofetuin, demonstrated that LEC-1–4, -6, and -10 have a significant affinity for β-galactosides, while the others have a relatively lower affinity. These results indicate that the integrity of key amino acid residues responsible for recognition of lactose (Galβ1-4Glc) or N-acetyllactosamine in vertebrate galectins is also required in C. elegans galectins. However, analysis of their fine oligosaccharide-binding properties by frontal affinity chromatography suggests their divergence towards more specialized functions.  相似文献   

6.

Background

Lectins are a diverse group of carbohydrate-binding proteins exhibiting numerous biological activities and functions.

Methods

Two-step serial carbohydrate affinity chromatography was used to isolate a lectin from the edible mushroom clouded agaric (Clitocybe nebularis). It was characterized biochemically, its gene and cDNA cloned and the deduced amino acid sequence analyzed. Its activity was tested by hemagglutination assay and carbohydrate-binding specificity determined by glycan microarray analysis. Its effect on proliferation of several human cell lines was determined by MTS assay.

Results

A homodimeric lectin with 15.9-kDa subunits agglutinates human group A, followed by B, O, and bovine erythrocytes. Hemagglutination was inhibited by glycoprotein asialofetuin and lactose. Glycan microarray analysis revealed that the lectin recognizes human blood group A determinant GalNAcα1–3(Fucα1–2)Galβ-containing carbohydrates, and GalNAcβ1–4GlcNAc (N,N'-diacetyllactosediamine). The lectin exerts antiproliferative activity specific to human leukemic T cells.

Conclusions

The protein belongs to the ricin B-like lectin superfamily, and has been designated as C. nebularis lectin (CNL). Its antiproliferative effect appears to be elicited by binding to carbohydrate receptors on human leukemic T cells.

General significance

CNL is one of the few mushroom ricin B-like lectins that have been identified and the only one so far shown to possess immunomodulatory properties.  相似文献   

7.
The social amoeba Dictyostelium discoideum adopts a cohesive stage upon starvation and then produces Discoidin I and II, two proteins able to bind galactose and N-acetyl-galactosamine. The N-terminal domain or discoidin domain (DS) is widely distributed in eukaryotes where it plays a role in extracellular matrix binding while the C-terminal domain displays sequence similarities to invertebrate lectins. We present the first X-ray structures of the wild-type and recombinant Discoidin II in unliganded state and in complex with monosaccharides. The protein forms a homotrimer which presents two binding surfaces situated on the opposite boundaries of the structure. The binding sites of the N-terminal domain contain PEG molecules that could mimics binding of natural ligand. The C-terminal lectin domain interactions with N-acetyl-D-galactosamine and methyl-beta-galactoside are described. The carbohydrate binding sites are located at the interface between monomers. Specificity for galacto configuration can be rationalized since the axial O4 hydroxyl group is involved in several hydrogen bonds with protein side chains. Titration microcalorimetry allowed characterization of affinity and demonstrated the enthalpy-driven character of the interaction. Those results highlight the structural differentiation of the DS domain involved in many cell-adhesion processes from the lectin activity of Dictyostelium discoidins.  相似文献   

8.
Abrin-a is the most toxic fraction of lectins isolated from Abrus precatorius seeds and belongs to the family of type 2 ribosome inactivating proteins (RIP). This toxin may act as a defense molecule in plants against viruses, fungi and insects, where attachment of abrin-a to the exposed glycans on the surface of target cells is the crucial and initial step of its cytotoxicity. Although it has been studied for over four decades, the recognition factors involved in abrin-a-carbohydrate interaction remains to be clarified. In this study, roles of mammalian glyco-structural units, ligand clusters and polyvalency in abrin-a recognition were comprehensively analyzed by enzyme-linked lectinosorbent binding and inhibition assays. The results indicate that: (i) this toxin prefers oligosaccharides having α-anomer of galactose (Gal) at the non-reducing terminal than the corresponding β-anomer; (ii) Galα1-3Galα1- (Bα), Galα1-4Gal (E), Galβ1-3GalNAc (T) and Galβ1-3/4GlcNAc (I/II) related oligosaccharides were the active glyco-structural units; (iii) tri-antennary IIβ, prepared from N-glycan of asialo fetuin, played a dominant role in recognition; (iv) many high-density polyvalent Iβ/IIβ and Eβ glycotopes enhanced the reactivity; (v) the carbohydrate recognition domain of abrin-a is proposed to be a combination of a small cavity type of Gal as major site and a groove type of additional one to tetrasaccharides as subsites with a preference of α1-3/4/6Gal, β1-3GalNAc, β1-3/4/6GlcNAc, β1-4/6Glc, β1-3DAra and β1-4Man as subterminal sugars; (vi) size of the carbohydrate recognition domain may be as large enough to accommodate a linear pentasaccharide and complementary to Galα1-3Galβ1-4GlcNAc β1-3Galβ1-4Glc (gailipenta) sequence. A comparison of the recognition factors and combining sites of abrin-a with ricin, another highly toxic lectin, was also performed to further understand the differences in recognition factors between these two type 2 RIPs.  相似文献   

9.
C-type lectins are a family of proteins with an affinity to carbohydrates in the presence of Ca2+. In the genome of Caenorhabditis elegans, almost 300 genes encoding proteins containing C-type lectin-like domains (CTLDs) have been assigned. However, none of their products has ever been shown to have carbohydrate-binding activity. In the present study, we selected 6 potential C-type lectin genes and prepared corresponding recombinant proteins. One of them encoded by clec-79 was found to have sugar-binding activity by using a newly developed glycoconjugate microarray based on evanescent-field excited fluorescence. CLEC-79 exhibited affinity to sugars containing galactose at the non-reducing terminal, especially to the Galβ1-3GalNAc structure, in the presence of Ca2+. Combined with structural information of the glycans of C. elegans, these results suggest that CLEC-79 preferentially binds to O-glycans in vivo.  相似文献   

10.
Ralstonia solanacearum lectin (RSL), that might be involved in phytopathogenicity, has been defined as lFuc?Man specific. However, the effects of polyvalency of glycotopes and mammalian structural units on binding have not been established. In this study, recognition factors of RSL were comprehensively examined with natural multivalent glycotopes and monomeric ligands using enzyme linked lectin-sorbent and inhibition assays. Among the glycans tested, RSL reacted strongly with multivalent blood group Ah (GalNAcα1–3[Fucα1–2]Gal) and H (Fucα1–2Gal) active glycotopes, followed by Bh (Galα1–3[Fucα1–2]Gal), Lea (Galβ1–3[Fucα1–4]GlcNAc) and Leb (Fucα1–2Galβ1–3[Fucα1–4]GlcNAc) active glycotopes. But weak or negligible binding was observed for blood group precursors having Galβ1–3/4GlcNAcβ1- (Iβ/IIβ) residues or Galβ1–3GalNAcα1- (Tα), GalNAcα1-Ser/Thr (Tn) bearing glycoproteins. These results indicate that the density and degree of exposure of multivalent ligands of α1–2 linked lFuc to Gal at the non-reducing end is the most critical factor for binding. An inhibition study with monomeric ligands revealed that the combining site of RSL should be of a groove type to fit trisaccharide binding with highest complementarity to blood group H trisaccharide (HL; Fucα1–2Galβ1–4Glc). The outstandingly broad RSL saccharide-binding profile might be related to the unusually wide spectrum of plants that suffer from R. solanacearum pathogenicity and provide ideas for protective antiadhesion strategies.  相似文献   

11.
Wang Y  Yu G  Han Z  Yang B  Hu Y  Zhao X  Wu J  Lv Y  Chai W 《FEBS letters》2011,585(24):3927-3934
Lectins are used extensively as research tools to detect and target specific oligosaccharide sequences. Ricinus communis agglutinin I (RCA120) recognizes non-reducing terminal β-d-galactose (Galβ) and its specificities of interactions with neutral and sialylated oligosaccharides have been well documented. Here we use carbohydrate arrays of sulfated Galβ-containing oligosaccharide probes, prepared from marine-derived galactans, to investigate their interactions with RCA120. Our results showed that RCA120 binding to Galβ1–4 was enhanced by 2-O- or 6-O-sulfation but abolished by 4-O-sulfation. The results were corroborated with competition experiments. Erythrina cristagalli lectin is also a Galβ-binding protein but it cannot accommodate any sulfation on Galβ.  相似文献   

12.
Two trisaccharides, three tetrasaccharides, two pentasaccharides, one hexasaccharide, one heptasaccharide, one octasaccharide and one decasaccharide were isolated from polar bear milk samples by chloroform/methanol extraction, gel filtration, ion exchange chromatography and preparative thin-layer chromatography. The oligosaccharides were characterized by 1H-NMR as follows: the saccharides from one animal: Gal(α1-3)Gal(β1-4)Glc (α3′-galactosyllactose), Fuc(α1-2)Gal(β1-4)Glc (2′-fucosyllactose), Gal(α1-3)[Fuc(α1-2)]Gal(β1-4)Glc (B-tetrasaccharide), GalNAc(α1-3)[Fuc(α1-2)]Gal(β1-4)Glc (A-tetrasaccharide), Gal(α1-3)Gal(β1-4)GlcNAc(β1-3)Gal(β1-4)Glc, Gal(α1-3)[Fuc(α1-2)]Gal(β1-4)GlcNAc(β1-3)Gal(β1-4)Glc, Gal(α1-3)Gal(β1-4)GlcNAc(β1-3)[Gal(α1-3)Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc; the saccharides from another animal: α3′-galactosyllactose, Gal(α1-3)Gal(β1-4)[Fuc(α1-3)]Glc, A-tetrasaccharide, GalNAc(α1-3)[Fuc(α1-2)]Gal(β1-4)[Fuc(α1-3)]Glc (A-pentasaccharide), Gal(α1-3)Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-3)Gal(β1-4)Glc, Gal(α1-3)Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-3)Gal(β1-4)[Fuc(α1-3)]Glc (difucosylheptasaccharide) and Gal(α1-3)Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-3){Gal(α1-3)Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-6)}Gal(β1-4)Glc (difucosyldecasaccharide). Lactose was present only in small amounts. Some of the milk oligosaccharides of the polar bear had α-Gal epitopes similar to some oligosaccharides in milk from the Ezo brown bear and the Japanese black bear. Some milk oligosaccharides had human blood group A antigens as well as B antigens; these were different from the oligosaccharides in Ezo brown and Japanese black bears.  相似文献   

13.
Helix pomatia agglutinin (HPA) is a N-acetylgalactosamine (GalNAc) binding lectin found in the albumen gland of the roman snail. As a constituent of perivitelline fluid, HPA protects fertilized eggs from bacteria and is part of the innate immunity system of the snail. The peptide sequence deduced from gene cloning demonstrates that HPA belongs to a family of carbohydrate-binding proteins recently identified in several invertebrates. This domain is also present in discoidin from the slime mold Dictyostelium discoideum. Investigation of the lectin specificity was performed with the use of glycan arrays, demonstrating that several GalNAc-containing oligosaccharides are bound and rationalizing the use of this lectin as a cancer marker. Titration microcalorimetry performed on the interaction between HPA and GalNAc indicates an affinity in the 10(-4) M range with an enthalpy-driven binding mechanism. The crystal structure of HPA demonstrates the occurrence of a new beta-sandwich lectin fold. The hexameric quaternary state was never observed previously for a lectin. The high resolution structure complex of HPA with GalNAc characterizes a new carbohydrate binding site and rationalizes the observed preference for alphaGalNAc-containing oligosaccharides.  相似文献   

14.
Stallion sperm from semen collected in Southern Italy during the breeding (June-July) and non-breeding (December-January) periods were analyzed by means of twelve lectins to evaluate the glycoconjugate pattern and to verify whether there are any seasonal differences in the glycosylation pattern of the sperm glycocalyx. The acrosomal cap showed reactivity for Maackia amurensis (MAL II), Sambucus nigra (SNA), Arachis hypogaea (PNA), Glycine max (SBA), Helix pomatia (HPA), Canavalia ensiformis (Con A) Triticum vulgaris (WGA), and Griffonia simplicifolia isolectin II (GSA II) in breeding and non-breeding ejaculated sperm, suggesting the presence of oligosaccharides terminating with Neu5Acα2,3Galβ1,4GlcNAc, Neu5Acα2,6Gal/GalNAc, with Galβ1,3GalNAc, α/βGalNAc and glycans with terminal/internal αMan and GlcNAc. During the non-breeding period, the acrosomal cap expressed oligosaccharides terminating with Galβ1,4GlcNAc (Ricinus communis120 affinity) (RCA120) and L-Fucα1,2Galβ1,4GlcNAcβ (Ulex europaeus affinity) (UEA I). The equatorial segment placed between the acrosomal cap and post-acrosomal region did not display glycans terminating with GalNAc, GlcNAc, and αL-Fuc. The post-acrosomal region of sperm collected in the breeding and non-breeding periods bound Con A, MAL II, SNA, and SBA, thus showing the presence of N-linked oligosaccharides from high-Man content, terminating with Neu5Acα2,3Galβ1,4GlcNAc, Neu5Acα2,6Gal/GalNAc and GalNAc. In winter, the post-acrosomal region also expressed oligosaccharides terminating with αGalNAc, GlcNAc, and L-Fucα1,2Galβ1,4GlcNAcβ (HPA, GSA II, and UEA I staining). The tail of sperm from semen collected during the breeding and non-breeding periods showed a lectin binding pattern similar to the post-acrosomal region, except for the absence of HPA staining in sperm collected during the winter season. These results indicate that the surface of stallion sperm contains different glycocalyx domains and that the glycosylation pattern undergoes changes during the breeding and non-breeding periods.  相似文献   

15.
A rhamnose-binding glycoprotein (lectin), named SML, was isolated from the eggs of Spanish mackerel (Scomberomorous niphonius) by affinity and ion-exchange chromatographies. SML was composed of a non-covalently linked homodimer. The SML subunit was composed of 201 amino acid residues with two tandemly repeated domains, and contained 8 half-Cys residues in each domain, which is highly homologous to the N-terminal lectin domain of calcium-independent α-latrotoxin receptor in mammalian brains. Each domain has the same disulfide bonding pattern; Cys10–Cys40, Cys20–Cys99, Cys54–Cys86 and Cys67–Cys73 were located in the N-terminal domain, and Cys108–Cys138, Cys117–Cys195, Cys152–Cys182 and Cys163–Cys169 were in the C-terminal domain. SML was N-glycosylated at Asn168 in the C-terminal domain. The structure of the sugar chain was determined to be NeuAc-Galβ1-4GlcNAcβ1-2Manα1-6-(NeuAc-Galβ1-4GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAc-Asn.  相似文献   

16.
Oral bacteria initiate biofilm formation by attaching to tooth surfaces via an interaction of a lectin-like bacterial protein with carbohydrate chains on the pellicle. This study aimed to find naturally derived lectins that inhibit the initial attachment of a cariogenic bacterial species, Streptococcus mutans (S. mutans), to carbohydrate chains in saliva in vitro. Seventy kinds of lectins were screened for candidate motifs that inhibit the attachment of S. mutans ATCC 25175 to a saliva-coated culture plate. The inhibitory effect of the lectins on attachment of the S. mutans to the plates was quantified by crystal violet staining, and the biofilm was observed under a scanning electron microscope (SEM). Surface plasmon resonance (SPR) analysis was performed to examine the binding of S. mutans to carbohydrate chains and the binding of candidate lectins to carbohydrate chains, respectively. Moreover, binding assay between the biotinylated-lectins and the saliva components was conducted to measure the lectin binding. Lectins recognizing a salivary carbohydrate chain, Galβ1-3GalNAc, inhibited the binding of S. mutans to the plate. In particular, Agaricus bisporus agglutinin (ABA) markedly inhibited the binding. This inhibition was confirmed by SEM observation. SPR analysis indicated that S. mutans strongly binds to Galβ1-3GalNAc, and ABA binds to Galβ1-3GalNAc. Finally, the biotinylated Galβ1-3GalNAc-binding lectins including ABA demonstrated marked binding to the saliva components. These results suggest that ABA lectin inhibited the attachment of S. mutans to Galβ1-3GalNAc in saliva and ABA can be useful as a potent inhibitor for initial attachment of oral bacteria and biofilm formation.  相似文献   

17.
Dihydrodipicolinate synthase (DHDPS) catalyses the first committed step in the biosynthesis of (S)-lysine, an essential constituent of bacterial cell walls. Escherichia coli DHDPS is homotetrameric, and each monomer contains an N-terminal (β/α)8-barrel, responsible for catalysis and regulation, and three C-terminal α-helices, the function of which is unknown. This study investigated the C-terminal domain of E. coli DHDPS by characterising a C-terminal truncated DHDPS (DHDPS-H225∗). DHDPS-H225∗ was unable to complement an (S)-lysine auxotroph, and showed significantly reduced solubility, stability, and maximum catalytic activity (kcat = 1.20 ± 0.01 s−1), which was only 1.6% of wild type E. coli DHDPS (DHDPS-WT). The affinity of DHDPS-H225∗ for substrates and the feedback inhibitor, (S)-lysine, remained comparable to DHDPS-WT. These changes were accompanied by disruption in the quaternary structure, which has previously been shown to be essential for efficient catalysis in this enzyme.  相似文献   

18.
Lactobacillus acidophilus NCFM is a probiotic bacterium known for its beneficial effects on human health. The importance of α-galactosidases (α-Gals) for growth of probiotic organisms on oligosaccharides of the raffinose family present in many foods is increasingly recognized. Here, the crystal structure of α-Gal from L. acidophilus NCFM (LaMel36A) of glycoside hydrolase (GH) family 36 (GH36) is determined by single-wavelength anomalous dispersion. In addition, a 1.58-Å-resolution crystallographic complex with α-d-galactose at substrate binding subsite − 1 was determined. LaMel36A has a large N-terminal twisted β-sandwich domain, connected by a long α-helix to the catalytic (β/α)8-barrel domain, and a C-terminal β-sheet domain. Four identical monomers form a tightly packed tetramer where three monomers contribute to the structural integrity of the active site in each monomer. Structural comparison of LaMel36A with the monomeric Thermotoga maritima α-Gal (TmGal36A) reveals that O2 of α-d-galactose in LaMel36A interacts with a backbone nitrogen in a glycine-rich loop of the catalytic domain, whereas the corresponding atom in TmGal36A is from a tryptophan side chain belonging to the N-terminal domain. Thus, two distinctly different structural motifs participate in substrate recognition. The tetrameric LaMel36A furthermore has a much deeper active site than the monomeric TmGal36A, which possibly modulates substrate specificity. Sequence analysis of GH36, inspired by the observed structural differences, results in four distinct subgroups having clearly different active-site sequence motifs. This novel subdivision incorporates functional and architectural features and may aid further biochemical and structural analyses within GH36.  相似文献   

19.
C-type lectins play crucial roles in innate immunity to recognize and eliminate pathogens efficiently. In the present study, two C-type lectins from shrimp Litopenaeus vannamei (designated as LvLectin-1 and LvLectin-2) were identified, and their expression patterns, both in tissues and toward pathogen stimulation, were then characterized. The full-length cDNA of LvLectin-1 and LvLectin-2 was 567 and 625 bp, containing an open reading frame (ORF) of 471 and 489 bp, respectively, and deduced amino acid sequences showed high similarity to other members of C-type lectin superfamily. Both two C-type lectins encoded a single carbohydrate-recognition domain (CRD). The motif of Ca2+ binding site 2 in CRD, which determined carbohydrate-binding specificity, was QPN (Gln122-Pro123-Asn124) in LvLectin-1, but QPD (Gln128-Pro129-Asp130) in LvLectin-2. Two C-type lectins exhibited similar tissue expression pattern, for their mRNA were both constitutively expressed in all tested tissues, including hepatopancreas, muscle, gill, hemocytes, gonad and heart, furthermore they were both mostly expressed in hepatopancreas, though the expression level of LvLectin-2 was much higher than LvLectin-1. The expression level of two C-type lectins mRNA in hemocytes varied greatly after the challenge of Listonella anguillarum or WSSV. After L. anguillarum challenge, the expression of both C-type lectins were significantly (P < 0.01) up-regulated compared with blank group, and LvLectin-1 exhibited higher level than LvLectin-2; while after the stimulation of WSSV, the expression of LvLectin-2 was significantly up-regulated at 6 h (P < 0.01) and 12 h (P < 0.05), but the expression level of LvLectin-1 down-regulated significantly (P < 0.01) to 0.4-fold at 6 and 12 h post-stimulation. The results indicated that the two C-type lectins might be involved in immune response toward pathogen infection, and they might perform different recognition specificity toward bacteria or virus.  相似文献   

20.
The crystal structure of winged bean basic agglutinin in complex with GalNAc-alpha-O-Ser (Tn-antigen) has been elucidated at 2.35 angstroms resolution in order to characterize the mode of binding of Tn-antigen with the lectin. The Gal moiety occupies the primary binding site and makes interactions similar to those found in other Gal/GalNAc specific legume lectins. The nitrogen and oxygen atoms of the acetamido group of the sugar make two hydrogen bonds with the protein atoms whereas its methyl group is stabilized by hydrophobic interactions. A water bridge formed between the terminal oxygen atoms of the serine residue of the Tn-antigen and the side chain oxygen atom of Asn128 of the lectin increase the affinity of the lectin for Tn-antigen compared to that for GalNAc. A comparison with the available structures reveals that while the interactions of the glyconic part of the antigen are conserved, the mode of stabilization of the serine residue differs and depends on the nature of the protein residues in its vicinity. The structure provides a qualitative explanation for the thermodynamic parameters of the complexation of the lectin with Tn-antigen. Modeling studies indicate the possibility of an additional hydrogen bond with the lectin when the antigen is part of a glycoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号