首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
木质纤维素复杂的结构组成,是制约高效降解利用这一资源、发展生物炼制的瓶颈。微生物的多酶(菌)体系可有效降解木质纤维素。除好氧微生物的游离酶协同系统之外,主要存在于厌氧细菌中的纤维小体也是有序、高效的协同降解纤维素的复合体系。近年来,在天然纤维小体研究的基础上,研究者们成功设计、构建了人工纤维小体,加深了对这一复合体系的组成单元的理性认识。另外,菌群共培养技术利用各组成菌株代谢途径的协同作用实现了木质纤维素的高效降解。最后,引入异源纤维素酶,可改造现有工程菌株的代谢网络,提高工程菌发酵生产终产物的能力。这些技术有利于实现一步转化生产乙醇的联合生物工艺,有助于提高生物炼制的产率、降低生产成本。  相似文献   

2.
本研究选取众所周知的典型白腐真菌树舌灵芝Ganoderma applanatum、毛栓孔菌Trametes hirsuta和木蹄层孔菌Fomes fomentarius作为研究对象,对其利用木质纤维生物质进行发酵及添加有机营养、无机盐、金属离子、表面活性剂等进行了探索,期间以测定漆酶、滤纸纤维素酶、木聚糖酶活性表征3种菌株对木质纤维生物质的预处理能力,为确定白腐真菌菌株及单环境因子而达到高效预处理木质纤维生物质提高生物转化效率的目的奠定了重要的理论基础。结果显示,3种菌株分泌的木质纤维素酶在10周内基本都呈现先上升后下降的趋势,且酶活都较高,均可作为木质纤维生物质预处理的备选菌株。相比于针叶树(落叶松)基质,阔叶树(白桦)基质更适宜于3种菌株生长及分泌木质纤维素酶。各环境因子中,Cu2+的添加可提高漆酶活性,表面活性剂对于3种酶活的诱导作用均十分显著。  相似文献   

3.
Lignocellulosic biomass from agricultural crop residues and forest waste represents an abundant renewable resource for bioenergy and future biofuel. The current bottleneck of lignocellulosic biofuel production is the hydrolysis of biomass to sugar. To understand the enzymatic hydrolysis of complex biomasses, in this report, lignocellulolytic enzymes secretion by Phanerochaete chrysosporium cultivated in different natural lignocellulosic biomass such as corn stover, hay, sawdust, sugarcane baggase, wheat bran and wood chips were quantitatively analyzed with the iTRAQ technique using LC-MS/MS. A diverse groups of enzymes, including cellulases, glycoside hydrolases, hemicellulases, lignin degrading enzymes, peroxidases, esterases, lipases, chitinases, peptidases, protein translocating transporter and hypothetical proteins were quantified, of which several were novel lignocellulosic biomass hydrolyzing enzymes. The quantitative expression and regulation of lignocellulolytic enzymes by P. chrysosporium were dependent on the nature and complexity of lignocellulosic biomass as well as physical size of the biomass. The iTRAQ data revealed oxidative and hydrolytic lignin degrading mechanism of P. chrysosporium. Numerous proteins presumed to be involved in natural lignocellulosic biomass transformation and degradation were expressed and produced in variable quantities in response to different agricultural and forest wastes.  相似文献   

4.
5.
The aim of this study was to elucidate the evolution of enzyme secretome of early lineage fungi to contribute to resolving the basal part of Fungal Kingdom and pave the way for industrial evaluation of their unique enzymes. By combining results of advanced sequence analysis with secretome mass spectrometry and phylogenetic trees, we provide evidence for that plant cell wall degrading enzymes of higher fungi share a common ancestor with enzymes from aerobic ancient fungi. Sequence analysis (HotPep, confirmed by dbCAN-HMM models) enabled prediction of enzyme function directly from sequence. For the first time, oxidative enzymes are described here in early lineage fungi (Chytridiomycota & Cryptomycota), which supports the conceptually new understanding that fungal LPMOs were also present in the early evolution of the Fungal Kingdom. Phylogenetic analysis of fungal AA9 proteins suggests an LPMO-common-ancestor with Ascomycetes and Basidiomycetes and describes a new clade of AA9s. We identified two very strong biomass degraders, Rhizophlyctis rosea (soil-inhabiting) and Neocallimastix californiae (rumen), with a rich spectrum of cellulolytic, xylanolytic and pectinolytic enzymes, characteristically including several different enzymes with the same function. Their secretome composition suggests horizontal gene transfer was involved in transition to terrestrial and rumen habitats. Methods developed for recombinant production and protein characterization of enzymes from zoosporic fungi pave the way for biotechnological exploitation of unique enzymes from early lineage fungi with potential to contribute to improved biomass conversion. The phyla of ancient fungi through evolution have developed to be very different and together they constitute a rich enzyme discovery pool.  相似文献   

6.
Lipids created via microbial biosynthesis are a potential raw material to replace plant-based oil for biodiesel production. Oleaginous microbial species currently available are capable of accumulating high amount of lipids in their cell biomass, but rarely can directly utilize lignocellulosic biomass as substrates. Thus this research focused on the screening and selection of new fungal strains that generate both lipids and hydrolytic enzymes. To search for oleaginous fungal strains in the soybean plant, endophytic fungi and fungi close to the plant roots were studied as a microbial source. Among 33 endophytic fungal isolates screened from the soybean plant, 13 have high lipid content (>20 % dry biomass weight); among 38 fungal isolates screened from the soil surrounding the soybean roots, 14 have high lipid content. Also, five fungal isolates with both high lipid content and promising biomass production were selected for further studies on their cell growth, oil accumulation, lipid content and profile, utilization of various carbon sources, and cellulase production. The results indicate that most strains could utilize different types of carbon sources and some strains accumulated >40 % of the lipids based on the dry cell biomass weight. Among these promising strains, some Fusarium strains specifically showed considerable production of cellulase, which offers great potential for biodiesel production by directly utilizing inexpensive lignocellulosic material as feedstock.  相似文献   

7.
Production of extracellular enzymes participating in the degradation of biopolymers was studied in 29 strains of nonbasidiomycetous microfungi isolated from Quercus petraea forest soil based on the frequency of occurrence. Most of the isolates were ascomycetes and belonged to the genera Acremonium, Alternaria, Cladosporium, Geomyces, Hypocrea, Myrothecium, Ochrocladosporium, and Penicillium (18 isolates), and two isolates were zygomycetes. Only six isolates showed phenol oxidation activity which was low and none of the strains were able to degrade humic acids. Approximately half of the strains were able to degrade cellulose and all but six degraded chitin. Most strains produced significant amounts of the cellulolytic enzymes cellobiohydrolase and ??-glucosidase and the chitinolytic enzymes chitinase, chitobiosidase, and N-acetylglucosaminidase. The highest cellulase activities were found in Penicillium strains, and the highest activity of chitinolytic enzymes was found in Acremonium sp. The production of the hemicellulose-degrading enzymes ??-galactosidase, ??-galactosidase, and ??-mannosidase was mostly low. The microfungal strains were able to produce significant growth on a range of 41?C87, out of 95 simple C-containing substrates tested in a Biolog? assay, monosaccharides being for all strains the most rapidly metabolized C-sources. Comparison with saprotrophic basidiomycetes from the same environment showed that microfungi have similar cellulolytic capabilities and higher chitinase activities which testifies for their active role in the decomposition of both lignocellulose and dead fungal biomass, important pools of soil carbon.  相似文献   

8.
Anaerobic gut fungi represent a distinct early-branching fungal phylum (Neocallimastigomycota) and reside in the rumen, hindgut, and feces of ruminant and nonruminant herbivores. The genome of an anaerobic fungal isolate, Orpinomyces sp. strain C1A, was sequenced using a combination of Illumina and PacBio single-molecule real-time (SMRT) technologies. The large genome (100.95 Mb, 16,347 genes) displayed extremely low G+C content (17.0%), large noncoding intergenic regions (73.1%), proliferation of microsatellite repeats (4.9%), and multiple gene duplications. Comparative genomic analysis identified multiple genes and pathways that are absent in Dikarya genomes but present in early-branching fungal lineages and/or nonfungal Opisthokonta. These included genes for posttranslational fucosylation, the production of specific intramembrane proteases and extracellular protease inhibitors, the formation of a complete axoneme and intraflagellar trafficking machinery, and a near-complete focal adhesion machinery. Analysis of the lignocellulolytic machinery in the C1A genome revealed an extremely rich repertoire, with evidence of horizontal gene acquisition from multiple bacterial lineages. Experimental analysis indicated that strain C1A is a remarkable biomass degrader, capable of simultaneous saccharification and fermentation of the cellulosic and hemicellulosic fractions in multiple untreated grasses and crop residues examined, with the process significantly enhanced by mild pretreatments. This capability, acquired during its separate evolutionary trajectory in the rumen, along with its resilience and invasiveness compared to prokaryotic anaerobes, renders anaerobic fungi promising agents for consolidated bioprocessing schemes in biofuels production.  相似文献   

9.
The Streptomyces spp. are notorious plant biomass decomposers in soil environments, but only few strains were biochemically and genetically characterized. Here, we employed functional screening along with genomic sequencing for identification of novel lignocellulolytic Streptomyces strains. Streptomyces strains isolated from soil were functional screened based on their cellulolytic and hemicellulolytic capacities by enzymatic plate assays containing carboxymethylcellulose (CMC) and beechwood xylan as sole carbon source. Subsequently, genomes of Streptomyces strains were sequenced, annotated, and interpreted to correlate their genetic contents with biochemical properties. Among the 80 bacterial isolates that were screened for enzymatic activity, two Streptomyces strains (named as F1 and F7) exhiting higher endoglucanase and endoxylanase activities were selected for biochemical and genomic characterization. After cultivation on steam-pretreated sugarcane bagasse-based medium, the supernatant of the strains F1 and F7 exhibited enzymatic activity against different substrates, such as arabinan, rye arabinoxylan, β-glucan, starch, CMC, xylan, and chitin. Furthermore, strain F7 was able to degrade pectin, mannan, and lichenan. The genomic analysis of both strains revealed a diversity of carbohydrate-active enzymes. The F1 and F7 genomes encode 33 and 44 different types of glycosyl hydrolases families, respectively. Moreover, the genomic analysis also identified genes related to degradation of lignin-derived aromatic compounds. Collectively, the study revealed two novel Streptomyces strains and further insights on the degradation capability of lignocellulolytic bacteria, from which a number of technologies can arise, such as saccharification processes.  相似文献   

10.
Biorefinery of renewable lignocellulosic biomass to biochemical and biofuel is a promising technology to mitigate global warming and fuel shortage but hydrolysis of recalcitrant lignocellulose to its constitutive components is the bottleneck of the process. This work isolated and characterized a new lignocellulose degrading filamentous fungus from decomposing wood in mangrove area. The strain was identified as Coniochaeta sp. according to ITS rRNA sequences and its phylogenic analysis. The extracellular lignocellulolytic enzymes of this fungal strain, when grown on corn stover, were profiled by LC–MS/MS and exponentially modified protein abundance index (emPAI) based label-free quantitative proteomics approach. We identified 107 potential lignocellulolytic enzymes and their functional classification revealed unique extracellular enzyme system constituting multienzyme complexes of cellulases (29%), hemicellulases (17%), glycoside hydrolases (10%), proteases and peptidases (24%), lignin degrading enzymes (7%) and hypothetical proteins (13%). The growth behavior, biochemical assay and LC–MS/MS analysis of secretome by isolated fungal strain revealed its lignocellulose degradation potential when cultivated with corn stover as a major carbon source.  相似文献   

11.
Mangrove sediments were collected from major mangrove stands on the Red Sea Coast of Saudi Arabia. Forty five isolates belonging to 12 genera were purified and five isolates as well as their consortium were found to be able to grow in association with petroleum oil as sole carbon source under in vitro conditions. The isolated strains were identified based on internal transcribed spacer (ITS) rDNA sequence analysis. The fungal strains with the greatest potentiality to degrade diesel oil, without developing antagonistic activity, were identified as Alternaria alternata, Aspergillus terreus, Cladosporium sphaerospermum, Eupenicillium hirayamae and Paecilomyces variotii. As compared to the controls, these fungi accumulated significantly higher biomass, produced extracellular enzymes and liberated larger volumes of CO2. These observations with GC–MS data confirm that these isolates displayed rapid diesel oil bioremoval and when used together as a consortium, there was no antagonistic activity.  相似文献   

12.
Five strains of cellulolytic bacteria and four strains of Phanerochaete chrysosporium were evaluated for the lignocellulolytic enzyme production during submerged fermentation (SmF) of paddy straw. Extra-cellular enzyme assay for CMCase, FPase, Cellobiase, Xylanase, Lignin peroxidase and Laccase enzymes was performed after 7 and 15 days of submerged fermentation. Cellulomonas cellulans MTCC 23, Cytophaga hutchinsonii NCIM 2338 and Phanerochaete chrysosporium MTCC 787 were found to produce higher lignocellulolytic enzyme activities than rest of the cultures after 15 days of fermentation.  相似文献   

13.
Lignocellulosic residues are amongst the most abundant waste products on Earth. Therefore, there is an increasing interest in the utilization of these residues for bioethanol production and for biorefineries to produce compounds of industrial interest. Enzymes that breakdown cellulose and hemicellulose into oligomers and monosaccharides are required in these processes and cellulolytic enzymes with optimum activity at a low pH area are desirable for industrial processes. Here, we explore the fungal biodiversity of Rıo Tinto, the largest acidic ecosystem on Earth, as far as the secretion of cellulolytic enzymes is concerned. Using colorimetric and industrial substrates, we show that a high proportion of the fungi present in this extremophilic environment secrete a wide range of enzymes that are able to hydrolyze cellulose and hemicellulose at acidic pH (4.5–5). Shotgun proteomic analysis of the secretomes of some of these fungi has identified different cellulases and hemicellulolytic enzymes as well as a number of auxiliary enzymes. Supplementation of pre-industrial cocktails from Myceliophtora with Rio Tinto secretomes increased the amount of monosaccharides released from corn stover or sugar cane straw. We conclude that the Rio Tinto fungi display a good variety of hydrolytic enzymes with high industrial potential.  相似文献   

14.
Microbial production of ethanol might be a potential route to replace oil and chemical feedstocks. Bioethanol is by far the most common biofuel in use worldwide. Lignocellulosic biomass is the most promising renewable resource for fuel bioethanol production. Bioconversion of lignocellulosics to ethanol consists of four major unit operations: pretreatment, hydrolysis, fermentation, and product separation/distillation. Conventional bioethanol processes for lignocellulosics apply commercial fungal cellulase enzymes for biomass hydrolysis, followed by yeast fermentation of resulting glucose to ethanol. The fungus Neurospora crassa has been used extensively for genetic, biochemical, and molecular studies as a model organism. However, the strain's potential in biotechnological applications has not been widely investigated and discussed. The fungus N. crassa has the ability to synthesize and secrete all three enzyme types involved in cellulose hydrolysis as well as various enzymes for hemicellulose degradation. In addition, N. crassa has been reported to convert to ethanol hexose and pentose sugars, cellulose polymers, and agro-industrial residues. The combination of these characteristics makes N. crassa a promising alternative candidate for biotechnological production of ethanol from renewable resources. This review consists of an overview of the ethanol process from lignocellulosic biomass, followed by cellulases and hemicellulases production, ethanol fermentations of sugars and lignocellulosics, and industrial application potential of N. crassa.  相似文献   

15.
Several fungal species were isolated from different sources: post-harvest sugarcane residue, soil, decomposing forest litter and from mycelia obtained from the inner parts of fresh fungal fruiting bodies collected in Las Yungas region (Argentina). These isolates were first screened for their ability to produce carboxymethyl cellulose (CMC) degradation and guaiacol oxidation. After primary screening, seventeen isolates were further tested for their ligninolytic ability by assessing polyphenoloxidase, laccase, manganese peroxidase and endoxylanase activities. Based on their lignocellulolytic activities, five isolates (named Bjerkandera sp. Y-HHM2, Phanerochaete sp. Y-RN1, Pleurotus sp. Y-RN3, Hypocrea nigricans SCT-4.4 and Myrothecium sp. S-3.20) were selected for liquid and solid-state fermentation assays in culture media including sugarcane debris. Lignocellulolytic enzymes production, dry mass loss and phenol concentration in the water soluble fraction were then evaluated. Results suggest that native strains with lignocellulolytic activity are suitable to increase post-harvest sugarcane residue decomposition and support the use of these strains as an alternative to pre and post-harvest burning. Biological treatments using Phanerochaete sp. Y-RN1, Pleurotus sp. Y-RN3 and Myrothecium sp. S-3.20 could be used to degrade and increase the accessibility to lignocellulose components of sugarcane residue.  相似文献   

16.
The increasing world demand for fuels makes it necessary to exploit the largest reserve of extra-heavy crude oil (EHCO) of the Orinoco Oil Belt from Venezuela. We propose the use of extracellular oxidative enzymes, in particular, lignin-degrading enzyme systems (LDS) of fungi, for enzymatic improvement of EHCO. Autochthonous non-white rot fungal strains able to use EHCO, and several polycyclic aromatic hydrocarbons (PAHs) as sole carbon source and energy, were isolated from EHCO-polluted soils and identified as belonging to the genera Fusarium, Penicillium , Trichoderma , Aspergillus , Neosartorya, Pseudallescheria, Cladosporium, Pestalotiopsis , Phoma and Paecillomyces. Phenotypic and biochemical assays revealed the ability of these filamentous fungi to synthesize extracellular oxidative enzymes, and suggested a relationship between the LDS and EHCO bioconversion. This work reports, for the first time, the use of o-phenylenediamine dihydrochloride (OPD) as substrate to measure extracellular ligninolytic peroxidases (ELP) in culture broths of filamentous fungi (Fusarium solani HP-1), and constitutes the first formal study of the fungal community associated with the EHCO of the Orinoco Oil Belt.  相似文献   

17.
The activity of extracellular polysaccharide-degrading enzymes and glycosidases from mycelial fungi towards various carbohydrates and carbohydrate derivatives from plant and algal cell walls has been screened. Twenty-three strains of mycelial fungi isolated from the marine sediment and dung were grown by submerged cultivation on a plant-based substrate (a by-product of the grain processing industry) for previous screening for their biomass and protein productivity. Molecular identification allowed for the assignment of marine fungal strains to the following species: Sirastachys phyllophila, Ochroconis mirabilis, Pseudallescheria boydii, Pseudallescheria ellipsoidea, Beauveria felina, Scopulariopsis brevicaulis, Cladosporium sp., and Trichoderma sp. The terrestrial strains belonged to the species Thermomyces thermophilus, Thermomyces dupontii, Thermomyces lanuginosus, Fusarium avenaceum, Mycothermus thermophilum, and Thermothelomyces thermophila. Seven strains of thermophilic terrestrial fungal species T. thermophila, T. thermophilus, T. dupontii and M. thermophilus and two marine fungal strains of S. brevicaulis and Beauveria felina exhibited the highest protein yields and a wide range of polysaccharide-degrading activity when the cultures were cultivated at 22–25°C. The cellulolytic thermophilic strain M. thermophilus 55 isolated from dung demonstrated unusual specificity, most intensive increase of mycelial biomass, and high activity towards algal polysaccharides after seven days of cultivation. The specific activity of laminarinase was one order of magnitude higher than in the marine strains and amounted to 1180 U/mg, and the alginate lyase, carrageenase, polymannuronate lyase, agarase, and fucoidanase activity levels (from 208 to 500 U/mg) were also higher than in all marine strains. All active polysaccharide-degrading strains of thermophilic terrestrial and marine fungi identified in the present study are of considerable interest, as the potential of these fungi for polysaccharide degradation can be applied in the transformation of various agricultural and maricultural waste of plant origin and in the modification of carbohydrate-containing substances in structural research and biotechnology.  相似文献   

18.
19.
Anaerobic fungi are the inhabitants of the digestive tract of herbivorous mammals, ruminants as well as non-ruminants. One of the major characteristics of all anaerobic fungi examined thus far, is their production and secretion of a range of polysaccharide-degrading enzymes, including cellulases, xylanases and glucoside-hydrolases. The cellulolytic enzymes of the anaerobic fungusNeocallimastix frontalis have been shown to possess a high activity. Therefore anaerobic fungi and/or their enzymes could be interesting for many biotechnological applications including saccharafication of lignocellulosic residues, production of polysacchari-dehydrolysing enzymes. This review summarizes the present knowledge of anaerobic fungi with special emphasis on their cellulolytic and xylanolytic enzymes. Further, a comparison with aerobic fungi is made.Abbreviations G2 cellobiose - G3 cellotriose - G4 cellotetraose - G5 cellopentaose - HMM-complex high molecular mass complex - PNPF p-nitrophenyl--fucopyranoside - PNPG p-nitrophenyl--glucopyranoside  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号